Skip to content
Snippets Groups Projects
Commit 426c280e authored by oliverpurschke's avatar oliverpurschke
Browse files

changes to digi_lime_get_part_chunks

parent 29c6ca76
Branches
No related tags found
No related merge requests found
# lsfun
Installing the package
================
``` r
install.packages("remotes")
remotes::install_gitlab(repo = "imebi/digihero/limesurvey/lsfun" , host = "gitlab.informatik.uni-halle.de")
library(lsfun)
library(help=lsfun)
?lsfun
```
## Getting started
add some documentation
Load additional packages
================
Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)!
``` r
library(tidyverse)
library(limer)
```
## Add your files
Get session key
================
- [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files
- [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command:
Enter your LimeSurvey user name.
``` r
digi_lime_auth(lime_user = '[limeuser in here]')
```
cd existing_repo
git remote add origin https://gitlab.informatik.uni-halle.de/imebi/digihero/limesurvey/lsfun.git
git branch -M main
git push -uf origin main
Using the package
================
Classification and filtering of symptom diary entries
------------------
lk_klass() filters records for each id_s in the symptom diary according to a predefined duration (months of living) and classifies each entry according to predefined fever categories. In addition, age (in days as well as in months of life) for each individual are calculated.
e. g. for 1 until 12 months of life:
``` r
?digi_lime_get_part_chunks
digi_part_dat <-
digi_lime_get_part_chunks(
surv_id = 433442,
max_tn <- 195000,
chunk_size <- 30000,
attributes = c(
"token",
"emailstatus",
"language",
"validfrom",
"validuntil",
"invited",
"reminded",
"remindercount",
"completed",
"usesleft"
)
) %>%
select(ZN = "token",
part = "participant_info") %>%
bind_cols(.$part) %>%
select(-part) %>%
set_names(c("ZN", "Vorname", "Nachname", "Email")) %>%
filter(grepl("^[A-Za-z0-9]{15}$", ZN)) %>%
distinct()
```
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment