Skip to content
Snippets Groups Projects
Commit 269cd14a authored by Wolf Widdra's avatar Wolf Widdra
Browse files

Plasma freq corrected

parent 48fba947
No related branches found
No related tags found
No related merge requests found
......@@ -4,25 +4,24 @@ import numpy as np
from scipy import constants
from scipy.integrate import cumulative_trapezoid
def plasmaFrequency(n):
'''Returns the plasma frequency for a given doping.'''
def plasmaFrequency(n,eps_inf=1):
'''Returns the plasma frequency for a given doping n in charge/m³.'''
# Note that the function parameter is actually n/m, the charge carrier density
# over the band mass in units of electron mass in vacuum.
eps_0 = constants.value("vacuum electric permittivity")
e = constants.value('elementary charge')
m_e = constants.value('electron mass')
w_P = np.sqrt(n*e*e/(eps_0*m_e)) #Hz
w_P = w_P /1E+12 * 33.35641 #Hz -> THz -> cm^-1
return w_P
# def doping2chargecarrierdensity(doping): #use doping in percentage by mass, not volume
# '''Returns the charge carrier density for a given doping in percentage.'''
# return float(doping*3.31664067935517E+020*1E6) # doping[%] * charge carrier/cm^3 * 1E6 = n_e [m^-3]
# def doping2plasmaFrequency(doping):
# '''Returns the plasma frequency for a given doping.'''
# n = doping2chargecarrierdensity(doping)
# return plasmaFrequency(n)
# Careful: There is a factor of 2 pi between omega and nue:
# If the plasma oscillates in a polarisable medium eps_infinity will reduce the restoring fields
w_P = np.sqrt(n*e*e/(eps_0*eps_inf*m_e)) #
nue_P = w_P /1E+12 * 33.35641 /2 /np.pi #Hz -> THz -> cm^-1
return nue_P
def chargeDensitySTO(x):
# Calculates the charge density per m^3 for SrTi_(1-x)Nb_xO_3
# assuming doping by one electron per Nb atom
vol = 3.91*3.91*3.91 * 1E-30 # unit cell volume in m^3
return x/vol
def loss(eps):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment