@@ -55,10 +55,12 @@ The following methods are defined within the class:
These routines are based on the publication "Computation of the surface electron-energy-loss spectrum in specular geometry for an arbitrary plane-stratified medium" by P. Lambin, J.-P. Vigneron, and A. A. Lucas, in the Journal "Computer Physics Communications 60, 351-64(1990)".
The code is modified to comply with Fortran90 and wraped to python functions. See the example in Examples/calcHREELS1.py for NiO(001). The parameters for epsilon_infinity "eps": 5.25, as well as frequency and width for the TO phonon, "wTO": [393.7], "gTO": [10.8], and the LO phonon, "wLO": [584.7], "gLO": [10.8], need to be specified.
It allows to handle a heterostructure of different materials in a easy way. The code is modified to comply with Fortran90 and wraped to python functions. See the example in Examples/calcHREELS1.py for NiO(001).
Complex calculations for perovskite oxides are provided in the examples calcHREELS2.py and calcHREELS3.py.
# dielectrics20
These routines allow to model the dielectric properties of materials described by different oscillators and Drude responses. Quantities as real and imaginary part of the dielectric function, optical conductivity, IR reflectivity, and surface loss are calculated. The sum rules of optical conductivity can be analyzed.