Skip to content
Snippets Groups Projects
Unverified Commit 38a56706 authored by hoshi-hiyouga's avatar hoshi-hiyouga Committed by GitHub
Browse files

Update utils.py

parent a950f3b8
Branches
No related tags found
No related merge requests found
from enum import Enum, unique
from typing import TYPE_CHECKING, Dict, List
from functools import partial
from typing import TYPE_CHECKING, Any, Dict, List, Optional
import torch
from transformers import PreTrainedModel
......@@ -100,6 +101,37 @@ def find_expanded_modules(model: "PreTrainedModel", target_modules: List[str], n
return module_names
def gradient_checkpointing_enable(
self: "PreTrainedModel", gradient_checkpointing_kwargs: Optional[Dict[str, Any]] = None
) -> None:
r"""
Activates gradient checkpointing for the current model.
Modification of the original method to enable gradient checkpointing for block-wise optimizer.
"""
from torch.utils.checkpoint import checkpoint
if not self.supports_gradient_checkpointing:
raise ValueError("{} does not support gradient checkpointing.".format(self.__class__.__name__))
if gradient_checkpointing_kwargs is None:
gradient_checkpointing_kwargs = {"use_reentrant": True}
gradient_checkpointing_func = partial(checkpoint, **gradient_checkpointing_kwargs)
def custom_gradient_checkpointing_func(func, *args, **kwargs):
module: "torch.nn.Module" = func.__self__
if any(param.requires_grad for param in module.parameters()):
for arg in args:
if torch.is_tensor(arg) and torch.is_floating_point(arg):
arg.requires_grad_(True)
return gradient_checkpointing_func(func, *args, **kwargs)
self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=custom_gradient_checkpointing_func)
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
r"""
Loads value head parameters from Hugging Face Hub or local disk.
......@@ -135,39 +167,3 @@ def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tok
model.__class__.register_for_auto_class()
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
tokenizer.__class__.register_for_auto_class()
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
"""
Modification of the original method to enable gradient checkpointing for block-wise optimizer.
Activates gradient checkpointing for the current model.
We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of
the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
Args:
gradient_checkpointing_kwargs (dict, *optional*):
Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function.
"""
from torch.utils.checkpoint import checkpoint
import functools
if not self.supports_gradient_checkpointing:
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
if gradient_checkpointing_kwargs is None:
gradient_checkpointing_kwargs = {"use_reentrant": True}
checkpoint = functools.partial(checkpoint, **gradient_checkpointing_kwargs)
def gradient_checkpointing_func(func, *args, **kwargs):
module = func.__self__
if any(p.requires_grad for p in module.parameters()):
for arg in args:
if torch.is_tensor(arg) and torch.is_floating_point(arg):
arg.requires_grad_(True)
return checkpoint(func, *args, **kwargs)
self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment