Skip to content
Snippets Groups Projects
Commit 3d61f41a authored by Desi's avatar Desi
Browse files

merge with main delete prints

parent 6d2ba2da
Branches dev_desi/ploy
No related tags found
1 merge request!15merge with main delete prints
......@@ -8,7 +8,7 @@ from src.run_model_wrapper import main
#optimal hyperparameters from autors: 'POLY': {'periodicity': 1, 'power': 4}
params = {
'periodicity': [1, 2, 3],
'power': [1, 2, 3, 4,5,7]
'power': [1, 2, 3, 4,5]
}
def run_POLY(data, periodicity=1, power=3, n_jobs=1):
......@@ -22,4 +22,7 @@ model = 'POLY'
output_path = '../../../docs/evaluation/'
#writes results in .csv
main(run_POLY,params,model,data_folders = '../../../data/', model_type='unsupervised',output_dir = output_path)
\ No newline at end of file
main(run_POLY,params,model,data_folders = '../../../data/', model_type='unsupervised',output_dir = output_path)
#pip3 install -r requirements.txt
# python src/models/desi/call_poly.py
\ No newline at end of file
......@@ -261,11 +261,11 @@ def main(run_model, hyperparams, model_name, data_folders = '../../../data/', mo
#go through all files in train data and store additionally informations about group and anomaly types
grid_List = []
print(f"Start Processing files")
# print(f"Start Processing files")
#reutrns [{file_name:str,train_data:list,data:list, label:list, sliding_window:int}]
file_data_dict_list = preprocess_data(path_data_all)
print('Start Hyperparameter Tuning')
# print('Start Hyperparameter Tuning')
# Creates combinations of all hyperparameters
param_combinations = list(itertools.product(*hyperparams.values()))
#find hyperparametrs for each file:
......@@ -278,21 +278,21 @@ def main(run_model, hyperparams, model_name, data_folders = '../../../data/', mo
# Hyperparameter-Optimierung
best_params = hyperparameter_optimization(run_model, data,label,train_data, hyperparams,sliding_window,param_combinations,model_type)
print(f"File: {filename}, best hyperparameter: {best_params}")
# print(f"File: {filename}, best hyperparameter: {best_params}")
#grid_list looks like this: [{ params: {key:value}, file_name:str,train_data:list,data:list, label:list, sliding_window:int}]
grid_List.append({'file_name':filename,'params':best_params,'train_data':train_data,'data':data,'label':label,'sliding_window':sliding_window})
print('Start Training and evaluation')
# print('Start Training and evaluation')
results_list = train_test_model(run_model,grid_List,path_to_folder, model_type)
#convert list of dicts to a dict with lists
results = create_dict_from_array(results_list)
#check duration time
duration = sum(results['duration'])
print(f'Job done. Duration: {duration:.3f} seconds')
# print(f'Job done. Duration: {duration:.3f} seconds')
#store results for each model by folder
results_df = pd.DataFrame(results)
output_csv = os.path.join(output_dir,model_name + '.csv')
results_df.to_csv(output_csv, index=False)
print(f"Ergebnisse gespeichert in: {output_csv}")
# print(f"Ergebnisse gespeichert in: {output_csv}")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment