Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • main
1 result

Target

Select target project
  • amxgg/bewerter-struktureller-induktion
1 result
Select Git revision
  • main
1 result
Show changes
name Peano
sorts Nat, Nat2
constructors null: Nat
inc: Nat -> Nat
operations plus: Nat >< Nat -> Nat
mal: Nat >< Nat -> Nat2
vars n : Nat, m : Nat, k : Nat2
// wrong sorts in trees and equation
axioms p0: plus(k,null) = k
p1: plus(n,inc(m)) = inc(plus(n,m))
m0: mal(n,null) = null
m1: mal(n,inc(m)) = plus(mal(n,m),n)
\ No newline at end of file
// wrong sorts in trees and equation
task forall n:Nat2, m:Nat : plus(n,m) = plus(m,n)
induction n
case null maxpt 2 minsteps 2 maxsteps 3
case inc maxpt 3 minsteps 3 maxsteps 5
IH maxpt 1
proof lemmata
L1: forall m:Nat : plus(null2,m) = m
induction m
case null maxpt 1 minsteps 1 maxsteps 2
case inc maxpt 2 minsteps 2 maxsteps 3
IH maxpt 1
L2: forall n:Nat, m:Nat : plus(inc2(n),m) = inc2(plus(n,m))
induction m
case null maxpt 2 minsteps 2 maxsteps 3
case inc maxpt 3 minsteps 3 maxsteps 5
IH maxpt 1
name Peano
sorts Nat, Nat2
constructors null: Nat
inc: Nat -> Nat
operations plus: Nat >< Nat -> Nat
mal: Nat >< Nat -> Nat
// variable defined multiple times
vars n : Nat, m : Nat, n : Nat2
axioms p0: plus(n,null) = n
p1: plus(n,inc(m)) = inc(plus(n,m))
m0: mal(n,null) = null
m1: mal(n,inc(m)) = plus(mal(n,m),n)
\ No newline at end of file
// variable defined multiple times
task forall n:Nat, m:Nat, n:Nat : plus(n,m) = plus(m,n)
induction n
case null maxpt 2 minsteps 2 maxsteps 3
case inc maxpt 3 minsteps 3 maxsteps 5
IH maxpt 1
proof lemmata
L1: fixed m:Nat : forall m:Nat : plus(null,m) = m
induction m
case null maxpt 1 minsteps 1 maxsteps 2
case inc maxpt 2 minsteps 2 maxsteps 3
IH maxpt 1
L2: forall n:Nat, m:Nat : plus(inc(n),m) = inc(plus(n,m))
induction m
case null maxpt 2 minsteps 2 maxsteps 3
case inc maxpt 3 minsteps 3 maxsteps 5
IH maxpt 1
task forall n:Nat, m:Nat : plus(n,m) = plus(m,n)
induction k
case null maxpt 2 minsteps 2 maxsteps 3
case inc maxpt 3 minsteps 3 maxsteps 5
IH maxpt 1
proof lemmata
L1: forall m:Nat, n:Nat2 : plus(null,m) = m
induction n
case null maxpt 1 minsteps 1 maxsteps 2
case inc maxpt 2 minsteps 2 maxsteps 3
IH maxpt 1
L2: forall n:Nat, m:Nat : plus(inc(n),m) = inc(plus(n,m))
case null maxpt 2 minsteps 2 maxsteps 3
case inc maxpt 3 minsteps 3 maxsteps 5
IH maxpt 1