Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
Lineare Optimierung 2021
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Veronika Magdalena Hedwig Hille
Lineare Optimierung 2021
Commits
6763bd5b
Commit
6763bd5b
authored
3 years ago
by
Philipp Rösner
Browse files
Options
Downloads
Patches
Plain Diff
added 20210712.tex
parent
0bf81dc6
Branches
Branches containing commit
No related tags found
1 merge request
!51
added 20210712.tex
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
Lineare_Optimierung_2021.pdf
+0
-0
0 additions, 0 deletions
Lineare_Optimierung_2021.pdf
Lineare_Optimierung_2021.tex
+6
-0
6 additions, 0 deletions
Lineare_Optimierung_2021.tex
lessons/20210712.tex
+58
-0
58 additions, 0 deletions
lessons/20210712.tex
with
64 additions
and
0 deletions
Lineare_Optimierung_2021.pdf
+
0
−
0
View file @
6763bd5b
No preview for this file type
This diff is collapsed.
Click to expand it.
Lineare_Optimierung_2021.tex
+
6
−
0
View file @
6763bd5b
...
...
@@ -327,6 +327,12 @@
\end{flushright}
\input
{
./lessons/20210707
}
--------------------------------------------------------------------------------------------------------------
\begin{flushright}
12.07.2021
\end{flushright}
\input
{
./lessons/20210712
}
% Notizen zum techen:
% Farben:
...
...
This diff is collapsed.
Click to expand it.
lessons/20210712.tex
0 → 100644
+
58
−
0
View file @
6763bd5b
\textit
{
Beweis:
}
\\
Abkürzung:
$
A :
=
\begin
{
pmatrix
}
B
&
-
d
&
d
-
Be
\end
{
pmatrix
}
\in
\R
^{
m
+
n
}$
.
\\
\begin{enumerate}
\item
[\circled{1.}]
\textit
{
zu zeigen:
}
\[
\begin
{
cases
}
(
P
)
\text
{
in Karmarkar
-
Normalform:
}
\\
{
\dr
Rang
(
A
)
=
m
}
,
{
\dr
Ae
=
0
}
\text
{
und
}
{
\dr
\min
(
P
)
=
0
}
\end
{
cases
}
\]
\begin{itemize}
\item
Leicht zu sehen:
$
Kern
(
B
^
T
)
=
\{
0
\}
$
\\
$
~~~~~~~~~~~~~~~~~~~~~~~Rang
(
B
)
=
m ~~~
$
falls nicht
$
b
_
0
=
0
$
und
\\
$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c
_
0
=
0
$
\\
$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\uparrow
$
durch Voraussetzung
$
(
a
)
$
ausgeschlossen!
$
\Rightarrow
{
\dr
Rang
(
A
)
=
Rang
(
B
)
=
m.
}$
\item
Weiter ist
\[
{
\dr
Ae
}
=
Be
+
(-
d
)
\cdot
1
+
(
d
-
Be
)
\cdot
1
{
\dr
=
0
}
\]
(
$
e
$
ist Vektor ''geigneter Länge'', dessen Kompon. alle
$
=
1
$
).
\\
$
\min
(
P
)=
0
$
wird in
\circled
{$
2
.
$}
mit gezeigt!
\end{itemize}
\item
[\circled{2.a}]
\begin{itemize}
\item
Voraussetzung
$
(
b
)
\Rightarrow
(
P
_
0
)
$
besitzt Lösung
$
u
^
*
\in
M
_
0
$
\\
$
\xRightarrow
[
Dual.satz
]
{
starker
}$
Das duale Problem
$
(
D
_
0
)
$
besitzt Lösg.
$
v
^
*
\in
N
_
0
$
nach
\[
\rbox
{
$c
_
0
^
Tu
^
*
=
b
_
0
^
Tv
^
*
$
}
\]
Definieren:
\[
\rbox
{
$x
^
*
:
=
\frac
{
n
}{
e
^
Tw
^
*+
1
}
\begin
{
pmatrix
}
w
^
*
\\
1
\\
0
\end
{
pmatrix
}
$
}
\text
{
mit
}
w
^
*
:
=
\begin
{
pmatrix
}
u
^
*
\\
A
_
0
u
^
*-
b
_
0
\\
v
^
*
\\
c
_
0
-
A
_
0
^
Tv
^
*
\end
{
pmatrix
}\]
$
\Rightarrow
Bw
^
*
=
d, w
^
*
\ge
0
\qquad
\text
{
(
einsetzen
)
Def. von B
}
)
$
\\
$
\Rightarrow
x
^
*
$
zulässig für
$
(
P
)
$
mit Zielfunktionswert 0 (
$
\uparrow
$
Zielfkt. in
$
(
P
)
\ge
0
$
)
\\
$
\Rightarrow
x
^
*
$
Lösung von
$
(
P
)
,
{
\dr
\min
(
P
)
=
0
.
}$
\end{itemize}
\item
[\circled{2.b}]
\begin{itemize}
\item
Sei
$
x
^{
*
T
}
=
(
p
^{
*
T
}
,
\alpha
^
*
,
\beta
^
*)
$
Lösung von
$
(
P
)
$
\\
$
\xRightarrow
[
\min
(
P
)=
0
]
{}
{
\dr
\beta
^
*
=
0
}$
\item
\textit
{
Annahme:
}
$
\alpha
^
*
=
0
\xRightarrow
[
{
\dr
\text
{
Def.
}
\B
}
]
{
\beta
^
*
,
\alpha
^
*=
0
}
Bp
^
*
=
0
, e
^
Tp
^
*
=
n, p
^
*
\ge
0
$
\\
$
\Rightarrow
$
\rbox
{$
Bp
=
0
, p
\ge
0
$}
hätte die
\\
${
\gr
\text
{
wegen
}
e
^
Tp
^
*
=
n
\rightarrow
}$
\textit
{
nichttriviale Lsg.
}
$
p
^
*
$
.
\\
Zerlegung von
$
p
^
*
\in
\R
^{
2
(
m
-
1
)
}
=
\R
^{
2
(
k
+
l
)
}
=
\R
^{
l
+
k
+
k
+
l
}$
\\
durch
$
p
^{
*
T
}
=
(
u
^
T, y
^
T, v
^
T, z
^
T
)
$
.
${
\gr
(
\ge
0
)
}$
\\
$
\xRightarrow
[
\text
{
von
}
{
\dr
\B
}
]
{{
\dr
\text
{
Definition
}}}$
\rbox
{$
A
_
0
u
-
y
=
0
, A
_
0
^
Tv
+
z
=
0
, c
_
0
^
Tu
-
b
_
0
^
Tv
=
0
.
$}
\\
\textit
{
Wäre
}
$
u
\ne
0
\xRightarrow
[
{
\dr
\text
{
Lemma
2
Satz
0
.
1
}}
]
{{
\gr
\downarrow
A
_
0
u
=
y
\overset
{
\B
}{
\ge
}
0
}}
c
_
0
^
Tu >
0
$
\\
$
\Rightarrow
0
< c
_
0
^
Tu
=
b
_
0
^
Tv
\xRightarrow
[
A
_
0
^
Tv
\le
0
]
{{
\gr
\text
{
Def.
}
\B
(
\cdot
)
}}
\sup
(
D
_
0
)
=
+
\infty
$
\\
$
\Rightarrow
$
\textit
{
Widerspruch
}
zur Lösbarkeit von
$
(
D
_
0
)
$
.
\\
$
\Rightarrow
{
\dr
u
=
0
}
\xRightarrow
[
{
\dr
A
_
0
y
=
y
}
]
{}
{
\dr
y
=
0
}
, b
_
0
^
Tv
=
c
_
0
^
Tu
=
0
.
(
\sim
)
$
\\
$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$
(wegen
$
(
?
)
$
und
$
u
=
0
$
)
\item
zu zeigen bleibt:
$
v
=
0
$
,
\\
da sich dann auch
$
z
=
0
$
und insgesamt
$
p
^
*
=
0
$
ergibt.
\\
\textit
{
Annahme:
}
$
v
\ne
0
\xRightarrow
[
\text
{
Voraussetzg.
(
c
)
}
]
{}
0
< v
^
T
(
\underbrace
{
A
_
0
\overline
{
u
}
-
b
_
0
}_{
>
0
}
)
=
\underbrace
{
\overline
{
u
}^
TA
_
0
^
Tv
}_{
\le
0
}
-
\underbrace
{
b
_
0
^
Tv
}_{
=
0
(
\sim
)
}
\le
0
$
\\
$
\Rightarrow
$
Widerspruch!
${
\gr
\curvearrowright
p
^
*
=
0
}$
\item
Insgesamt ist die Annahme
\[
{
\db
\alpha
^
*
=
0
}
{
\gr
(
\curvearrowright
p
^
*
\ne
0
}
)
\]
bzw.
\[
{
\db
\exists
\text
{
nichttriviale Lösung
}
p
^
*
\text
{
zu
}
Bp
=
0
, p
\ge
0
.
}
\]
zum Widerspruch geführt worden!
\item
Rest der Behauptung trivial (ergibt sich aus schwachen Dualitätssatz).
\end{itemize}
\end{enumerate}
Konvergenzbeweis
$
\uparrow
$
Werner
$
S.
135
$
''Numerische Mathematik 2''
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment