Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DMML-Replikation
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Matthias Keck
DMML-Replikation
Commits
bc7e25df
Commit
bc7e25df
authored
3 weeks ago
by
Armin Bacher
Browse files
Options
Downloads
Patches
Plain Diff
Delete GPT2L_A100.py
parent
b87a8d6b
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Benchmark_Training/GPT2L_A100.py
+0
-142
0 additions, 142 deletions
Benchmark_Training/GPT2L_A100.py
with
0 additions
and
142 deletions
Benchmark_Training/GPT2L_A100.py
deleted
100644 → 0
+
0
−
142
View file @
b87a8d6b
# flashattn2_benchmark_a100.py
# Replikation FlashAttention-2 Paper - Benchmarking auf A100 GPU Cluster
from
transformers
import
GPT2Config
,
AutoTokenizer
,
TrainingArguments
,
DataCollatorForLanguageModeling
from
datasets
import
load_dataset
from
flash_attn.models.gpt
import
GPTLMHeadModel
from
transformers
import
Trainer
import
torch.nn.functional
as
F
import
torch
import
time
import
os
import
random
,
numpy
as
np
# Fixe Seeds
def
set_seed
(
seed
=
42
):
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
torch
.
manual_seed
(
seed
)
torch
.
cuda
.
manual_seed_all
(
seed
)
set_seed
(
42
)
# Dummy ColumnParallelLinear wenn nicht vorhanden
from
flash_attn.models
import
gpt
if
not
hasattr
(
gpt
,
"
ColumnParallelLinear
"
)
or
not
isinstance
(
gpt
.
ColumnParallelLinear
,
type
):
import
torch.nn
as
nn
class
ColumnParallelLinear
(
nn
.
Module
):
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
().
__init__
()
gpt
.
ColumnParallelLinear
=
ColumnParallelLinear
# Custom Trainer
class
FlashTrainer
(
Trainer
):
def
compute_loss
(
self
,
model
,
inputs
,
return_outputs
=
False
,
num_items_in_batch
=
None
):
labels
=
inputs
.
pop
(
"
labels
"
)
inputs
.
pop
(
"
attention_mask
"
,
None
)
outputs
=
model
(
**
inputs
)
logits
=
outputs
[
0
]
shift_logits
=
logits
[...,
:
-
1
,
:].
contiguous
()
shift_labels
=
labels
[...,
1
:].
contiguous
()
loss
=
F
.
cross_entropy
(
shift_logits
.
view
(
-
1
,
shift_logits
.
size
(
-
1
)),
shift_labels
.
view
(
-
1
),
ignore_index
=-
100
,
)
return
(
loss
,
outputs
)
if
return_outputs
else
loss
# GPT2 Modell erzeugen (für Benchmark ggf. GPT2-XL / größer)
def
get_gpt2_model
(
attention_impl
=
"
torch
"
):
config
=
GPT2Config
(
n_layer
=
24
,
n_head
=
20
,
n_embd
=
1280
,
vocab_size
=
50257
,
# GPT2-Large
n_positions
=
1024
,
resid_pdrop
=
0.1
,
embd_pdrop
=
0.1
,
attn_pdrop
=
0.1
,
layer_norm_epsilon
=
1e-5
)
config
.
attention_config
=
{
"
attn_impl
"
:
attention_impl
,
"
alibi
"
:
False
,
"
rope
"
:
True
,
"
rope_theta
"
:
10000.0
,
"
use_flash_rotary
"
:
True
}
return
GPTLMHeadModel
(
config
)
# Tokenizer & Dataset vorbereiten
seq_len
=
1024
batch_size
=
4
tokenizer
=
AutoTokenizer
.
from_pretrained
(
"
gpt2
"
)
tokenizer
.
pad_token
=
tokenizer
.
eos_token
raw_dataset
=
load_dataset
(
"
wikitext
"
,
"
wikitext-103-raw-v1
"
)
def
tokenize
(
example
):
return
tokenizer
(
example
[
"
text
"
],
truncation
=
True
,
padding
=
"
max_length
"
,
max_length
=
seq_len
)
dataset
=
raw_dataset
[
"
train
"
].
select
(
range
(
1024
))
# kleines Sample fürs Profiling
tokenized_dataset
=
dataset
.
map
(
tokenize
,
batched
=
True
,
remove_columns
=
[
"
text
"
])
data_collator
=
DataCollatorForLanguageModeling
(
tokenizer
=
tokenizer
,
mlm
=
False
)
def
count_model_params
(
model
):
return
sum
(
p
.
numel
()
for
p
in
model
.
parameters
()
if
p
.
requires_grad
)
def
train_model
(
attention_impl
=
"
torch
"
):
model
=
get_gpt2_model
(
attention_impl
)
train_args
=
TrainingArguments
(
output_dir
=
f
"
./gpt2_
{
attention_impl
}
_a100
"
,
overwrite_output_dir
=
True
,
per_device_train_batch_size
=
batch_size
,
num_train_epochs
=
1
,
logging_steps
=
999999
,
report_to
=
"
none
"
,
save_strategy
=
"
no
"
,
remove_unused_columns
=
False
,
fp16
=
True
# Auf A100 sinnvoll / wie im Paper
)
start_time
=
time
.
time
()
trainer
=
FlashTrainer
(
model
=
model
,
args
=
train_args
,
train_dataset
=
tokenized_dataset
,
data_collator
=
data_collator
,
tokenizer
=
tokenizer
)
trainer
.
train
()
elapsed
=
time
.
time
()
-
start_time
num_params
=
count_model_params
(
model
)
n_layer
=
model
.
config
.
n_layer
hidden_dim
=
model
.
config
.
n_embd
steps
=
int
(
len
(
tokenized_dataset
)
/
batch_size
)
avg_step
=
elapsed
/
steps
if
steps
else
float
(
'
nan
'
)
tokens_per_step
=
batch_size
*
seq_len
flops_per_step
=
(
6
*
seq_len
*
num_params
+
12
*
n_layer
*
hidden_dim
*
seq_len
*
seq_len
)
flops_total
=
flops_per_step
*
batch_size
*
steps
tflops_per_s
=
flops_total
/
(
elapsed
*
1e12
)
output_path
=
f
"
benchmark_results_seq
{
seq_len
}
_bs
{
batch_size
}
.txt
"
header_written
=
os
.
path
.
exists
(
output_path
)
with
open
(
output_path
,
"
a
"
)
as
f
:
if
not
header_written
:
f
.
write
(
"
# FlashAttention Benchmark Ergebnisse
\n
"
)
f
.
write
(
f
"
Modell: GPT2 | Layers:
{
model
.
config
.
n_layer
}
| Embedding Dim:
{
model
.
config
.
n_embd
}
\n
"
)
f
.
write
(
f
"
Sequence Length:
{
model
.
config
.
n_positions
}
| Batch Size:
{
train_args
.
per_device_train_batch_size
}
| FP16:
{
train_args
.
fp16
}
\n\n
"
)
f
.
write
(
f
"
===
{
attention_impl
.
upper
()
}
===
\n
"
)
f
.
write
(
f
"
Runtime:
{
elapsed
:
.
2
f
}
s | Steps:
{
steps
}
| Step Time:
{
avg_step
:
.
4
f
}
s
\n
"
)
f
.
write
(
f
"
Tokens/s:
{
tokens_per_step
/
avg_step
:
.
2
f
}
| TFLOPs/s:
{
tflops_per_s
:
.
3
f
}
\n\n
"
)
# Benchmark starten
for
impl
in
[
"
torch
"
,
"
flash
"
,
"
flash2
"
]:
train_model
(
impl
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment