Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DMML-Replikation
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Matthias Keck
DMML-Replikation
Commits
0f1da049
Commit
0f1da049
authored
1 month ago
by
Matthias Keck
Browse files
Options
Downloads
Patches
Plain Diff
Delete with_xformers.py
parent
561b2004
Loading
Loading
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Benchmark_AttLayer/with_xformers.py
+0
-170
0 additions, 170 deletions
Benchmark_AttLayer/with_xformers.py
with
0 additions
and
170 deletions
Benchmark_AttLayer/with_xformers.py
deleted
100644 → 0
+
0
−
170
View file @
561b2004
import
pickle
import
math
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
from
einops
import
rearrange
,
repeat
from
flash_attn.utils.benchmark
import
benchmark_all
,
benchmark_forward
,
benchmark_backward
from
flash_attn.utils.benchmark
import
benchmark_fwd_bwd
,
benchmark_combined
from
flash_attn
import
flash_attn_func
,
flash_attn_qkvpacked_func
try
:
import
xformers.ops
as
xops
except
ImportError
:
xops
=
None
def
flops
(
batch
,
seqlen
,
headdim
,
nheads
,
causal
,
mode
=
"
fwd
"
):
assert
mode
in
[
"
fwd
"
,
"
bwd
"
,
"
fwd_bwd
"
]
f
=
4
*
batch
*
seqlen
**
2
*
nheads
*
headdim
//
(
2
if
causal
else
1
)
return
f
if
mode
==
"
fwd
"
else
(
2.5
*
f
if
mode
==
"
bwd
"
else
3.5
*
f
)
def
efficiency
(
flop
,
time
):
return
(
flop
/
time
/
10
**
12
)
if
not
math
.
isnan
(
time
)
else
0.0
def
attention_pytorch
(
qkv
,
dropout_p
=
0.0
,
causal
=
True
):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, head_dim)
dropout_p: float
Output:
output: (batch_size, seqlen, nheads, head_dim)
"""
batch_size
,
seqlen
,
_
,
nheads
,
d
=
qkv
.
shape
q
,
k
,
v
=
qkv
.
unbind
(
dim
=
2
)
q
=
rearrange
(
q
,
'
b t h d -> (b h) t d
'
)
k
=
rearrange
(
k
,
'
b s h d -> (b h) d s
'
)
softmax_scale
=
1.0
/
math
.
sqrt
(
d
)
# Preallocate attn_weights for `baddbmm`
scores
=
torch
.
empty
(
batch_size
*
nheads
,
seqlen
,
seqlen
,
dtype
=
qkv
.
dtype
,
device
=
qkv
.
device
)
scores
=
rearrange
(
torch
.
baddbmm
(
scores
,
q
,
k
,
beta
=
0
,
alpha
=
softmax_scale
),
'
(b h) t s -> b h t s
'
,
h
=
nheads
)
if
causal
:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask
=
torch
.
triu
(
torch
.
full
((
seqlen
,
seqlen
),
-
10000.0
,
device
=
scores
.
device
),
1
)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores
=
scores
+
causal_mask
.
to
(
dtype
=
scores
.
dtype
)
attention
=
torch
.
softmax
(
scores
,
dim
=-
1
)
attention_drop
=
F
.
dropout
(
attention
,
dropout_p
)
output
=
torch
.
einsum
(
'
bhts,bshd->bthd
'
,
attention_drop
,
v
)
return
output
.
to
(
dtype
=
qkv
.
dtype
)
def
time_fwd_bwd
(
func
,
*
args
,
**
kwargs
):
time_f
,
time_b
=
benchmark_fwd_bwd
(
func
,
*
args
,
**
kwargs
)
return
time_f
[
1
].
mean
,
time_b
[
1
].
mean
repeats
=
30
device
=
'
cuda
'
dtype
=
torch
.
float16
bs_seqlen_vals
=
[(
32
,
512
),
(
16
,
1024
),
(
8
,
2048
),
(
4
,
4096
),
(
2
,
8192
),
(
1
,
16384
)]
causal_vals
=
[
False
,
True
]
headdim_vals
=
[
64
,
128
]
dim
=
2048
dropout_p
=
0.0
methods
=
([
"
Flash2
"
,
"
Flash
"
,
"
Pytorch
"
]
+
([
"
xformers.f
"
]
if
xops
is
not
None
else
[]))
time_f
=
{}
time_b
=
{}
time_f_b
=
{}
speed_f
=
{}
speed_b
=
{}
speed_f_b
=
{}
for
causal
in
causal_vals
:
for
headdim
in
headdim_vals
:
for
batch_size
,
seqlen
in
bs_seqlen_vals
:
config
=
(
causal
,
headdim
,
batch_size
,
seqlen
)
nheads
=
dim
//
headdim
qkv
=
torch
.
randn
(
batch_size
,
seqlen
,
3
,
nheads
,
headdim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
f
,
b
=
time_fwd_bwd
(
flash_attn_qkvpacked_func
,
qkv
,
dropout_p
,
causal
=
causal
,
repeats
=
repeats
,
verbose
=
False
)
time_f
[
config
,
"
Flash2
"
]
=
f
time_b
[
config
,
"
Flash2
"
]
=
b
try
:
# Extract q, k, v from qkv: [B, N, 3, H, D] → [B, H, N, D]
q
,
k
,
v
=
qkv
.
unbind
(
dim
=
2
)
# [B, N, H, D] each
q
=
q
.
permute
(
0
,
2
,
1
,
3
).
contiguous
()
# → [B, H, N, D]
k
=
k
.
permute
(
0
,
2
,
1
,
3
).
contiguous
()
v
=
v
.
permute
(
0
,
2
,
1
,
3
).
contiguous
()
def
flash_attn_func_wrapper
(
qkv_input
,
dropout_p
=
0.0
,
causal
=
False
):
q
,
k
,
v
=
qkv_input
.
unbind
(
dim
=
2
)
q
=
q
.
permute
(
0
,
2
,
1
,
3
).
contiguous
()
k
=
k
.
permute
(
0
,
2
,
1
,
3
).
contiguous
()
v
=
v
.
permute
(
0
,
2
,
1
,
3
).
contiguous
()
return
flash_attn_func
(
q
,
k
,
v
,
causal
=
causal
)
f
,
b
=
time_fwd_bwd
(
flash_attn_func_wrapper
,
qkv
,
# dummy input, real data comes from closure
dropout_p
,
causal
=
causal
,
repeats
=
repeats
,
verbose
=
False
)
except
Exception
as
e
:
print
(
f
"
❌ Flash failed:
{
e
}
"
)
f
,
b
=
float
(
'
nan
'
),
float
(
'
nan
'
)
time_f
[
config
,
"
Flash
"
]
=
f
time_b
[
config
,
"
Flash
"
]
=
b
try
:
qkv
=
qkv
.
detach
().
requires_grad_
(
True
)
f
,
b
=
time_fwd_bwd
(
attention_pytorch
,
qkv
,
dropout_p
,
causal
=
causal
,
repeats
=
repeats
,
verbose
=
False
)
except
:
# Skip if OOM
f
,
b
=
float
(
'
nan
'
),
float
(
'
nan
'
)
time_f
[
config
,
"
Pytorch
"
]
=
f
time_b
[
config
,
"
Pytorch
"
]
=
b
if
xops
is
not
None
:
q
,
k
,
v
=
[
torch
.
randn
(
batch_size
,
seqlen
,
nheads
,
headdim
,
device
=
device
,
dtype
=
dtype
,
requires_grad
=
True
)
for
_
in
range
(
3
)]
f
,
b
=
time_fwd_bwd
(
xops
.
memory_efficient_attention
,
q
,
k
,
v
,
attn_bias
=
xops
.
LowerTriangularMask
()
if
causal
else
None
,
op
=
(
xops
.
fmha
.
flash
.
FwOp
,
xops
.
fmha
.
flash
.
BwOp
)
)
time_f
[
config
,
"
xformers.f
"
]
=
f
time_b
[
config
,
"
xformers.f
"
]
=
b
print
(
f
"
### causal=
{
causal
}
, headdim=
{
headdim
}
, batch_size=
{
batch_size
}
, seqlen=
{
seqlen
}
###
"
)
for
method
in
methods
:
time_f_b
[
config
,
method
]
=
time_f
[
config
,
method
]
+
time_b
[
config
,
method
]
speed_f
[
config
,
method
]
=
efficiency
(
flops
(
batch_size
,
seqlen
,
headdim
,
nheads
,
causal
,
mode
=
"
fwd
"
),
time_f
[
config
,
method
]
)
speed_b
[
config
,
method
]
=
efficiency
(
flops
(
batch_size
,
seqlen
,
headdim
,
nheads
,
causal
,
mode
=
"
bwd
"
),
time_b
[
config
,
method
]
)
speed_f_b
[
config
,
method
]
=
efficiency
(
flops
(
batch_size
,
seqlen
,
headdim
,
nheads
,
causal
,
mode
=
"
fwd_bwd
"
),
time_f_b
[
config
,
method
]
)
print
(
f
"
{
method
}
fwd:
{
speed_f
[
config
,
method
]
:
.
2
f
}
TFLOPs/s,
"
f
"
bwd:
{
speed_b
[
config
,
method
]
:
.
2
f
}
TFLOPs/s,
"
f
"
fwd + bwd:
{
speed_f_b
[
config
,
method
]
:
.
2
f
}
TFLOPs/s
"
)
with
open
(
'
flash2_attn_time.plk
'
,
'
wb
'
)
as
fp
:
pickle
.
dump
((
speed_f
,
speed_b
,
speed_f_b
),
fp
,
protocol
=
pickle
.
HIGHEST_PROTOCOL
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment