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A general theory of the polarization waves in crystals is developed in
connection with the optical and the dielectric properties of the crystals.
The result includes, in more general form, the relations by Szigeti and
Frohlich about the lattice vibrations in ionic crystals and the theory by

Heller and Marcus for the exciton.

The theory is applied to the analysis

of the infra-red data of BaTiO;-type crystals.

§1. Introduction

Polarization waves in solids are concerned
with a wide range of phenomena in solid
state physics. The transverse modes of the
polarization waves interact with light and
determine the optical properties of the solids.
The longitudinal modes interact with the
electric ficld caused by charged particles are
interchange the energy with them. The polari-
zation waves are also responsible for the di-
electric properties of the solids. Thus, it is
expected that there may be relations between
these phenomena, for they come from the
same origin, the polarization waves. In fact,
several authors, for instance, Szigeti?, Froh-
lich?.# and Mott?, derived several important
relations between them.

In this paper, the polarization waves in
solids are treated from the above-mentioned
standpoint. Several phenomenological rela-
tions unknown previously are derived, and
some known facts are interpreted from a
viewpoint different from that used hitherto.

* Present address: Faculty of Engineering, Chuo
University, 1-1 Koishikawa-cho, Bunkyo-ku, Tokyo.

In §2, a general theory of the lattice waves
in ionic crystals is developed; the results in-
clude the relations derived by Szigeti and
Frohlich, in more general form. In §3, the
theory of §2 is applied to alkali halide and
BaTiOs-type crystals. In the latter cases, the
result from the simple ionic model is found
to be in large disagreement with the experi-
ment, and a tentative interpretation based
upon the ionic model is done in Appendix.
In §4, several problems with respect to the
electronic polarization waves are treated simi-
larly as in § 2; for instance, the well-known
theory of the exciton by Heller and Marcus
is re-interpreted from a different viewpoint.

§2. Theory of Lattice Waves in Ionic Crystals

A theory of the lattice vibrations in simple
ionic crystals has been developed by Szigeti®.
We shall extend the theory to more compli-
cated crystals, e.g. perovskite type crystals.

Let the number of atoms (ions) in a unit
cell be #, and we enumerate them 1,2, ---, 7.
In the first place, we take up a needle-like
sample of the crystal. Let us imagine that
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the ions displace in the direction of the
needle. Let the displacements of the ions
1,2, ---,n be x1, xs, - - -, xn respectively. The

polarization is induced as the result. If the
displacements are small the induced polari-
zation must be represented by a linear func-
tion of themf;

P=N > e*x: , (2-1)

where N is the number of the unit cells in
unit volume. Of course

Se*=0. 2-2)

Generally speaking, e.*’s are tensor and the
direction of the polarization does not neces-
sarily agree with that of the displacement.
However, such a generalization is rather
trivial and useless. Hence we assume that
e*’s are scalar and the direction of the polari-
zation agrees with that of the needle. Thus,
there is no electric field in the crystal.

In the next place, let us consider the case
that there exists an electric field E in the
crystal. If the ions are held undisplaced at
their original positions, the polarization is
given by

Po=—r (re—1)E, 2-3)
47

where &, is the high frequency dielectric con-

stant. If the ions displace!l, the polarization

is given by

P=—41; (ko—DE+N Se*x, (24
because there is no cross term. This equa-
tion does not depend on the shape of the
sample; the effect of the shape is represented
by the depolarization field and included in E.
The first term is purely electronic and the
second term is due to the displacements of
the ions.

The static dielectric constant & is deter-
mined as follows: We write the energy in-
crement per unit volume due to the displace-
ments xi, Xz, * -+, ¥n (E=0) as

t The state of the polarization due to the dis-
placement may be very complicated; the polari-
zation due to the displacement of the ¢-th ion comes
from not only the 4-th ion but also the induced
polarization on the other ions. If the displacements
are small, however, the general form of the polari-
zation is given by Eq. (2-1).

tt We regard the displacements as variable ir-
respective of the electric field.
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When the electric field E exists, the interac-
tion energy between the electric field and the
polarization should bs added;

—(P—P)E=—EN S e/*x: .

The equilibrium displacement x:° under the
electric field is determined by the condition
of minimum energy. Thus x:°’s are given by

S Sixf=e*E  i=1,2, -, m. (25)
J

Furthermore, if the electric field oscillates
with a frequency o
2 Six;%(w)— Miw?x:%(w)=e*E , (2-6)
J
where M; is the mass of the i-th ion. &(w)
is given by
k(@)= +(1/E)-4xN 3 es*x:(w) . (2-7)

Next, we consider the polar mode lattice
waves with sufficiently long wavelength; long
compared with the lattice constant but short
compared with the size of the sample. In
this case, the following relations are well-
known?: for the transverse wavestt

E=0, (2-8)
and for the longitudinal waves
E=—4znP (2-9)

where P is the polarization due to the wave.
Thersfore, writing the displacement of the
i-th ion as x: exp (¢42:¢), we have the equation
determining the frequency of the transverse
waves;

Z Sijxj—M.QaZx‘i=0 , (2-10)
J
and of the longitudinal waves;
2, Sijxj—M:.Ql2Xi=-—47[€i*P , (2-11)
J
where
P=NS ez*xrl—z];r—(xo——l)(—Ll-nP) ,
or
=N oy, . (2-12)
Ko 1
Therefore, Eq. (2-11) is rewritten as
4N

o Sijx;+ e* > e x;— Mif2:2x,=0 .
7 7

(2-13)

ftt  Here we restrict ourselves to such a case that
the long polarization waves can be divided into the
longitudinal and the transverse waves.

Ko
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because the electric field —4zP acts as a re-
storing force, the frequency of the longi-
tudinal waves is generally higher than that
of the transverse ones and the difference is
proportional to e*2.

We write the eigenfrequencies of Eq. (2-10)
as 2u, e, - - -, 2in—1 (We ignore another eigen-
frequency £2:;=0 which corresponds to the
acoustical mode) and the eigenvector belong-
ing to £:v as xu, - - The ortho-normal
condition is

2 Mixivxiv=Abw 5
7

y Xnv.

(2.14)

where A is a constant.

The n-dimensional vector (x:%(w), - -+, x:%®))
in Eq. (2-6) can be represented by a linear
combination of the eigenvectors (x1y, - - -, Xnv)’S;

%:%w)=2> av(w)xiy for all 7.
v

Inserting this into Eq. (2-6), multiplying x:
and summing over i, we find that
_E k.
A(sz—wz) ; €i" Xiy .
By remembering Eq. (2-7), we have the fol-
lowing dispersion relation:
(2 ez*xw)z 1
x(w)zlco+47rN§ S Mzt Dot

dv(ﬂ)) =

(2-15)
If there are only two ions in a unit cell as
alkali halide crystals, this is simplified as
follows:

k2
w(o)=k 0+_4ﬂ\/'e_ ,
HRe2—w?)
where u is the reduced mass of the two ions.
By substituting the expression

(2-16)

Xi =§ byvxiy ,
for x; of Eq. (2-13), we obtain
T Ao ( gff_]\;lz)m ; ei*x; ;‘, e xiry .

By multiplying e:*x:» and summing over ¢ and
v, we have the equation giving £2:;
47N 5 (Dl e xiv)? ) 1
Ky v > Mixp? 22— 8202
Comparing (2-17) with (2-15), we see that
£(82:)=0 . (2-18)
This relation can bz derived directly from
Eq. (2-9) which states that D=0%. In general,

Eq. (2-17) has n—1 roots. We write them as
L, o 2wy, It is easily found from Eq.

bv:

=-—1.

(2-17)
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(2-17) that
20n<2u<2pp <+ <1 < L1 . (2-19)

The equality happens when £:’s degenerate.

Let us note that «(w) has the following
properties: (1) x(w) has the poles at £, -- -,
2in-1. (2) k(w) has the zeros at 2u1, - - -, 1.
(3) k(w) tends to k, for large w. Therefore,
if we take the summation of (2-15) over v in
the following form:

”§ Crw?®
= k=0 2.9
Ho)= o (2-20)
this must be factorized as follows:
:.sz—a)2
Ko)=koTI <——!2w2—a)2 ) . 2-21)
Especially, if we put v=0,
e (2-22)

Ko v 202
This is a generalization of the well-known
similar relation in the diatomic case'.
By comparing the coefficients of w*~* of
(2-20) and (2-21), we find a relation;

47rNZV(ZiTe‘kaW)2 =Ko (@0 —20%) . (2-23)

On the other hand, the vector (es*, - -, ex™)
can be expanded by the vectors (Mixiy, ---,
Mnxnv),s;

e*=

L > (e xi) Mixiy .

AN

By multiplying this by e.*/M; and summing
over i, we have

EV](Zi ei*xw)2=A-2i‘. TR

e;*?

Thus, Eq. (2-23) becomes

4zN >, Eiz =Ko 2, (glvz-“ng) . (2-24)
[3 Mz v

Here, we shall comment on the relation be-
tween the present e;* and the effective charge
es* introduced by SzigetiV. We may define
his effective charge by writing the polariza-
tion in a spherical sample of a diatomic cry-
stal as Nes*x when the positive and the nega-
tive ions displace homogeneously with the
relative displacement x. According to the
present viewpoint, the polarization of the
spherical sample is given by

P=—1—(/c0—1)< —4—”P)+N S et
4 3

from Eq. (2-4), because the depolarization
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field in the spherical sample is (—4=P/3).
Or,

3
Ko +2
In the diatomic case, writing x1—x.=x and
er*=—eg*=¢*, we have

P=

N> e*x: . (2-25)

3
*— * .
es po" e* (2-26)
and in general
3
¥ = . 2-27
o 2’ (2-27)

Combining Egs. (2-16) and (2-26), we get the
relation derived by Szigeti;
ko+2\? 4nNes*?
3 )’ P
Similarly, if we write the polarization due to
the longitudinal wave as
P=N ; en*x; N

K=m+< (2-28)

we obtain

*
[43
em*= - .

Ko

(2-29)

This agrees with the effective charge intro-
duced by Callen® in the diatomic case.

In some cases, es* is appropriate to discuss
the microscopic properties of the polarization.
On the other hand, the present e;*, which
corresponds to the effective charge of the
transverse wave, is more directly related to
the optical and the dielectric properties of
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Fig. 1. General features of the dielectric con-
stant, the optical absorption and the reflectivity
of crystals.
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the crystal as seen from Eq. (2-15).

According to Eq. (2-15), the general features
of k(w) are schematically as Fig. la and the
optical properties become as Fig. 1b and 1c;
the absorption intensity has peaks at £;’s and
the peak height is proportional to (3 e*x:)?/
>\ Mix:?, the crystal shows the metallic re-
flection when x(w)<0 and the reflectivity is.
zero at £, where x(£2-)=1.

§3. Application of the Theory

Alkali halide and other simple ionic crystals
For these crystals, the analysis by Szigeti'*
and Frohlich? has been known, and we have
little to be added to them. We tabulated the
values of ¢* and es* in Table I for reference.
As Szigeti has pointed out, es*/e should be an.
integer if the simple ionic model were a good'
approximationf. We have shown that the:
deviation of es*/e from an integer may be:
interpreted as brought by the short range:

Table I. The values of the effective charge.

e* es* e* es*
LiF 1.12 0.86 RbCl 1.17 0.84
NaF 1.16 0.93 RbBr | 1.17 0.81
NaCl 1.06 0.75 CsCl 1.32 0.86
NaBr 1.08 0.70 CsBr 1.29 0.81
Nal 1.16 0.71 AgCl | 1.58 0.79
KC1 1.09 0.79 TICl1 2.60 1.10
KBr 1.10 0.76 CuCl 2.04 1.10
KI 1.08 0.69 MgO | 2.90 1.76
Table II. Comparisons between the calculated &

from (3-1) and the observed .
A *
Zr Ko

() cal. obs.
NaCl 61.1 31 2.25 5.86 5.62
TIC1 117 ~45 5.10 | 28.7 31.9
ZnS 33 24 5.07 8.69 8.3
CdTe 69 58 8.53 | 11.7 |~11

t Through the present paper, we mean by the
term “simple ionic model” that the binding is
perfectly ionic and the interaction between the
polarizations can be expressed only by the Lorentz
correction, and by “ionic model ” we take into ac-
count the short range interaction energies between
the polarizations especially the cross terms like
Bijxipj, where pj is the electronic polarization of
the j-th ion.
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interaction energy due to the interionic over-
lapping which causes cross terms between
the ionic displacement and the electronic
polarization, at least in the case of the alkali
halide crystals®.

In order to verify the theory of §2, we
compare in Table II the dielectric constant
£ obtained experimentally and that calcu-
lated from the following relation:

2

1.952 ?

and from the observed values of x,, £; and
£2,77 where the above relation is a special
case of the more general relation;
«.Qrvz'—a)z

.QWZ'—CUZ ’
this can be derived similarly as Eq. (2-21).

BaTiOs and the related crystals

We take up these crystals, because of the
comparatively satisfactory experimental data
about them as well as their peculiar dielectric
properties.

IE“'].:(ICO—].)

£(@0)—1=(ro—1) (3-1)

Fig. 2. The crystal structure of BaTiO; crystal.

These crystals have five ions in a unit cell
and have fifteen independent modes of the
lattice waves; three acoustical and twelve
optical. However, three optical modes illus-
trated in Fig. 2 (two oxygen ions oscillate to
the opposite direction with the same amount)
have no dipole moment and are optically in-
active. Thus, there remain three longitudinal
modes and 3Xx2 transverse modes for suf-
ficiently long waves. Last® has observed two
absorption peaks (£2:) and two reflection
minima'’ (£,) for BaTiOs, SrTiOs and PbTiOs
crystals. Furthermore, we can guess that
the one more £; may be nearly zero from

t We have used £2,, because it can be more
€asily determined than £2; from usually available
experimental data.

1t The reflection is not perfectly zero because of
the absorption tail at 2,.
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their quite large x. The one more £, has
not been observed. We tabulated them in
Table III. If 2., were observed, we could
determine (X e*x:)?/> Mix:?’s of three modes

using Eq. (2-15)'T", Furthermore, if a quite
precise measurement using the isotopes were
performed, it would be possible to determine
the e;* of each ion separately. Although it
is also possible to estimate the (3 e*x:)?/
> Mix? from the absorption intensity, prac-
tically the reliable determination is difficult.

Table III. (cm~—1).
SrTiO; BaTiO; | PbTiO,
‘gtl ~0 ~0 ~0
.er ? ? ?
D12 395 400 405
Q2 490 475 455
213 610 545 590
D3 890 800 (800)
Table IV. The values of 4zN 3 e;*2/M;(105 cm~2).
7
From the infra-red | From the simple
data tonic model
SrTiOs 2.26~2.96 17.4
BaTiO; 1.95~2.71 10.6
PbTiO; 2.02~3.00 12.3

Nevertheless, we can derive an inequality
about the effective charges. In the same way
as the derivation of Eq. (2-24), we have

e k2
4nN X A =(wo—1) 2 (22— 2% . (3-2)
i P v

On the other hand, clearly
202>82:1 >8>0 .

Thus we have the upper and lower limits of
the 3 e*2/M; (Table IV).

11t In the case of BaTiO; crystal, it may help the
understanding to imagine the following process:
When the BaTiO; crystal is compressed the curie
point T, is lowered because of the increased inter-
ionic repulsive forces. If the compression is con-
tinued, the T, will be lowered down to 0°K and
the crystal will lose its ferroelectricity. We may
expect, however, that rather a small contraction of
the lattice constant (about 2~3%) and rather a
small increase of the repulsive force is sufficient
to remove the ferroelectricity on the one side and
causes no appreciable change of the other proper-
ties; 2;, 2;, 2, and ¢;* on the other side.
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For comparison, we calculate the >} e*?/M;
assuming the simple ionic model, where e:*’s
can be calculated by the following process:

e*=Zie+ >, Ex (3-3)
7

and

pi=3 x5, (3-4)

where Zi, x:, p: are the valency (e.g. Zti=
+4), the displacement and the electronic
polarization of the i-ion respectively. p; is
given by

pi=auF; (3-5)

and
Fi=N{X Li;p;s+3. Li;Zse(x;—x)} , (3-6)
J J

where a; and F; are the polarizability and
the local field. The coefficients L;:;’s are
given by many authors®, for instance when
i=Ti*+ and j=0.,, Li;=47 x2.727. We calcu-
lated 3% e*?*/M;’s (Table 1V), by substituting
for a; the following values: 0.2 (Ti*+), 1.6
(Sr++), 2.5 (Batt), 3.1 (Pb**) and 2.2x10-2*
cm® (O—).! The values of > e*?/M: from
the infra-red data are only 1/5~1/4 times of
those from the simple ionic model, although
the above polarizabilities are consistent with
ko. On the other hand, in the case of alkali
halide crystals, if we assume the simple ionic
model as above and take the polarizabilities
as consistent with «x,, e* is given by

e*:(————ﬁog_z )e

Thus the ratio of the infra-red value to the
simple ionic model value of 3 e*2/M; is
(es*/e)?, that is about 0.5~0.9. In this case,
we have interpreted the difference by the
effect of the short range interaction energy
between the ionic displacement and the elec-
tronic polarization of ions; the displacement
works to induce the electronic polarization
with the opposite direction through the over-
lapping between ions. However, the ratios
1/5~1/4 seem too small to be interpreted by
the same effect.

The experiments about the spontaneous
polarization of BaTiOs are also consistent

T The values for Ti¢+, Sr++ and Ba*+ are taken
from the paper of Tessman, Kahn and Shockley!®,
that of O—— ion is adjusted to give the optical di-
electric constant x, of BaTiO; and SrTiO; and that
of Pb*t+ ion is taken to be consistent with x, of
PbTiOs. ‘
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with the present analysis about the effective
charge. The spontaneous polarization is given
by

Pi=N 3 e*xss, (3-7)

where x;° is the spontaneous displacement of
the i-th ion and has been determined from
the experiments of the neutron'¥ or the x-ray
diffraction'®. Although e:* of each ion is not
known, we have an inequality;

*
PA=(N S ectaft SN* S 90 5 M
B i P
(38)

By substituting for x:*’s the values from the
neutron diffraction experiment, we have

P;s< 31 microcoulomb/cm? .

The x:#’s from the x-ray diffraction give
nearly the same result. The direct experi-
mental value of Ps; by Merz!® is 26 micro-
coulomb/cm?. The spontaneous displacement
x:* can be regarded as brought by the in-
stabilized transverse vibration mode with the
lowest frequency £2:: and as again stabilized
by unharmonicity. Therefore, if the (3] ei*x:)?/
> Mix:® of the £; mode were known, the Ps
could be estimated more precisely;

(X ei™xe)?

P2=N? ——o
: N{i > Mixi?

:I X3 Mixis2. (3-9)
.Oumoda

Nevertheless, the inequality (3-8) is consistent
with the experiment.

There may be two possible standpoints in
interpreting the difference between calculated
(simple ionic model) values and the observed
(infra-red) values of the effective charge; one
attributes the disagreement to the homopolar-
binding, and another interprets it within the
range of the ionic model. Although it is not
within the scope of the present analysis to
discuss this problem, a trial upon the latter
standpoint is done in Appendix.

It may be allowable to interpret a ferro-
electric crystal as a crystal of which the polar
mode lattice wave of 2=0 is unstable (in the
first approximation) and an antiferroelectric
crystal as a crystal of which a lattice wave
of k=0 (e.g. at the zone boundary) is un-
stable, in the case of the ionic crystals.
Generally speaking, the E—dependence of the

frequency of the polar mode lattice wave is
rather small and has complicated properties,
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therefore the theoretical prediction whether
a crystal is ferroelectric or antiferroelectric
is a delicate problem.

§4. The Electronic Polarization Waves

It is possible to apply the viewpoints in § 2
to the case of the electronic polarization waves
in some degree.
Notes on the theory of Heller and Marcus

Let us suppose an atom (or an ion or a
molecule) under an oscillating electric field
F with a frequency . The induced dipole
moment is

m=a(w)F , (4-1)

where let the polarizability a(w) be scalar and
given by

eZ

s S

alw)= sl

(4-2)

Me i
The oscillator strength f:; satisfies the sum
rule;

2 fi=n, (4-3)

where 7 is the number of the electrons be-
longing to the atom.

In the next place, let us suppose a crystal
consisting of these atoms and the polarization
waves propagating in it. The electronic po-
larization of the i-th atom is given by

mi=mo-exp (ihRi—iont) . (4-4)
The relations (2-8) and (2-9) for sufficiently
long waves are valid also in this case. If
we neglect the overlapping between the
atoms, the interaction between the polari-
zations is only the dipole-dipole one. This
interaction can easily be taken into account
merely by considering the local field acting
on each atom due to the dipole moments on
the other atoms. For instance, in the case
of the polarization waves of =0 in a cubic
crystal, the local field F' is given by

F=E+i3’lp.

Therefore, by combining the Egs. (2-8), (4-1),
(4-2) and (4-5), we find that the frequency
£2:; of the transverse wave in this case must
satisfy the following relation:

(4-5)

i—Naz Q = __.1’_2 E: _i__— .
3 @) 3 T wt—22 1 (4-6)
where

2

_ 4z Ne?
Me )

47

WOyp
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Similarly, the frequency of the longitudinal
wave is given by
2w,° Ji
—_ 3 ———=1, 4-8
3 T w2—822 1 ( )
On the other hand, under the same assump-
tions the dielectric constant x(w) is given by
4 Na(w)
1—(4r/3)Naw) -~
Comparing Egs. (4-6) and (4-8) with (4-9), we
can ascertain that £2,’s and £:’s correspond
to the poles and the zeros of x(w) respective-
ly, as in §2.
Egs. (4-6) and (4-8) can be transformed as
follows: e.g. in the case of i=1

Jiwp:  £V(2:1)+2

glw)=1+ (4-9)

!21,12—L012= - 3 . 3 (4-10)1
and
2fiwp?  3W(2y)
12— w2= . 4-11
e R
where £%(w) is given by
(@) =1 4 —FNa(w) (4-12)

1—(4n/3)Na (@)
and

ezz fi

a(w)=
(@) Me i=1 wi—w?’

that is, x“(w) is the dielectric constant due
to the oscillators other than the w;-oscillator.
Egs. (4-10) and (4-11) represent the shift of
the atomic levels due to the dipole interac-
tion in the crystal.

If we put #Y(w)=1 (i.e. neglect the effect
of the other levels) and take only the first
order term of fi, (4-10) and (4-11) can be
simplified as

Jiwp?

Ly=w1—
6w

and

2
Lu=w1+ [y .
3(01

(4-13)

These results agree with the energy of the
exciton of 2=0 by Heller and Marcus'*.

If there are many excited states, however,
each mode of the polarization waves should
be represented by a mixture of various atomic
excitations; the dipole moment due to an
atomic excitation induces that corresponding
to the other atomic excitations. The latter is
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superposed on the former and the resultant 4z Ne? F;
dipole moment is {&V(£2;)+2}/3 times the wlw)=1+ Me ; 22—’
original one in the case of the transverse
waves. The local field, that is the variation
in the restoring force, is proportional to the
dipole moment, thus we have the factor
{£V(£2:)+2}/3 of Eq. (4-10).

The frequency of the polarization wave

(4-14)

F; corresponds to the oscillator strength of
the i-th excitation mode in the crystal; it is
proportional to the optical absorption intensity
and (4-14) has the same form as the expres-
sion of x(w) neglecting the local field correc-

tion;
with an arbitrary % is to be easily found, if A Ne?
we perform the dipole sum as Lyddane and K(w)=1+4nNa(w)=1+ —”—iZ —;fi——;
Herzfeld'® have done and calculate the local Me + OF—o
field at an atom. Comparing (4-9) and (4-14), we have a rela-
If we express the dielectric constant x(w) as tion after simple manipulations;
P, {m<1><9n>+2}2 /{1 +f1wp2[dlc<”(w)] b {xm<9u>+2}2_ w1s)
3 9 d(@?) Jo=e, 3

This represents the change of the absorption intensity in the crystal. The change is caused
by the mixing of the other atomic excitation modes. The relation with a similar property
has been derived by Dexter!®). Furthermore, the following relations are readily found:

S F=Xfi=n, (4-16)
this is natural, ‘
2—59 2
Ko)=T1 <§’)7:Qj_:2_> (4-17)
and
—;— S @ui—oit)= 3 (@i— Q)= Top (4-18)

In the above discussions, we adopted a semi-classical approach. However, so far as the
interaction between the atoms is the dipole-dipole one and the response of the atom to the
electric field is given by (4-1) and (4-2), the above discussions would hold even if the motion
of the system were governed by any mechanics; the relations (4-10), (4-11) and (4-15) are
to be equivalent to the results calculated quantum mechanically up to the higher order terms
of the interaction. The response (4-1), however, holds only for sufficiently weak electric
fields except the case of the harmonic oscillator. On the other hand, an atomic transition
causes finite electric fields on the neighbouring atoms, namely, the electric field due to the
electronic polarization wave fluctuates up to finite values even if it is sufficiently small on
an average, such a situation differs from the classical polarization waves. Thus the devi-
ations from the above relations are expected in quantum mechanics. It is not difficult to
verify that the above relations agree with the quantum mechanical results up to the terms
of fi’s and fifs's (i#j) in the power series expansions with respect to fi’s. It is supposed,
however, that both do not agree for higher order terms in general.t

On the other hand, the level scheme given by Egs. (4-10) and (4-15) is equivalent to the
expression of x(w) given by (4-9), therefore the deviation from the so-called Lorentz correc-
tion is expected in quantum mechanics from the order of f?® even if the interaction is only
the dipole-dipole one.ft

t Although it is difficult to investigate quantum mechanically the higher order terms than f2 in
general, we can verify this supposition for special cases, for instance; (1) Two atom system. (2) A
crystal composed of the atoms with three atomic levels; s (ground state), p and d levels. In this case,
the exact polarization waves should include d-component as well as s- and p-components at the same
time differing from the classical polarization waves. (3) In the case of the extremely strong interaction,
2;, becomes zero or imaginary (see Eq. (4-10)), but such a behaviour cannot be expected in general.

tt The same conclusion has been independently obtained by T. Izuyama (private communication).
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The above discussions are more suitably applied to molecular crystals rather than to ionic
crystals. In most molecular crystals, however, the crystal structure is complicated and the
local field is not simply given by (4-5). In order to apply the above theory to these crystals,
it is necessary to perform the complicated dipole sum. It is rather trivial, however, to
generalize the theory to these cases unless the practical problems are treated.

Similarly as above, the dipole moment due to the excitation of an impurity atom in a
crystal induces the dipole moments of the surrounding atoms, therefore the absorption
spectra of the impurity atom change from those of the free atom; the shift of the frequency
and the change of the intensity are caused!®.

General electronic polarization waves

The properties of the more general electronic polarization waves have been discussed by
many authors®.#.1? therefore we briefly summarize them from the present standpoint.

The frequency of the longitudinal polarization wave of k=0 satisfies again the relation;

£(£2)=0. (4-19)
So that, if x(w) is represented by the expression like (4-14),
4w Ne*F, 4nNe? F; 4nNerF,
Dt — Q2= L 1 = ) 4-20)
e ( e )/ { e szz—w} Me(2u) (4-20)
Particularly, in the case of £2;:=0, that is in _1 (= st
metals, £ becomes the plasma frequency of )= 2 S_wa(w)e do
the electron system shielded by the dielectric 4,4
constant £V(£2:1). 1 (=
In general, however, crystals have continu- T(t):f;g_ s(w)e* dw , (4-24)

ous absorption spectra, hence the roots of
Eq. (4-19) are complex. In this case, it is
appropriate to investigate the relation between
the response of the system to the electric
field E(¢) and that to the electric displace-
ment D(¢). The electric current in a crystal
induced by microscopically homogeneous E(f)
and D(¢) is generally given by

Ot—t)E() dt’

—o

]<t>=§°°

zg TE—DE)d . (4-21)
Clearly, the response functions @(¢) and Z(¢)
have the following properties: (1) @#)=¥(¢)
=0, for £<0. (2) @) and ¥(¢) are real. (3)
O(0)=Nne*/m., where Nn is the total number
of the electrons per unit volume, @(0) is the
current which is induced instantly by the
electric field of 0(¢) type. By noting that

DO=E®)+ 47':§ (4-22)

Y owar,

oo

we have

!P'(t)=0(t)——4n§tdt’@(t~t’)§t’dt”¢'(t”). (4-23)

If we write

(where o(w)=0*(—w) and s(w)=s*(—w) because
of the reality of @(¢) and %(¢)), we have from
Eq. (4-23)

o(w)
1—4nio(w)/ow °
From the definitions of ¢(w) and s(w), it is
clear that their physical meaning is that the
current due to the oscillating £ and D with
the frequency o is given by

s(w)= (4-25)

J=o(@)E=s(w)D . (4-26)
Moreover, because
1 Ami0O)_ ) (4-27)
the relation (4-25) is equivalent to
s(wy=22). (4-28)
o)

This is rather trivial.
On the other hand, if we put £=0 in Eq.
(4-23), we have

2
7(0)=0(0)= AZ‘Z (4-29)
By comparing this with (4-24), we have the
sum rules;

S” ar(w) do= Swsr((D) do = M
0 0

b4

(4-30)

€
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where o, and s, are the real parts of ¢ and

s respectively. Furthermore, from Eq. (4-25)
s(w)—a(w)=4nii(% ,

therefore
O=Sa° g(@)s() dw o« Sw 1) (o1 dw
—oo w K

—oo

=Swa) (lc—lc*-f——l—— L dw

0 K IC*
o aw)
“|. {ro =
or
b [~ oo _ nNne? )
So orle) dw—go |&(w)]? ome 3D

On the other hand, the rate of the energy
loss per unit volume of the crystal, if E=
E,cos wt and D=D, cos wf, is given by
_1 ()
Loss= 5 or(w)E, Sl
Thus the relations (4-30) and (4-31) are the
sum rules concerning the electric current
and the energy loss due to £ and D respec-
tively. The conductivity o) determines the
intensity of the optical absorption and the
o/w)/|e(w)|? does the energy loss' of a high
energy charged particles®, for the charged
particle acts as a source of D rather than of
E.

The oscillator strength of the exciton in alkali

halide crystals

As stated in §3, we can determine
(3 ed*x:0)2/> Mixi?’s which correspond to the
oscillator strength in the electronic case, from
£2; (absorption peak) and £, (reflection mini-
mum) instead of the absorption intensity.
The similar method is applicable to the elec-

Dy* . (4-32)

Appendix.
As stated in § 3, the ratio;

(the experimental value of 3 e*?/M; from the infra-red data)
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tronic case, if the absorption peak is isolated.
For instance, in the case of the so-called ex-
citon absorption in alkali halide crystals, #(®)
is given by

()= 4 Ne? f

X +r'(@) ,

near the exciton peak, where f is the oscil-
lator strength of the exciton level and N is
the number of unit cells per cm?, #(w) is the
dielectric constant coming from the other
levels. The reflection minimum arises when
£(82-)=1. We estimate £’(w) from the reflec-
tivity of the region over (%2:—0.2 ev)~(#82,—
0.5ev), since it may be approximately re-
garded as a constant within the narrow fre-
quency range from (#£2;—0.5ev) to #2.. The
results are summarized in Table V. The
oscillator strength of the exciton level is ra-
ther small, if we remember that there are at
least six electrons participating in the exciton
level in a unit cell. The contribution to &,
from the exciton level is about 0.1. This
method may be useful to estimate the oscil-
lator strength when the quantitative data of
the absorption intensity are not available,
although it is not new in principle.

Table V. The oscillator strength of the exciton.

I:/ h.Qt h(.Qr—.Q3> f
Nal 3.7 5.6ev 0.12ev 0.19
KI 4.1 5.8 0.12 0.27
RbI 3.7 5.7 0.15 0.33

The author wishes to express his gratitude
to Prof. J. Yamashita for his helpful discus-
sions.

The Effective Charge of BaTiO: Crystal

(A-1)

(the calculated value of 3 e*?/M; from the simple ionic model)

is 1/5~1/4 in BaTiOs and the related crystals.
We investigate here whether such a great
difference may be interpreted by the ionic
model or not. In the case of alkali halide

T Of course, the weight with respect to the final
states of the particle must be multiplied to this.

crystals, the ratio (A-1) is 0.5~0.9, and we
can interpret® the difference by assuming the
short range interaction energy between the
polarization due to the ionic displacement and
the electronic polarization, although we can-
not explain it by the simple ionic model only.
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In the case of BaTiOs and the related cry-
stals, we attempt to bring the ratio (A-1)
from 1/5~1/4 to 0.5 within the range of the
simple ionic model and expect that the re-
maining difference may be interpreted by the
similar mechanism as in alkali halide crystals.

The large calculated values of 3 e*/M;
come mainly from the large polarizability of
the oxygen ions. However, the polarizabilities
assumed in § 3 are not well-founded, although
they are consistent with the experimental &,.
Therefore we regard them as the adjustable
parameters and examine whether the above
ratio can be brought to the expected value
(~0.5) or not with the reasonable values of
them. :

It is 2 way to this purpose to decrease the
polarizability of the O~— ions and increase
that of the divalent metal jon. The polari-
zability of Ti** ion is too small to influence
the result. It is necessary, however, to com-
pensate the decrease of the polarizability of
three O~ ions with the increase of that of
only one metal ion to hold the &, unchanged,
so that unreasonably large polarizability of
the metal ion is necessary to bring the ratio
(A-1) to the expected range. For instance,
if we put the polarizability of Sr++ ion as
3.4 A® instead of 1.6 A® in §3 the above ratio
for SrTiOs becomes 0.5. This value of the
polarizability is inconsistent with &, of SrO
crystal, in which the fofal polarizability is to
be 3.5 Ad.

Another way is to assume the anisotropic
polarizability of the O—— ioms. It is well-
known that the polarizability of O~ ion fluc-
tuates from compound to compound and
generally increases with the volume per O—
ion!®, In the BaTiO: type crystals, the ionic
configuration is close-packed in the Ti-O di-
rection and loose-packed in the Ba-O direction
(Table VI), so that, it is probable that the

Table VL

I i -1y | I v
CaTiO; | 2.70 | 0.99 | 1.71 | 1.23 | 2.40
SrTiO; | 2.76 | 1.13 | 1.63 | 1.27 | 2.57
BaTiO; | 2.83 | 1.35 | 1.48 | 1.32 | 2.76

I. O——-Me++ distance; II. Ionic radius of Me++
ion; III. (lit*-O-— distance)—(Ionic radius of the
Ti¢* ion); IV. O---Met++ distance in MeO cry-
stal (10~8cm).
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polarizability of the O-- ion is small in the
Ti-O direction and large in the Ba-O direc-
tion. Since the most important contribution
to the calculated values of 3 e*2/M; comes
from the electronic polarization of the so-
called O, ion, the above assumption is favor-
able to our purpose. For instance, in the case
of BaTiOs crystal, the following polarizabili-
ties bring the above ratio to 0.5 and are also
consistent with x,: O~ ion (Ti-O direction)
1.7 A3, (Ba-O direction) 2.5 A3, Bat+ ion 2.5
A® and Ti** ion 0.2 A® (the last two values
are equal to those in § 3). The circumstances
are nearly the same in the other titanates.
The polarizability of O~ ion varies consider-
ably from compound to compound, e.g. 1.6
A? in MgO and 3.0 A% in BaO crystals, so
that the anisotropy as above is possible. Of
course, the above discussions only suggest a
possibility of the ionic model and do not deny
the possibility of the homopolar binding.
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