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Computation of the surface electron-energy-loss spectrum
in specular geometry for an arbitrary plane-stratified medium
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In recent years, high-resolution electron-energy-loss spectroscopy (EELS) has been successfully applied to the study of
vibrational properties of surfaces and interfaces of materials having a layered structure. At the same time the theory of
long-wavelength electromagnetic properties of surfaces and interfaces and their role in the inelastic scattering processes of
electrons at the surface has also developed to a point where detailed quantitative comparisons between experimental and
theoretical vibrational spectra can now be made routinely. The computer program described here allows to calculate the EELS
spectrum of a large variety of target materials, going from a homogeneous thick substrate to periodic superlattices or any

arbitrary stacking of layers.
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Title of program: HREELS of multilayers

Catalogue number: ABTI
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Computer: 1BM 9377/90; Installation: Scientific Computing
Facility (SCF), Facultés Universitaires Notre-Dame de la Paix,
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Operating system: VM /SP Rel 5

Programming language used: FORTRAN 77

High speed storage required: 65 Kwords

No. of bits in a word: 32 and 64

No. of lines in combined program and test deck: 1553
Keywords: surface analysis, surface and interface phonons,
electron-energy-loss spectroscopy, HREELS, thin films, hetero-

structure, superlattice

! Research Associate at the National Fund for Scientific
Research of Belgium.

Nature of the physical problem

This computer program allows to calculate the electron-
energy-loss spectrum of an arbitrary plane-stratified medium
for low-energy electrons specularly reflected at the surface of
the target. A dielectric approximation is used to characterize
the response of the target material to the long-ranged Coulomb
field of the impinging electrons. Periodic superlattices can be
considered as well as any arbitrary stacking of layers onto a
thick substrate [1]. In the later case, the substrate is allowed to
be an anisotropic, uniaxial crystal having its axis perpendicular
to the free surface of the system. Temperature effects are
included according to Bose-Einstein statistics for the long-
wavelength vibrations excited at the surface or interfaces by
the electrons [2).

Method of solution

The EELS spectrum is computed in two sequential steps
performed by two programs calied EELS and BOSON. The
single-scattering, classical loss spectrum of the target is first
computed (program EELS) for an electron traveling along a
specularly reflected trajectory, with the possibility of taking
into account the acceleration of the electron by the image
force. The full EELS spectrum, which includes multiple-
scattering events for an arbitrary temperature of the target, is
next obtained through a suitable thermodynamic average of-
the quantized surface excitations (program BOSON), while
keeping the classical nature of the impinging electrons. The
computed EELS spectrum is convoluted with a model of the
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instrumental response of the spectrometer so as to simulate
limitations in the experimental energy resolution.

Restrictions on the complexity of the problem

Only dipolar inelastic-scatterings of the reflected electrons are
considered. Possible variations of the surface reflection coeffi-
cient with the electron energy are not considered here as all
inelastic spectra are normalized to unity. All the layers that
compose the target are assumed to be made of materials having
isotropic dielectric functions, except for a possible thick
substrate on which the layers are stacked, which can be an
uniaxial crystal.

LONG WRITE-UP

1. Introduction

Since the first observations at high resolution of
electron-energy-loss processes taking place at the
surface of a clean crystal [1], the present under-
standing of the inelastic scattering of electrons at
the surface of a target material by long-wave-
length phonons is very advanced. A continuous
refinement of the original semi-classical theory of
electron-energy-loss spectroscopy (EELS) of
surfaces [2] has lead us to a point where we now
have a fully quantitative theory for both the line
position and the line shape of specular (or Bragg)
EELS spectra [3]. On the experimental side, the
major result of a longstanding improvement of the
technique is the demonstration that high-resolu-
tion EELS now constitutes an alternative method
to optical spectroscopy - although with a still
poorer resolution — for obtaining the frequency-
dependent dielectric function of the target material
[4]. Moreover, the surface sensitivity of EELS in
specular geometry permits the dielectric char-
acterization of the first few hundred Angstréms
under the free, assumed clean surface: a definitive
asset for investigating surface non-homogeneities
[5] or for the study of interfacial materials of
current interest [6].

The interpretation of experimental data may
benefit from detailed comparisons with theoretical
predictions allowing fine adjustments of the vari-
ous parameters (oscillator parameters, layer thick-
ness, composition profile,...) that control the

Typical running time
The time for the test run on the IBM 9377 is 40 s.
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surface dielectric response of the target system.
More informations about the structure [7] or the
composition [8] of the material under investigation
is gained from such comparisons and it is the aim
of the present paper to propose a computer pro-
gram permitting to do so.

In this paper, we describe a program for com-
puting the EELS spectrum in specular geometry
for an arbitrary plane-stratified medium, ie. a
system in which the composition is a histogram-
like function of the coordinate z perpendicular to
the free surface. This class of systems includes e.g.
artificial heterostructures obtained by deposition
of one or several layers onto a crystalline substrate
in well-controlled conditions (composition, layer
thickness...) such as realized in molecular beam
epitaxy. As the wavelength of the vibrations ex-
cited in specular EELS are much larger than the
interatomic distances, a macroscopic approach is
in general sufficient to describe the interaction
between the impinging electrons and the excited
vibrations. In this so-called dielectric approxima-
tion, the basic input for computing the EELS
spectrum of a multilayered structure consists in
the long-wavelength bulk dielectric functions of
the successive layers that composes the target
material, as summarized in sections 2 and 3 below.
In section 4, a few technical details about the
numerical techniques used are presented. The in-
formation about the input parameters is given in
sections 5 and 6 and the results of a test run are
given in section 7.
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2. Theory of EELS in the specular geometry

Without going into any details (see e.g. ref. [3]),
the theory of EELS provides us with the knowl-
edge of the probability P(w) dw that an electron
is inelastically scattered at the surface of the target
material with an energy loss (w > 0) or an energy
gain (w <0) in the interval (hw, Aw+ A dw). In
the dipolar-scattering regime that dominates the
EELS spectrum in specular or near Bragg geome-
try, the energy-loss distribution P(w) can be com-
puted using a semi-classical theory that proceeds
in two sequential steps that we now summarize.

2.1. The classical loss spectrum (computer program
EELS)

The first step of the semi-classical theory of
EELS consists in evaluating the so-called classical
spectrum P, (w), which describes the loss spec-
trum of those electrons that have been inelastically
scattered exactly once (single-scattering events) by
surface excitations at zero temperature [2,9]:

2
Py(w) = 4'1'r£0hvl )

3
<[], N

[(g-0,— &)+ (a0.)]’

xIm[g(g, )] d’, (1)

where v, and v, are the components of the elec-
tron velocity parallel and perpendicular to the
surface, respectively, and g(g, «) denotes the
surface dielectric response of the target system to
which we return below. In eq. (1), D is a domain
of wave vectors g of surface excitations with
frequency w, which, according to the conservation
of total energy and the momentum component
parallel to the surface, scatter the electron towards
the acceptance aperture of the energy analyzer.
The analyzer must be centered around the specu-
larly reflected electron beam for the theory to be
valid.

In the program EELS described below, the
acceptance aperture of the energy analyzer is as-
sumed to be elliptical in shape, with half-accep-

tance angles ¢, and ¢, measured along the two
semi axes a and b of the elliptical slit, respectively
oriented in the incidence plane and perpendicular
to it (see fig. 1). In these conditions, the boundary
of the domain D in eq. (1) is an ellipse whose
equation valid for small ¢, and ¢, angles writes

(qxvll - "-’)2 + [‘13 + (¢a/¢b)2qy2] vy
2E .\’
2y 4 (—hg—”ﬂ) ] )

where E, and @ are the electron kinetic energy
and incidence angle with respect to the outward
normal at the surface, g, and g, are the Cartesian
components of the surface wave vectors ¢ mea-
sured along directions parallel to v, and per-
pendicular to it, respectively (see fig. 1). In usual
spectrometers, the analyzer presents either a cir-
cular aperture or a rectangular slit, depending on
the apparatus [10]. A rectangular slit will be ap-
proximated by an ellipse with opening angles ¢,
and ¢, proportional to the width and the length
of the slit, whereas a circular detector simply

implies ¢, = ¢,,.

=(w cos w)

2.2. The ful loss probability (computer program BO-
SON)

Multiple-scattering energy losses and gains for
an arbitrary target temperature are accounted for
through a thermodynamic average of boson-like
surface excitations, which are viewed as
quantum-mechanical harmonic oscillators driven
by the Coulomb force exerted by a probing elec-
tron traveling along its classical trajectory [2]. The
important result of this second step of the semi-
classical theory is that the characteristic function
F(71) of the energy-loss probability P(w), i.e. its
Fourier transform, only demands the 0-K classical
spectrum:

F(r)= LwP(w) exp(—iwt) dw

=exp{—f0 coth( 2’}{ T) Py(w")

X [1 - cos(w'r)] do’

-if P, («') sin(w'r) dw’}, (3)
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Electron
monochromator _

Energy
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Fig. 1. Principles of high-resolution EELS experiment in specular geometry: a beam of mono-energetic electrons with primary energy

E, is incident upon the surface of a target. The impinging particles, through their Coulomb interactions with the ions or the electron

gas of the target, exchange momentum and energy with long-wavelength charge oscillations that develop at the surface of the

medium. The energy spectrum of the scattered electrons received by the spectrometer is analyzed. In the computer program described

below, the entrance slit of the energy analyzer is an ellipse having its semi axes a and b respectively in the incidence (x, z) plane and

parallel to the surface of the target; ¢, and ¢, are the angles sustained by the two semi-axes a and b, respectively, of the elliptical
slit. The target system can be composed of an arbitrary stacking of dielectric layers.

where kg is the Boltzmann constant. The energy-
loss spectrum, which is normalized to one at any
target temperature 7, follows by inverse Fourier
transform of F(r).

Considering as an illustrative example the ideal
case of a sole, undamped surface excitation, P, (w)
would be composed of a single Dirac delta peak
A, 8(w — wg) at the frequency wg of the surface
mode. The full loss spectrum generated by the
back-Fourier transform of eq. (3) in that simple
case would be an infinite series ¥ A4,8(w —
nwg) of delta peaks located at all the integer
multiples of the fundamental frequency wg and
corresponding to emissions and absorptions of an
arbitrary integer number of quanta hwg. At zero
temperature, the amplitudes of the gain peaks
(n <0) vanish and the amplitudes of the loss
peaks follow a Poisson statistics: A, =
exp(—Ay)Aqy/n! (n=0). At non-zero tempera-
ture, the amplitudes A4, of the gain and loss peaks
deviate from the Poisson law [11] according to a
statistical distribution already considered in 1908
by the Swedish astronomer Charlier [12] in a very
different context.

In more realistic situations, the loss probability
P(w) must be computed numerically. Quantitative
comparisons between experimental data and the
theoretical energy-loss distribution require taking
into account the limited energy resolution of the
spectrometer. This experimental limitation can be
simulated by convoluting P(w) with a model of
the instrumental response function R(w). This
operation is best performed in Fourier space, by
multiplying the characteristic function F(7) by
the Fourier transform A(7) of the broadening
function R(w) before Fourier-transforming the
result so as to obtain the convoluted loss distribu-
tion:

Plw)= %T-f_+wwA(T)F(T) exp(+iwr) dr. (4)

3. Surface dielectric response of a multilayered
target

The classical loss spectrum (1) has been for-
mulated in terms of the surface dielectric response
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g2(q, ) [13] of the target material to an external
electric field having the form of a plane wave with
frequency w and wave vector g parallel to the
surface. For the short wave vectors selected by the
energy analyzer in a specular EELS experiment, it
is generally sufficient to approximate g(q, w) by
its expression deduced from electrostatics. For an
arbitrary plane-stratified medium, g(g, w) can
then be cast into a form

8(a, o) - fl=t= )

that generalizes the expression [e(w) — 1]/[e(w)
+ 1] valid for a semi-infinite, homogeneous iso-
tropic crystal with long-wavelength, bulk dielectric
function e(w). In the macroscopic limit, the surface
dielectric function £(g, w) of a multilayered sys-
tem can be expressed in terms of the dielectric
functions €;(w), €,(w),... of the successive layers
(fig. 1). For the case of a multilayer made from
isotropic materials, £ is the continued fraction [14]

bi

g(q’ w)=a1_ (6)

b

a; + a, — E;‘f‘—
with coefficients a,=¢;(w)/tanh(qd;) and b=
€;(w)/sinh(qd;) where d; is the thickness of the
jth layer. Under the assumption of isotropic
materials, £(g, @) no longer depends on the direc-
tion of the wave vector ¢ but only on its modulus
q.
When the Nth layer of the target is a thick
substrate, the related coefficient a, identifies with
the dielectric function ey(w) of the substrate
whereas b, vanishes. The continued fraction (6)
then terminates at the Nth level (possibly N =1
for the particular case of a homogeneous semi-in-
finite material) and it can be evaluated using a
backward algorithm. Generalization to the case of
a non-isotropic substrate can be found in ref. [15].
When the thick substrate is a uniaxial crystal with
its axis normal to the surface of the target, in
particular, one obtains ay = /e , (w)¢,(w), where
€, and ¢ are the the two principal components of
the substrate dielectric tensor, and the surface
dielectric response of the system is still isotropic
with respect to the direction of g. The program

described below allows one to consider this situa-
tion, with the restriction however that the ¥ — 1
layers possibly deposited onto the substrate be
isotropic materials.

The surface dielectric function £(g, @) of a
superlattice, with many identical repetitions of a
sequence of p layers, is more conveniently ob-
tained by considering the limit of an infinite num-
ber of periods. The continued-fraction expression
(6) itself becomes periodic if p > 2 and its limit is
easily obtained by solving a quadratic equation
[16]. From this limit, a backward algorithm can be
used here again to evaluate £(g, w) when several
additional layers are deposited onto the super-
lattice.

Equation (6) still demands analytical expres-
sions for the frequency dependence of the dielec-
tric functions of the individual layers. It will be
assumed that the thickness of the layers is large
enough at the atomic scale to characterize their
responses by bulk dielectric functions. In the in-
fra-red domain, it is then generally legitimate to
represent the dielectric function of a given layer
by a sum of n Lorentzian terms,

e(w) =e(oo) + kél = kaTo,k (7)

2#. b
0.k~ W T 1YW

where wq ; denote transverse-optical phonon fre-
quencies, with strenghts Q, and damping frequen-
cies vy, as deduced from infra-red data and e(o0)
is the high-frequency dielectric constant. In cer-
tain cases (doped semi-conductors for instance),
infra-red reflectivity measurements are best repro-
duced when a Drude contribution

— w2

P
o 8
W’ +iyw (8)
is added to the right-hand side of eq. (7). Here w,
is the bulk plasmon frequency of the charge car-
riers and the Ohmic damping frequency y is the
reciprocal of the free-carrier relaxation time .

4. Numerical techniques

In this section, we present a few technical de-
tails about the numerical techniques used to



356 Ph. Lambin et al. / Computation of the surface electron-energy-loss spectrum

calculate the EELS spectrum. For a given energy
loss %iw, the two-dimensional g-space integration
in the expression (1) of P, (w) is performed in
polar coordinates. With the explicit assumption of
an isotropic target, the integral over the polar
angle @ of ¢ can be performed analytically, lead-
ing to an expression that is more easily handled in
complex arithmetics (see the appendix in ref. [14]).
The lower and upper limits for the integration
over ¢ for a given modulus ¢ of ¢ are obtained by
looking for the intersections of a circle of radius ¢
and the ellipse given by eq. (2). This problem is
not always a well-conditioned one: for that rea-
son, we prefer using 64-bit arithmetics on a IBM
computer rather than the single-precision oper-
ations. There is nevertheless a substantial benefit
in so-doing as only a one-dimensional numerical
integration over ¢ is left out. The latter is per-
formed using a Newton—Cotes 8-panel adaptative
quadrature routine described in ref. [17].

For the particular important case of a homoge-
neous thick target with dielectric function e(w),
eq. (1) can be factorized into

/®,
(9)

e’ hw e(w)—1
Py(w) = 4meghv Wg( 2E0qba) Im[ e(e)+1

where w, denotes the g-integral of eq. (1) without
the factor Im[ g], which no longer depends on ¢ in
the present situation. This integral does not de-
pend on the target material; it is a function of the
variable X = hw/2 Eyp,, which monotonously de-
creases from 1 for X =0 to 0 when X approaches
infinity. The integral wy( X) also depends on the
incidence angle § and on the ratio ¢,/¢, of the
two acceptance angles of the elliptical slit of the
spectrometer. In the program EELS, a rational
approximation for wy(X) is constructed when the
target is a thick homogeneous substrate: with the
help of such an analytical, though approximate
expression, the time required to compute the loss
spectrum is considerably reduced. The expression
used for wy(X) is

1 1+8X+C X?
(1+aXx)’ 1+BX+CX*

we(X) = (10)

The coefficients a, C, and C, are fitted to the
exact asymptotic laws of w,y(X) for small and
large values of X, leading to

a= (2/'17)2-/“/2(1 —n (:oslez)l/2
0

x (1 - cos?0 sin%y)'* dy. (11)
Ci=(2/m)(¢p/9,) sin 8 &°C,,

2 12

C, = 3a (12)

1= (2/m)($p/¢,) sin 6 o*

In eq. (11), n=1—(¢,/¢,)°. The expression ob-
tained for « is a non-standard (except for n = 0)
elliptic integral that can be evaluated numerically
with a high degree of precision. The values of C,
and C, follow from eq. (12). The remaining
parameter 8 in eq. (10) is adjusted numerically so
as to best reproduce numerical values of w, com-
puted for a few abscissae in the range of interest
of the energy losses. The absolute accuracy ob-
tained by using a rational approximation for wy is
better than 107° in most applications. Selected
coefficient values are reproduced in table 1.

Consider now the calculation of the full loss
distribution P(w). The expression (3) for the char-
acteristic function F(7) demands evaluating sine
and cosine-like integral transforms. The latter is
transformed into a sine integral by a straightfor-
ward integration by parts,

> hw, I 14 4
/0 coth(m)}’c,(w )[1 - cos(w'r)] dw

=’rf0wG(w') sin(w'r) do’, (13)
where
G(w') =f:° coth(%)Pd(w) dw. (14)

For the purpose of computing F(7), the classical
loss spectrum P, (w) is evaluated on a regular
mesh of frequencies w; with a step size dw speci-
fied by the user. In a given panel (w;_; 2, @;;1,2),
P, (w) is approximated by a rectangle with height
P, (w;). To validate this approximation, the step
size §w must be taken smaller than the damping
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Table 1

Coefficients of the expression (10) useful for computing the classical loss spectrum of a homogeneous thick target for an energy
analyzer presenting a circular aperture (¢, /¢, =1) or a thin “horizontal” slit (¢, /¢, =10). The coefficient 8 has been optimized for
X in the interval (0,1), leading to a root mean square deviation € given in the last column of the table

b/ s 8(°) o G G B €
1 0 0.6366 0.0000 1.2159 0.1570 251074
5 0.6354 0.0278 1.2390 0.1383 3.3107%
10 0.6318 0.0553 1.2528 0.1331 36107°
15 0.6258 0.0811 1.2560 0.1419 341074
20 0.6176 0.1036 1.2478 0.1650 261074
25 0.6072 0.1218 1.2277 0.2016 1.6107*
30 0.5947 0.1346 1.1958 0.2502 581073
35 0.5805 0.1418 1.1527 0.3075 151074
40 0.5646 0.1435 1.0999 0.3687 261074
45 0.5474 0.1402 1.0391 0.4267 341074
50 0.5291 0.1328 0.9727 0.4701 331074
55 0.5101 0.1226 0.9033 0.4859 221074
60 0.4908 0.1107 0.8334 0.4657 711073
65 0.4717 0.0983 0.7657 0.4090 1510°*
70 0.4533 0.0864 0.7027 0.3231 231074
75 0.4363 0.0757 0.6466 0.2209 1.610™%
80 0.4215 0.0668 0.5999 0.1180 181074
85 0.4104 0.0604 0.5658 0.0318 53107%
10 0 0.4118 0.0000 0.5087 0.8012 76107%
5 0.4107 0.0523 0.5584 0.7617 6910~
10 0.4077 0.1122 0.6108 0.7286 6.110°*
15 0.4026 01771 0.6633 0.7038 55107*
20 0.3955 0.2425 0.7118 0.6905 501074
25 0.3866 0.3017 0.7502 0.6931 47104
30 0.3760 0.3471 0.7712 0.7161 461074
35 0.3638 0.3712 0.7682 0.7613 47107
40 0.3501 0.3701 0.7379 0.8243 4810°*
45 0.3352 0.3452 0.6824 0.8905 4710°*
50 0.3194 0.3029 0.6089 0.9296 4010~*
55 0.3028 0.2521 0.5272 0.9018 2510°%
60 0.2859 0.2011 0.4463 0.7828 6.610°°
65 0.2690 0.1555 0.3726 0.5810 141074
70 0.2526 0.1181 0.3095 0.3339 171074
75 0.2373 0.0894 0.2583 0.0873 1.610°*
80 0.2239 0.0689 0.2192 —-0.1237 611074
85 0.2136 0.0557 0.1926 —-0.2771 1310°°

frequencies vy, of the dielectric functions (7). The
same rectangle approximation is used to represent
the function G(w’) introduced in eq. (14) and the
two terms into the argument of the exponential in
the expression (3) of F(t) can then be converted
into discrete sums which can be computed by a
fast-Fourier transform (FFT) technique for dis-
crete values of 7 in the interval (0,2m/8w). The
characteristic function F(7) is next multiplied by
the Fourier transform A(7) of a suitable instru-
mental response (see eq. (4)) and P(w) follows by

back-Fourier transform which, here again, is
evaluated by a FFT technique. Note that the
width of the instrumental response must be larger
than the frequency step size §w to guarantee a fast
decay of the product A(7)F(7) when 7 ap-
proaches its maximum value 27 /8w.

5. Structure of the program EELS

The program EELS is aimed at computing the
classical loss spectrum given by eq. (1) for an
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Table 2
The input data for the file EELSIN (unit =11)

Format Variable Comment

Spectrometer parameters

* EO Electron primary energy £, (eV)

* THETA Incidence angle 8 of the electrons (°), 0 <6 <90° — ¢,

* PHIA Half-acceptance angle ¢, sustained by the vertical (in the incidence plane) semi-axis
of the elliptical slit of the spectrometer ( °) (see fig. 1)

* PHIB Half-acceptance angle ¢, sustained by the horizontal (parallel to the target surface)
semi-axis of the elliptical slit of the spectrometer ( °) (see fig. 1)

* WMIN Lower frequency value « for (¢cm ™ ') for the computation of P, (w), WMIN >0

* WMAX Upper frequency value o (cm™')

* DwW Step for the grid of equally-spaced frequencies (cm ™ ')

Target specification

AT2 COMMEN() Two lines of comments, for user convenience, the first of

AT2 COMMEN(2) which will be copied in the output file EELSOU as a title

* N, NPER The number N of layers, with the possibility of reproducing periodically the NPER

( <N) last layers. When NPER = +1, the Nth layer is assumed to be a thick
substrate made either from an isotropic material (NPER = + 1) or a uniaxial crystal
(NPER = —1) with its axis perpendicular to the surface of the target. If N =0, the
rest of the input file is not used and the program switches to a user-supplied
external routine USURLO for computing the surface loss function Im[g(g, )] (see

eq. 1)
Dielectric functions (N such blocks of data for the N layers)
A10,E15.5 NAME( ), A character *10 string identifying the material which the jth layer is made from and
THICK( /) the thickness d, of that layer (A). With NPER = + 1, the thickness of the bottom

layer ( j = N) is assumed infinite; the corresponding variable THICK(N) is not used
and may be entered as any large number

* EPSINF( ), The high-frequency dielectric constant e(c0) and the number of oscillators,
NOS() including a possible Drude contribution, in the expression (egs. (7) and (8)) of the

dielectric function for layer j. NOS( ) can be zero in which case e(w) = €(oc)
* WTO(k, j), NOS( /) such lines giving for the & th oscillator in the expression (7) of the dielectric
Q(k.j). function: the resonant frequency wrp , (in cm™ '), the strength Q, ( = 0) and the
LAM(k, j) damping constant A, =y, /w4 in units of wyg ;. For a Drude contribution (8),

enter Q(k, j)=—1 in which case WTO(k, ;) is interpreted as a bulk plasmon
frequency w,

Oscillator parameters for the second principal component of the dielectric tensor of the Nth layer when
NPER = — ]: uniaxial thick substrate

* EPSINF(N+1), Same meaning as here above for ¢;(w) when the substrate is a uniaxial crystal (see
NOS(N+1) section 3), the corresponding parameters for e (w) having been entered in
EPSINF(N), NOS(N)
* WTO(kN + 1), NOS(N +1) such lines, with the same meaning as here above, for ¢;(«) when the
QA N+1), substrate is a uniaxial crystal (NPER = —1)
GAM(L,N+1)

Optional control variable (this last line of the input may be omitted)

Al10 CONTRL When the character *10 variable CONTRL is equal to “IMAGE”, shortening of the
interaction-time arising from the image attraction of the electron is accounted for as
explained in section 5

arbitrary multilayered target. The output (file cies w; in the interval (w,,,, ®,.x) With a step size
EELSOU, unit = 12) consists in a table of values 8w, both specified by the user in an input file
of P,(w) computed on a regular mesh of frequen- called EELSIN (unit = 11). The input file contains
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in addition the electron primary energy E,, the
incidence angle 8 and the half-aperture angles ¢,
and ¢, of the energy analyzer (see fig. 1). The rest
of the input file, described in table 2, contains
target specifications and oscillator parameters to
be used for computing the dielectric functions of
the individual layers.

The most general system that can be handled is
composed of N layers, with the possibility of
reproducing periodically the last p layers (1 <p <
N) so as to deal with superlattices. This includes
as particular cases the following systems (note the
use of the parameters N and p to distinguish
between the different cases):

(a) a thick (semi-infinite) homogeneous crystal (N
=p=1)

(b) a single film or a multilayered medium de-
posited onto a thick substrate (N > p=1); in
that case, the Nth layer is the substrate;

(c) a superlattice with an arbitrary number of
layers per period (N > p > 2).

For instance, a system like AlAs/GaAs with N =2

layers can be considered either as a superlattice

(p = 2) or an AlAs film onto a semi-infinite GaAs

substrate (p=1). When N =p =1, the approxi-

mate, rational expression (10) of w, is used for
computing P,(w), leading to a considerable re-
duction of the computing time. When p =1, the
thick substrate may be a uniaxial crystal as ex-
plained in section 3 (this option works for all
values of N > 1). By convention it suffices to enter

p = —1 to tell the program that the substrate is a

uniaxial material; two sets of oscillator parameters

for the two principal components €, (w) and ¢,(w)
of the dielectric tensor of the Nth layer must then

be provided (more details are given in table 2).

The surface loss function Im[g(q, w)] of the
multilayered target (5) is evaluated in complex
arithmetics using the continued-fraction expres-
sion (6) for £ (external functions SURLOS). The
dielectric functions of the individual layers are
computed by egs. (7) and (8) (subroutine SETEPS)
from a table of oscillator parameters contained in
the input file (see table 2). Undamped oscillators
may give rise to numerical problems; it is there-
fore recommended to use non-zero damping fre-
quencies y, (1% of the resonant frequencies wrg 4
for instance, if no known data is available).

By entering an extra line of input with the
string “IMAGE” (see table 2), possibility exists to
take into account, at least approximately, the
acceleration of the electrons associated with the
image potential. The image acceleration, which is
not included in the expression (1) of the classical
loss spectrum, is responsible for shortening the
interaction time of the electrons with the long-
wavelength surface excitations of the target. The
integrand in the expression (1) of P, is corrected
on request for the shortening of the interaction
time [18] arising from the attraction of the elec-
tron by a quasi-instantaneous image with charge
— Be where, for a thick homogeneous target, 8 =
[e(o0) — 1]/[€e(00) + 1]. For a multilayered system,
the screening factor 8 is evaluated from the high-
frequency dielectric constant of the top-most layer.
The image attraction, which has important effects
at grazing incidences, can usually be neglected
when § < 60°.

By entering a zero value for the number N of
layers in line 10 of the input file (table 2), the
program switches to a user-supplied expression of
the surface loss function Im[g] instead of the
continued fraction [6] when evaluating the classi-
cal loss spectrum. The actual surface loss function
of the target system can be coded in a external
function USURLO(Q, W) which returns
Im[g(g, )] (dimensionless) for given ¢ and .
The two input arguments Q and W denote, respec-
tively, the modulus g of the surface wave vector
(in A™') and the frequency w (in cm ™).

6. Structure of the program BOSON

The second step of the semi-classical theory
summarized in section 2 is performed by the pro-
gram BOSON. This program uses as an input the
table of values of the classical spectrum Pgy(w)
generated by the program EELS in the file
EELSOU (unit = 12). The other input parameters
must be specified in another input file, called
BOSIN (unit = 13), whose structure is described
in table 3. As explained in section 4, all the
Fourier integrals required are performed using a
FFT technique. In order to save time, a radix-two
form of the FFT algorithm is applied throughout.



The width of the instrumental response (cm ') of the spectrometer. WIDTH can be
estimated by measuring the full width at half maximum of the experimental elastic

The relative weight of the Gaussian term in the Gaussian-Lorentzian linear
combination modeling the instrumental response R(w) of the spectrometer. When

GAUSS < 0 or GAUSS >1, the program switches to a user-supplied expression of

ASYM controls the asymmetry of the Lorentzian component (see section 6) of the
Gaussian-Lorentzian expression used by default as a model for the instrumental

Lower value of the energy losses Aw (cm ™). A negative value of EMIN allows one
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Table 3
The input data for the file BOSIN (unit =13)
Format Variable Comment
* T Target temperature (K)
* WIDTH
peak
* GAUSS
R(w) (external function RESPON)
* ASYM
response (—1 < ASYM < +1)
* EMIN
to explore the gain region of the EELS loss distribution P(w)
* EMAX Upper value of the energy losses Aw (cm™!)

The frequency interval explored by the program
EELS is enlarged by raising the number of grid
points to a power of 2, while keeping the step size
8w that was used for computing the classical loss
spectrum, and P,(w) is set to zero for those grid
points that are outside the tabulated interval
(Wmin» Wmax) contained in the file EELSOU.

The instrumental response R(w) of the spec-
trometer used to broaden the theoretical loss spec-
trum P(w) according to eq. (4) can be any nor-
malized linear combination of a Gaussian func-
tion and a Lorentzian function, both with the
same width (FWHW). Alternatively, R(w) can be
computed from a user-supplied expression coded
in an external function called RESPON
(W,WIDTH). The two input arguments W and
WIDTH are the frequency w in cm™' (equal to
the energy loss or gain, depending on the sign of
w, divided by 4) and the width of the broadening
function (cm™') as read in the file BOSIN. The
program switches to the user-supplied response
whenever the parameter GAUSS in line 3 of the
input file BOSIN is smaller than 0 or larger than
1. The Fourier transform A(7) of the instrumental
response is then computed numerically.

With 0 < GAUSS < 1, the Lorentzian compo-
nent of the instrumental response used by default
can be made asymmetric. More clearly stated, this
component is built from two halves of Lorentzian
functions, one with half width vy, in the energy-gain

region (w < 0) and the other with half width v, in
the energy-loss region (w > 0). By construction
¥, +v; 1s equal to the width of the instrumental
response. The asymmetry (parameter ASYM in
the input file) of the Lorentzian component is
defined as the ratio (y,—v)/(y, +7v;), which
vanishes for a symmetric function (v, = v;).

The output of the program is written in a file
called BOSOU (unit = 14), where the full EELS
spectrum is tabulated from EMIN to EMAX (in-
put values) with equidistant steps equal to the one
dw used for the input table of P, or, possibly, to
an integer multiple of dw not larger than (1,/20)-th
of the resolution parameter WIDTH.

7. Test run

The input and output files of the test run
correspond to the EELS spectrum of an
GaAs/AlGaAs superlattice described in ref. [7].
The sample consists of a repetition of alternate
GaAs and Al ;Ga ,As layers, each of them is 100
A thick, except for the topmost GaAs layer whose
thickness was reduced to an estimate of 70 A
while sputter cleaning the surface. The target is
therefore considered as a GaAs 70 A overlayer
onto a AlGaAs/GaAs (100 A/100 A) semi-in-
finite superlattice (N = 3, p = 2). The parameters
of the dielectric functions for GaAs (one oscilla-



Ph. Lambin et al. / Computation of the surface electron-energy-loss spectrum 361

[e )
]

o
sy
T
L

.
co
T
i

[
o
I

=4
¥

Classical spectrum (10-*cm)
I
1

0 1 1 A// L J/\L |
200 300 400

100 500
w (em~*)
Fig. 2. Classical loss spectrum P, (w) of a GaAs/AlGaAs

superlattice generated by the program EELS in the test run
described in the text.

tor) and Al,,Ga,,As (two oscillators) are taken
from published infra-red data. The classical loss
spectrum (see fig. 2) has been computed with a
primary electron energy of 6.1 eV and an inci-
dence angle of 45°, the spectrometer acceptance
angles are ¢, = ¢, =1.8° (circular aperture).
Acceleration of the electrons by their image
charges is ignored. The output of the program
EELS consists of a table of values of P, (w) from

§ 0.012 .
§ .
a
~ 0.008 F
-
=
o
S 0.004 |
a %
n B b
b x10
—0.000 e
-500 -250 0 250 500 750

w (cm™*t)

Fig. 3. Full loss probability P(«) (solid line) generated by the

program BOSON for the GaAs/AlGaAs superlattice consid-

ered in the test run. For comparison, the corresponding experi-
mental spectrum [7] is shown by dots.

©min = 100 t0 @y, =500 cm™! with a step size
Sw=2cm™,

The full loss probability P(w) obtained by the
program BOSON is shown in fig. 3, where it is
compared with an experimental spectrum. The
instrumental response function R(w) used to
broaden the theoretical EELS spectrum is a com-
bination of a Gaussian and a Lorentzian with
equal weights (GAUSS = 0.5). This parameter to-
gether with the width (57 cm™!') of R(w) and the
asymmetry parameter of the Lorentzian compo-
nent (ASYM = 0.3) have been adjusted to the
shape of the experimental elastic peak around
w=0.
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TEST RUN INPUT AND OUTPUT

File EELSIN, unit = 11

6.1 (3]
45.0 THETA
1.8 PHIA
1.8 PHIB
100.0 WMIN
500.0 WMAX
2.0 BW
GAAS 7
3 2
GARAS 0.7
10. 900 1
269. 20
AL3I0GAT0AS 0.1
10. 200 2
265. 00
361.00
GAAS g.1
10. 900 1
269. 20

0000D+02

2.0300
0000D+03

1.2400
0.93000
0000D+03

2.0300

0.0 ( AL30GA70AS 100.0 GAAS 100.0 )

0.93000E-02

0. 27000E-01

0. 30000E-01-

0.93000E-02

File EELSOU (shortened), unit = 12

E0O = 6.10 THETA = 45.0 PHIA = 1.80 PHIB = 1.80

GAAS 70.0 C AL3OGAT0AS 100.0 GAAS 100.0 )

0. 1000000E+03
0.1020000E+03
0.1040000E+03
0.1060000E+03
0.1080000E+03
0.1100000E+03
0.1120000E+03
0. 1140000E+03
0.1160000E+03
0.1180000E+03
0.1200000E+03

. 4300000E+03
. 4820000E+03
.4940000E+03
. 4960000E+03
. 4980000E+03
. 5000000E+03

[=N— NN =)
o e

. 3389797E-05
. 3414600E-05
. 3440501E-05
. 3467530E-05
. 3495730E-05
. 3525141€E-05
. 3555810€E-05
. 3587780E-05
0.3621101E-05
0.3655827E-05
0.3692012E-05

OO0 O0O0COOO

.1256209€-05
.1210072E-05
.1166246E-05
. 1124578€E-05
.1084830E-05
.1047181E-05

[= N = oo N o B oo B o ]

File BOSIN, unit = 13

300.0 T
57.0 WIDTH
0.5 GAUSS
0.3 ASYM
-500.0 EMIN
750.0 EMAX

N NPER
LAYER 1

LAYER 2

LAYER 3
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File BOSOU (shortened), unit = 14

E0 = 6.10 THETA = 45.0 PHIA = 1,80 PHIB = 1.80 T = 300.0 GAUSS = 0.50
GAAS 70.0 ( AL3OGA?0AS 100.0 GAAS 100.0 2

-0.5000000E+03 0.1041774E-04
-0.4980000E+03 0.1049992E-04
-0.4960000E+03 0.1058362E-04
-0.4940000E+03 0.1067086E-04
-0.4920000E+03 0.1076084E-04
-0.4900000E+03 0.1085463E-04
-0.4880000E+03 0.1095019E-04
-0.4860000E+03 0.1104833E-04
-0.4840000E+03 0.1115222E-04
-0.4820000E+03 0.1125614E-04
-0.4800000E+03 0.1136563E-04
C. 7400000E+03 0.1824343E-04
0.7420000E+03 0.1807071E-04
0.7440000E+03 0.1790094E-04
0, 7460000E+03 0.1773359E-04
0. 7480000E+03 0.1756617E-04
0. 7500000E+03 0.1740073E-04



