From 675551a72ef431f3df218ddd3c3b5f577ac51a7f Mon Sep 17 00:00:00 2001 From: anhtx <sofia.wuckert@student.uni-halle.de> Date: Sun, 2 Feb 2025 11:50:43 +0100 Subject: [PATCH 1/7] CNN&IForest --- src/models/sofia_modelle/CNN.ipynb | 33 ++++++++++++++++++++++++++ src/models/sofia_modelle/IForest.ipynb | 33 ++++++++++++++++++++++++++ 2 files changed, 66 insertions(+) diff --git a/src/models/sofia_modelle/CNN.ipynb b/src/models/sofia_modelle/CNN.ipynb index e69de29..abdac9f 100644 --- a/src/models/sofia_modelle/CNN.ipynb +++ b/src/models/sofia_modelle/CNN.ipynb @@ -0,0 +1,33 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# importe\n", + "from IForest import IForest\n", + "import sys\n", + "import pathlib\n", + "sys.path.append(str(pathlib.Path.absolute)+ '../../')\n", + "from src.utils.slidingWindows import find_length_rank\n", + "from src.run_model_wrapper import main" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/src/models/sofia_modelle/IForest.ipynb b/src/models/sofia_modelle/IForest.ipynb index e69de29..abdac9f 100644 --- a/src/models/sofia_modelle/IForest.ipynb +++ b/src/models/sofia_modelle/IForest.ipynb @@ -0,0 +1,33 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# importe\n", + "from IForest import IForest\n", + "import sys\n", + "import pathlib\n", + "sys.path.append(str(pathlib.Path.absolute)+ '../../')\n", + "from src.utils.slidingWindows import find_length_rank\n", + "from src.run_model_wrapper import main" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} -- GitLab From cc323aae8cabd7baff34374ae3804b849d99ddb4 Mon Sep 17 00:00:00 2001 From: anhtx <sofia.wuckert@student.uni-halle.de> Date: Sun, 2 Feb 2025 11:51:14 +0100 Subject: [PATCH 2/7] KNN abbruch --- src/models/sofia_modelle/KNN.ipynb | 687 ++++++++++++++++++++++++++++- 1 file changed, 680 insertions(+), 7 deletions(-) diff --git a/src/models/sofia_modelle/KNN.ipynb b/src/models/sofia_modelle/KNN.ipynb index 4b34ef0..9f77caf 100644 --- a/src/models/sofia_modelle/KNN.ipynb +++ b/src/models/sofia_modelle/KNN.ipynb @@ -2,9 +2,38 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CUDA available: False\n", + "cuDNN version: None\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:126: SyntaxWarning: invalid escape sequence '\\i'\n", + " \"\"\"\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:145: SyntaxWarning: invalid escape sequence '\\i'\n", + " \"\"\"\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:178: SyntaxWarning: invalid escape sequence '\\i'\n", + " \"\"\"\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:214: SyntaxWarning: invalid escape sequence '\\i'\n", + " \"\"\"\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:245: SyntaxWarning: invalid escape sequence '\\i'\n", + " \"\"\"\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:307: SyntaxWarning: invalid escape sequence '\\i'\n", + " \"\"\"\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:423: SyntaxWarning: invalid escape sequence '\\i'\n", + " \"\"\"\n" + ] + } + ], "source": [ "# importe\n", "from KNN import KNN\n", @@ -17,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -31,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -45,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -61,7 +90,637 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Start Processing files\n", + "Start Hyperparameter Tuning\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/threadpoolctl.py:1214: RuntimeWarning: \n", + "Found Intel OpenMP ('libiomp') and LLVM OpenMP ('libomp') loaded at\n", + "the same time. Both libraries are known to be incompatible and this\n", + "can cause random crashes or deadlocks on Linux when loaded in the\n", + "same Python program.\n", + "Using threadpoolctl may cause crashes or deadlocks. For more\n", + "information and possible workarounds, please see\n", + " https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md\n", + "\n", + " warnings.warn(msg, RuntimeWarning)\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 494_UCR_id_192_Facility_tr_22500_1st_72150.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'largest'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 855_OPPORTUNITY_id_14_HumanActivity_tr_808_1st_908.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 806_YAHOO_id_256_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 40, 'method': 'largest'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 411_UCR_id_109_Environment_tr_2046_1st_4852.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 223_LTDB_id_8_Medical_tr_4456_1st_4556.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 811_Exathlon_id_2_Facility_tr_10766_1st_12590.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 417_UCR_id_115_Sensor_tr_2750_1st_5400.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 439_UCR_id_137_HumanActivity_tr_48750_1st_110800.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 831_Exathlon_id_22_Facility_tr_11665_1st_13484.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 865_OPPORTUNITY_id_24_HumanActivity_tr_2085_1st_2185.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 537_SMAP_id_7_Sensor_tr_2077_1st_5394.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 241_SVDB_id_5_Medical_tr_11587_1st_11687.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 023_NAB_id_23_Facility_tr_4512_1st_16551.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + } + ], "source": [ "# main run model wrapper\n", "main(run_Sub_KNN,params,'Sub_KNN',data_folders = '../../../data/', model_type='unsupervised',output_dir = '../../../docs/evaluation/')" @@ -90,8 +749,22 @@ } ], "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, "language_info": { - "name": "python" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" } }, "nbformat": 4, -- GitLab From 7258ab9eb061bc14e6a4f509fb0c389b65b261dc Mon Sep 17 00:00:00 2001 From: anhtx <sofia.wuckert@student.uni-halle.de> Date: Sun, 2 Feb 2025 12:11:37 +0100 Subject: [PATCH 3/7] anpassung --- src/models/sofia_modelle/KNN.ipynb | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/src/models/sofia_modelle/KNN.ipynb b/src/models/sofia_modelle/KNN.ipynb index 9f77caf..5a23ba6 100644 --- a/src/models/sofia_modelle/KNN.ipynb +++ b/src/models/sofia_modelle/KNN.ipynb @@ -723,7 +723,10 @@ ], "source": [ "# main run model wrapper\n", - "main(run_Sub_KNN,params,'Sub_KNN',data_folders = '../../../data/', model_type='unsupervised',output_dir = '../../../docs/evaluation/')" + "model = 'Sub_KNN'\n", + "output_path = '../../../docs/evaluation/'\n", + "\n", + "main(run_Sub_KNN,params,model,data_folders = '../../../data/', model_type='unsupervised',output_dir = output_path)" ] }, { -- GitLab From 860a14599ce542df11388ff17c5a1498909bf05d Mon Sep 17 00:00:00 2001 From: anhtx <sofia.wuckert@student.uni-halle.de> Date: Sun, 2 Feb 2025 12:21:52 +0100 Subject: [PATCH 4/7] modelle angepasst --- src/models/sofia_modelle/CNN.ipynb | 96 +++++++++++++++++++++++++- src/models/sofia_modelle/IForest.ipynb | 93 ++++++++++++++++++++++++- src/models/sofia_modelle/KNN.ipynb | 45 +++++++++++- 3 files changed, 229 insertions(+), 5 deletions(-) diff --git a/src/models/sofia_modelle/CNN.ipynb b/src/models/sofia_modelle/CNN.ipynb index abdac9f..b8fb945 100644 --- a/src/models/sofia_modelle/CNN.ipynb +++ b/src/models/sofia_modelle/CNN.ipynb @@ -7,7 +7,7 @@ "outputs": [], "source": [ "# importe\n", - "from IForest import IForest\n", + "from CNN import CNN\n", "import sys\n", "import pathlib\n", "sys.path.append(str(pathlib.Path.absolute)+ '../../')\n", @@ -20,7 +20,99 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "params = {\n", + " 'window_size': [50, 100, 150],\n", + " 'num_channel': [[32, 32, 40], [16, 32, 64]]\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def run_CNN(data_train, data_test, window_size=100, num_channel=[32, 32, 40], lr=0.0008, n_jobs=1):\n", + " clf = CNN(window_size=window_size, num_channel=num_channel, feats=data_test.shape[1], lr=lr, batch_size=128)\n", + " clf.fit(data_train)\n", + " score = clf.decision_function(data_test)\n", + " return score.ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = 'CNN'\n", + "output_path = '../../../docs/evaluation/'\n", + "\n", + "main(run_CNN,params,model,data_folders = '../../../data/', model_type='semi-supervised',output_dir = output_path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import os\n", + "data_empty = {\n", + " 'params':[],\n", + " 'file_name': [],\n", + " 'duration': [],\n", + " 'group': [],\n", + " 'point anomaly': [],\n", + " 'seq anomaly': [],\n", + " 'AUC-PR': [],\n", + " 'AUC-ROC': [],\n", + " 'VUS-PR': [],\n", + " 'VUS-ROC': [],\n", + " 'Standard-F1': [],\n", + " 'PA-F1': [],\n", + " 'Event-based-F1': [],\n", + " 'R-based-F1': [],\n", + " 'Affiliation-F': [],\n", + " 'Recall': [],\n", + " 'Precision': []\n", + "}\n", + "\n", + "df = pd.DataFrame(data_empty)\n", + "\n", + "path = '../../../docs/evaluation/'\n", + "model = 'CNN'\n", + "#concant all batch-files to big one\n", + "for file in os.listdir(path):\n", + " file_path = os.path.join(path,file_path)\n", + " #check if current file belongs to selected model and avoid overwriting existing model.csv data\n", + " if file.startswith(model) and file.split('.')[0] != model:\n", + " df_batch = pd.read_csv(file_path)\n", + " #join with dataframe with all data\n", + " df = pd.concat(df,df_batch)\n", + "\n", + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv(output_path+model+'.csv')" + ] } ], "metadata": { diff --git a/src/models/sofia_modelle/IForest.ipynb b/src/models/sofia_modelle/IForest.ipynb index abdac9f..2de109e 100644 --- a/src/models/sofia_modelle/IForest.ipynb +++ b/src/models/sofia_modelle/IForest.ipynb @@ -20,7 +20,98 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "params = {\n", + " 'n_estimators': [25, 50, 100, 150, 200]\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def run_IForest(data, slidingWindow=100, n_estimators=100, max_features=1, n_jobs=1):\n", + " clf = IForest(slidingWindow=slidingWindow, n_estimators=n_estimators, max_features=max_features, n_jobs=n_jobs)\n", + " clf.fit(data)\n", + " score = clf.decision_scores_\n", + " return score.ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = 'IForest'\n", + "output_path = '../../../docs/evaluation/'\n", + "\n", + "main(run_IForest,params,model,data_folders = '../../../data/', model_type='unsupervised',output_dir = output_path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import os\n", + "data_empty = {\n", + " 'params':[],\n", + " 'file_name': [],\n", + " 'duration': [],\n", + " 'group': [],\n", + " 'point anomaly': [],\n", + " 'seq anomaly': [],\n", + " 'AUC-PR': [],\n", + " 'AUC-ROC': [],\n", + " 'VUS-PR': [],\n", + " 'VUS-ROC': [],\n", + " 'Standard-F1': [],\n", + " 'PA-F1': [],\n", + " 'Event-based-F1': [],\n", + " 'R-based-F1': [],\n", + " 'Affiliation-F': [],\n", + " 'Recall': [],\n", + " 'Precision': []\n", + "}\n", + "\n", + "df = pd.DataFrame(data_empty)\n", + "\n", + "path = '../../../docs/evaluation/'\n", + "model = 'IForest'\n", + "#concant all batch-files to big one\n", + "for file in os.listdir(path):\n", + " file_path = os.path.join(path,file_path)\n", + " #check if current file belongs to selected model and avoid overwriting existing model.csv data\n", + " if file.startswith(model) and file.split('.')[0] != model:\n", + " df_batch = pd.read_csv(file_path)\n", + " #join with dataframe with all data\n", + " df = pd.concat(df,df_batch)\n", + "\n", + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv(output_path+model+'.csv')" + ] } ], "metadata": { diff --git a/src/models/sofia_modelle/KNN.ipynb b/src/models/sofia_modelle/KNN.ipynb index 5a23ba6..436b14c 100644 --- a/src/models/sofia_modelle/KNN.ipynb +++ b/src/models/sofia_modelle/KNN.ipynb @@ -736,9 +736,41 @@ "outputs": [], "source": [ "import pandas as pd\n", + "import os\n", + "data_empty = {\n", + " 'params':[],\n", + " 'file_name': [],\n", + " 'duration': [],\n", + " 'group': [],\n", + " 'point anomaly': [],\n", + " 'seq anomaly': [],\n", + " 'AUC-PR': [],\n", + " 'AUC-ROC': [],\n", + " 'VUS-PR': [],\n", + " 'VUS-ROC': [],\n", + " 'Standard-F1': [],\n", + " 'PA-F1': [],\n", + " 'Event-based-F1': [],\n", + " 'R-based-F1': [],\n", + " 'Affiliation-F': [],\n", + " 'Recall': [],\n", + " 'Precision': []\n", + "}\n", "\n", - "path = '../../../docs/evaluation/Sub_KNN.csv'\n", - "df = pd.read_csv(path)" + "df = pd.DataFrame(data_empty)\n", + "\n", + "path = '../../../docs/evaluation/'\n", + "model = 'Sub_KNN'\n", + "#concant all batch-files to big one\n", + "for file in os.listdir(path):\n", + " file_path = os.path.join(path,file_path)\n", + " #check if current file belongs to selected model and avoid overwriting existing model.csv data\n", + " if file.startswith(model) and file.split('.')[0] != model:\n", + " df_batch = pd.read_csv(file_path)\n", + " #join with dataframe with all data\n", + " df = pd.concat(df,df_batch)\n", + "\n", + "df.shape" ] }, { @@ -749,6 +781,15 @@ "source": [ "df.head()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv(output_path+model+'.csv')" + ] } ], "metadata": { -- GitLab From 92ffbadd761f605beb1df80511e67d34e5c0a116 Mon Sep 17 00:00:00 2001 From: anhtx <sofia.wuckert@student.uni-halle.de> Date: Sun, 2 Feb 2025 13:13:43 +0100 Subject: [PATCH 5/7] change knn --- src/models/sofia_modelle/KNN.ipynb | 707 +++-------------------------- 1 file changed, 56 insertions(+), 651 deletions(-) diff --git a/src/models/sofia_modelle/KNN.ipynb b/src/models/sofia_modelle/KNN.ipynb index 436b14c..1468077 100644 --- a/src/models/sofia_modelle/KNN.ipynb +++ b/src/models/sofia_modelle/KNN.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 10, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -12,26 +12,6 @@ "CUDA available: False\n", "cuDNN version: None\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:126: SyntaxWarning: invalid escape sequence '\\i'\n", - " \"\"\"\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:145: SyntaxWarning: invalid escape sequence '\\i'\n", - " \"\"\"\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:178: SyntaxWarning: invalid escape sequence '\\i'\n", - " \"\"\"\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:214: SyntaxWarning: invalid escape sequence '\\i'\n", - " \"\"\"\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:245: SyntaxWarning: invalid escape sequence '\\i'\n", - " \"\"\"\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:307: SyntaxWarning: invalid escape sequence '\\i'\n", - " \"\"\"\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/affiliation/_integral_interval.py:423: SyntaxWarning: invalid escape sequence '\\i'\n", - " \"\"\"\n" - ] } ], "source": [ @@ -46,7 +26,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -60,9 +40,21 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'filename' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[7], line 7\u001b[0m\n\u001b[1;32m 5\u001b[0m score \u001b[38;5;241m=\u001b[39m clf\u001b[38;5;241m.\u001b[39mdecision_scores_\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m score\u001b[38;5;241m.\u001b[39mravel()\n\u001b[0;32m----> 7\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mfilename\u001b[49m)\n", + "\u001b[0;31mNameError\u001b[0m: name 'filename' is not defined" + ] + } + ], "source": [ "def run_Sub_KNN(data, n_neighbors=10, method='largest', periodicity=1, n_jobs=1):\n", " slidingWindow = find_length_rank(data, rank=periodicity)\n", @@ -74,9 +66,21 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'filename' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[6], line 7\u001b[0m\n\u001b[1;32m 5\u001b[0m score \u001b[38;5;241m=\u001b[39m clf\u001b[38;5;241m.\u001b[39mdecision_scores_\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m score\u001b[38;5;241m.\u001b[39mravel()\n\u001b[0;32m----> 7\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mfilename\u001b[49m)\n", + "\u001b[0;31mNameError\u001b[0m: name 'filename' is not defined" + ] + } + ], "source": [ "# util wrapper def\n", "def run_KNN(data, slidingWindow=100, n_neighbors=10, method='largest', n_jobs=1): #,leaf_size = 30\n", @@ -88,636 +92,38 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Start Processing files\n", - "Start Hyperparameter Tuning\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/threadpoolctl.py:1214: RuntimeWarning: \n", - "Found Intel OpenMP ('libiomp') and LLVM OpenMP ('libomp') loaded at\n", - "the same time. Both libraries are known to be incompatible and this\n", - "can cause random crashes or deadlocks on Linux when loaded in the\n", - "same Python program.\n", - "Using threadpoolctl may cause crashes or deadlocks. For more\n", - "information and possible workarounds, please see\n", - " https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md\n", - "\n", - " warnings.warn(msg, RuntimeWarning)\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 494_UCR_id_192_Facility_tr_22500_1st_72150.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'largest'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 855_OPPORTUNITY_id_14_HumanActivity_tr_808_1st_908.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 806_YAHOO_id_256_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 40, 'method': 'largest'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 411_UCR_id_109_Environment_tr_2046_1st_4852.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 223_LTDB_id_8_Medical_tr_4456_1st_4556.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 811_Exathlon_id_2_Facility_tr_10766_1st_12590.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 417_UCR_id_115_Sensor_tr_2750_1st_5400.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 439_UCR_id_137_HumanActivity_tr_48750_1st_110800.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", - " res = ((a - np.expand_dims(mns, axis=axis)) /\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 831_Exathlon_id_22_Facility_tr_11665_1st_13484.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 865_OPPORTUNITY_id_24_HumanActivity_tr_2085_1st_2185.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 537_SMAP_id_7_Sensor_tr_2077_1st_5394.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 241_SVDB_id_5_Medical_tr_11587_1st_11687.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "File: 023_NAB_id_23_Facility_tr_4512_1st_16551.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", - "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n", - " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + "Start Processing files\n" + ] + }, + { + "ename": "UnicodeDecodeError", + "evalue": "'utf-8' codec can't decode byte 0xaa in position 1077: invalid start byte", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mUnicodeDecodeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[5], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSub_KNN\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 3\u001b[0m output_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m../../../docs/evaluation/\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m----> 5\u001b[0m \u001b[43mmain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrun_Sub_KNN\u001b[49m\u001b[43m,\u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43mdata_folders\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m../../../data/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43munsupervised\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43moutput_dir\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43moutput_path\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/run_model_wrapper.py:253\u001b[0m, in \u001b[0;36mmain\u001b[0;34m(run_model, hyperparams, model_name, data_folders, model_type, output_dir)\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mStart Processing files\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 252\u001b[0m \u001b[38;5;66;03m#reutrns [{file_name:str,train_data:list,data:list, label:list, sliding_window:int}]\u001b[39;00m\n\u001b[0;32m--> 253\u001b[0m file_data_dict_list \u001b[38;5;241m=\u001b[39m \u001b[43mpreprocess_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath_data_all\u001b[49m\u001b[43m)\u001b[49m \n\u001b[1;32m 255\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mStart Hyperparameter Tuning\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 256\u001b[0m \u001b[38;5;66;03m#find hyperparametrs for each file:\u001b[39;00m\n", + "File \u001b[0;32m~/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/run_model_wrapper.py:160\u001b[0m, in \u001b[0;36mpreprocess_data\u001b[0;34m(data_path)\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m filename \u001b[38;5;129;01min\u001b[39;00m os\u001b[38;5;241m.\u001b[39mlistdir(data_path):\n\u001b[1;32m 159\u001b[0m file_path \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(data_path, filename)\n\u001b[0;32m--> 160\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile_path\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mdropna()\n\u001b[1;32m 161\u001b[0m data \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39miloc[:, \u001b[38;5;241m0\u001b[39m:\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;241m.\u001b[39mvalues\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;28mfloat\u001b[39m)\n\u001b[1;32m 162\u001b[0m label \u001b[38;5;241m=\u001b[39m df[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mLabel\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;28mint\u001b[39m)\u001b[38;5;241m.\u001b[39mto_numpy()\n", + "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1026\u001b[0m, in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[1;32m 1013\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[1;32m 1014\u001b[0m dialect,\n\u001b[1;32m 1015\u001b[0m delimiter,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1022\u001b[0m dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[1;32m 1023\u001b[0m )\n\u001b[1;32m 1024\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[0;32m-> 1026\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:620\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 617\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 619\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[0;32m--> 620\u001b[0m parser \u001b[38;5;241m=\u001b[39m \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 622\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[1;32m 623\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n", + "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1620\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 1617\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 1619\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1620\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1898\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[0;34m(self, f, engine)\u001b[0m\n\u001b[1;32m 1895\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[1;32m 1897\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1898\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mmapping\u001b[49m\u001b[43m[\u001b[49m\u001b[43mengine\u001b[49m\u001b[43m]\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1899\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[1;32m 1900\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/c_parser_wrapper.py:93\u001b[0m, in \u001b[0;36mCParserWrapper.__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 90\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdtype_backend\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpyarrow\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 91\u001b[0m \u001b[38;5;66;03m# Fail here loudly instead of in cython after reading\u001b[39;00m\n\u001b[1;32m 92\u001b[0m import_optional_dependency(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpyarrow\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 93\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reader \u001b[38;5;241m=\u001b[39m \u001b[43mparsers\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTextReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43msrc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39munnamed_cols \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reader\u001b[38;5;241m.\u001b[39munnamed_cols\n\u001b[1;32m 97\u001b[0m \u001b[38;5;66;03m# error: Cannot determine type of 'names'\u001b[39;00m\n", + "File \u001b[0;32mparsers.pyx:574\u001b[0m, in \u001b[0;36mpandas._libs.parsers.TextReader.__cinit__\u001b[0;34m()\u001b[0m\n", + "File \u001b[0;32mparsers.pyx:663\u001b[0m, in \u001b[0;36mpandas._libs.parsers.TextReader._get_header\u001b[0;34m()\u001b[0m\n", + "File \u001b[0;32mparsers.pyx:874\u001b[0m, in \u001b[0;36mpandas._libs.parsers.TextReader._tokenize_rows\u001b[0;34m()\u001b[0m\n", + "File \u001b[0;32mparsers.pyx:891\u001b[0m, in \u001b[0;36mpandas._libs.parsers.TextReader._check_tokenize_status\u001b[0;34m()\u001b[0m\n", + "File \u001b[0;32mparsers.pyx:2053\u001b[0m, in \u001b[0;36mpandas._libs.parsers.raise_parser_error\u001b[0;34m()\u001b[0m\n", + "File \u001b[0;32m<frozen codecs>:322\u001b[0m, in \u001b[0;36mdecode\u001b[0;34m(self, input, final)\u001b[0m\n", + "\u001b[0;31mUnicodeDecodeError\u001b[0m: 'utf-8' codec can't decode byte 0xaa in position 1077: invalid start byte" ] } ], @@ -760,7 +166,6 @@ "df = pd.DataFrame(data_empty)\n", "\n", "path = '../../../docs/evaluation/'\n", - "model = 'Sub_KNN'\n", "#concant all batch-files to big one\n", "for file in os.listdir(path):\n", " file_path = os.path.join(path,file_path)\n", -- GitLab From b21693cb5f1388023a1bf3ac198fb09178b50cdc Mon Sep 17 00:00:00 2001 From: anhtx <sofia.wuckert@student.uni-halle.de> Date: Tue, 4 Feb 2025 14:56:02 +0100 Subject: [PATCH 6/7] KNN --- src/models/sofia_modelle/KNN.ipynb | 207 ++++++++++++++++++++++------- 1 file changed, 156 insertions(+), 51 deletions(-) diff --git a/src/models/sofia_modelle/KNN.ipynb b/src/models/sofia_modelle/KNN.ipynb index 1468077..800bbb1 100644 --- a/src/models/sofia_modelle/KNN.ipynb +++ b/src/models/sofia_modelle/KNN.ipynb @@ -40,21 +40,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'filename' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[7], line 7\u001b[0m\n\u001b[1;32m 5\u001b[0m score \u001b[38;5;241m=\u001b[39m clf\u001b[38;5;241m.\u001b[39mdecision_scores_\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m score\u001b[38;5;241m.\u001b[39mravel()\n\u001b[0;32m----> 7\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mfilename\u001b[49m)\n", - "\u001b[0;31mNameError\u001b[0m: name 'filename' is not defined" - ] - } - ], + "outputs": [], "source": [ "def run_Sub_KNN(data, n_neighbors=10, method='largest', periodicity=1, n_jobs=1):\n", " slidingWindow = find_length_rank(data, rank=periodicity)\n", @@ -66,21 +54,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'filename' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[6], line 7\u001b[0m\n\u001b[1;32m 5\u001b[0m score \u001b[38;5;241m=\u001b[39m clf\u001b[38;5;241m.\u001b[39mdecision_scores_\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m score\u001b[38;5;241m.\u001b[39mravel()\n\u001b[0;32m----> 7\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mfilename\u001b[49m)\n", - "\u001b[0;31mNameError\u001b[0m: name 'filename' is not defined" - ] - } - ], + "outputs": [], "source": [ "# util wrapper def\n", "def run_KNN(data, slidingWindow=100, n_neighbors=10, method='largest', n_jobs=1): #,leaf_size = 30\n", @@ -92,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -103,32 +79,161 @@ ] }, { - "ename": "UnicodeDecodeError", - "evalue": "'utf-8' codec can't decode byte 0xaa in position 1077: invalid start byte", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mUnicodeDecodeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[5], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mSub_KNN\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 3\u001b[0m output_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m../../../docs/evaluation/\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m----> 5\u001b[0m \u001b[43mmain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrun_Sub_KNN\u001b[49m\u001b[43m,\u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43mdata_folders\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m../../../data/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43munsupervised\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43moutput_dir\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43moutput_path\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/run_model_wrapper.py:253\u001b[0m, in \u001b[0;36mmain\u001b[0;34m(run_model, hyperparams, model_name, data_folders, model_type, output_dir)\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mStart Processing files\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 252\u001b[0m \u001b[38;5;66;03m#reutrns [{file_name:str,train_data:list,data:list, label:list, sliding_window:int}]\u001b[39;00m\n\u001b[0;32m--> 253\u001b[0m file_data_dict_list \u001b[38;5;241m=\u001b[39m \u001b[43mpreprocess_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath_data_all\u001b[49m\u001b[43m)\u001b[49m \n\u001b[1;32m 255\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mStart Hyperparameter Tuning\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 256\u001b[0m \u001b[38;5;66;03m#find hyperparametrs for each file:\u001b[39;00m\n", - "File \u001b[0;32m~/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/run_model_wrapper.py:160\u001b[0m, in \u001b[0;36mpreprocess_data\u001b[0;34m(data_path)\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m filename \u001b[38;5;129;01min\u001b[39;00m os\u001b[38;5;241m.\u001b[39mlistdir(data_path):\n\u001b[1;32m 159\u001b[0m file_path \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(data_path, filename)\n\u001b[0;32m--> 160\u001b[0m df \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile_path\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mdropna()\n\u001b[1;32m 161\u001b[0m data \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39miloc[:, \u001b[38;5;241m0\u001b[39m:\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;241m.\u001b[39mvalues\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;28mfloat\u001b[39m)\n\u001b[1;32m 162\u001b[0m label \u001b[38;5;241m=\u001b[39m df[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mLabel\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;28mint\u001b[39m)\u001b[38;5;241m.\u001b[39mto_numpy()\n", - "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1026\u001b[0m, in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[1;32m 1013\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[1;32m 1014\u001b[0m dialect,\n\u001b[1;32m 1015\u001b[0m delimiter,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1022\u001b[0m dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[1;32m 1023\u001b[0m )\n\u001b[1;32m 1024\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[0;32m-> 1026\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:620\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 617\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 619\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[0;32m--> 620\u001b[0m parser \u001b[38;5;241m=\u001b[39m \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 622\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[1;32m 623\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n", - "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1620\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 1617\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 1619\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1620\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1898\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[0;34m(self, f, engine)\u001b[0m\n\u001b[1;32m 1895\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[1;32m 1897\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1898\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mmapping\u001b[49m\u001b[43m[\u001b[49m\u001b[43mengine\u001b[49m\u001b[43m]\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1899\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[1;32m 1900\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/pandas/io/parsers/c_parser_wrapper.py:93\u001b[0m, in \u001b[0;36mCParserWrapper.__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 90\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdtype_backend\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpyarrow\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 91\u001b[0m \u001b[38;5;66;03m# Fail here loudly instead of in cython after reading\u001b[39;00m\n\u001b[1;32m 92\u001b[0m import_optional_dependency(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpyarrow\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 93\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reader \u001b[38;5;241m=\u001b[39m \u001b[43mparsers\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTextReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43msrc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39munnamed_cols \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reader\u001b[38;5;241m.\u001b[39munnamed_cols\n\u001b[1;32m 97\u001b[0m \u001b[38;5;66;03m# error: Cannot determine type of 'names'\u001b[39;00m\n", - "File \u001b[0;32mparsers.pyx:574\u001b[0m, in \u001b[0;36mpandas._libs.parsers.TextReader.__cinit__\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32mparsers.pyx:663\u001b[0m, in \u001b[0;36mpandas._libs.parsers.TextReader._get_header\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32mparsers.pyx:874\u001b[0m, in \u001b[0;36mpandas._libs.parsers.TextReader._tokenize_rows\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32mparsers.pyx:891\u001b[0m, in \u001b[0;36mpandas._libs.parsers.TextReader._check_tokenize_status\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32mparsers.pyx:2053\u001b[0m, in \u001b[0;36mpandas._libs.parsers.raise_parser_error\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32m<frozen codecs>:322\u001b[0m, in \u001b[0;36mdecode\u001b[0;34m(self, input, final)\u001b[0m\n", - "\u001b[0;31mUnicodeDecodeError\u001b[0m: 'utf-8' codec can't decode byte 0xaa in position 1077: invalid start byte" + "name": "stdout", + "output_type": "stream", + "text": [ + "Start Hyperparameter Tuning\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/threadpoolctl.py:1214: RuntimeWarning: \n", + "Found Intel OpenMP ('libiomp') and LLVM OpenMP ('libomp') loaded at\n", + "the same time. Both libraries are known to be incompatible and this\n", + "can cause random crashes or deadlocks on Linux when loaded in the\n", + "same Python program.\n", + "Using threadpoolctl may cause crashes or deadlocks. For more\n", + "information and possible workarounds, please see\n", + " https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md\n", + "\n", + " warnings.warn(msg, RuntimeWarning)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 806_YAHOO_id_256_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 40, 'method': 'largest'}\n", + "File: 811_Exathlon_id_2_Facility_tr_10766_1st_12590.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 780_YAHOO_id_230_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 30, 'method': 'largest'}\n", + "File: 734_YAHOO_id_184_WebService_tr_500_1st_768.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n", + "File: 555_YAHOO_id_5_WebService_tr_500_1st_730.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 814_Exathlon_id_5_Facility_tr_10766_1st_12590.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 658_YAHOO_id_108_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'largest'}\n", + "File: 723_YAHOO_id_173_WebService_tr_500_1st_1214.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n", + "File: 818_Exathlon_id_9_Facility_tr_11665_1st_13484.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 549_SMAP_id_19_Sensor_tr_1998_1st_2098.csv, best hyperparameter: {'n_neighbors': 40, 'method': 'largest'}\n", + "File: 603_YAHOO_id_53_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 570_YAHOO_id_20_Synthetic_tr_500_1st_658.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'median'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 813_Exathlon_id_4_Facility_tr_10766_1st_12590.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 810_Exathlon_id_1_Facility_tr_10766_1st_12590.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n", + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File: 817_Exathlon_id_8_Facility_tr_10766_1st_12590.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 724_YAHOO_id_174_WebService_tr_500_1st_1030.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'largest'}\n", + "File: 701_YAHOO_id_151_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'median'}\n", + "File: 815_Exathlon_id_6_Facility_tr_10766_1st_12590.csv, best hyperparameter: {'n_neighbors': 30, 'method': 'mean'}\n", + "File: 672_YAHOO_id_122_WebService_tr_500_1st_857.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'largest'}\n", + "File: 680_YAHOO_id_130_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 821_Exathlon_id_12_Facility_tr_6985_1st_7085.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 649_YAHOO_id_99_WebService_tr_500_1st_1386.csv, best hyperparameter: {'n_neighbors': 30, 'method': 'median'}\n", + "File: 819_Exathlon_id_10_Facility_tr_10766_1st_12590.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'largest'}\n", + "File: 568_YAHOO_id_18_WebService_tr_500_1st_333.csv, best hyperparameter: {'n_neighbors': 50, 'method': 'median'}\n", + "File: 762_YAHOO_id_212_WebService_tr_500_1st_1055.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 657_YAHOO_id_107_WebService_tr_500_1st_1260.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 552_YAHOO_id_2_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'largest'}\n", + "File: 755_YAHOO_id_205_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 558_YAHOO_id_8_WebService_tr_500_1st_1125.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'median'}\n", + "File: 788_YAHOO_id_238_WebService_tr_500_1st_973.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'largest'}\n", + "File: 643_YAHOO_id_93_WebService_tr_500_1st_1038.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'mean'}\n", + "File: 551_YAHOO_id_1_Synthetic_tr_500_1st_893.csv, best hyperparameter: {'n_neighbors': 10, 'method': 'median'}\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/sofiawuckert/Desktop/master_bioinformatik/übungen/2_Semester/data_mining_maschinelles_lernen/data-mining/src/utils/utility.py:30: RuntimeWarning: invalid value encountered in divide\n", + " res = ((a - np.expand_dims(mns, axis=axis)) /\n" ] } ], "source": [ - "# main run model wrapper\n", + "# find . -name \"*.DS_Store\" -type f -delete\n", "model = 'Sub_KNN'\n", "output_path = '../../../docs/evaluation/'\n", "\n", -- GitLab From 3e26c460802e5c9bf2cb699a8499f4aef0bc870d Mon Sep 17 00:00:00 2001 From: anhtx <sofia.wuckert@student.uni-halle.de> Date: Tue, 4 Feb 2025 22:24:38 +0100 Subject: [PATCH 7/7] call files --- src/models/sofia_modelle/call_cnn.py | 27 +++++++++++++++++++++++ src/models/sofia_modelle/call_iforest.py | 26 ++++++++++++++++++++++ src/models/sofia_modelle/call_knn.py | 28 ++++++++++++++++++++++++ 3 files changed, 81 insertions(+) create mode 100644 src/models/sofia_modelle/call_cnn.py create mode 100644 src/models/sofia_modelle/call_iforest.py create mode 100644 src/models/sofia_modelle/call_knn.py diff --git a/src/models/sofia_modelle/call_cnn.py b/src/models/sofia_modelle/call_cnn.py new file mode 100644 index 0000000..9953690 --- /dev/null +++ b/src/models/sofia_modelle/call_cnn.py @@ -0,0 +1,27 @@ +from CNN import CNN +import sys +import pathlib +sys.path.append(str(pathlib.Path.absolute)+ '../../') +from src.utils.slidingWindows import find_length_rank +from src.run_model_wrapper import main + +#optimal hyperparameters from autors: 'POLY': {'periodicity': 1, 'power': 4} +params = { + 'window_size': [50, 100, 150], + 'num_channel': [[32, 32, 40], [16, 32, 64]] + } + +def run_CNN(data_train, data_test, window_size=100, num_channel=[32, 32, 40], lr=0.0008, n_jobs=1): + clf = CNN(window_size=window_size, num_channel=num_channel, feats=data_test.shape[1], lr=lr, batch_size=128) + clf.fit(data_train) + score = clf.decision_function(data_test) + return score.ravel() + +model = 'CNN' +output_path = '../../../docs/evaluation/' + +#writes results in .csv +main(run_CNN,params,model,data_folders = '../../../data/', model_type='semi-supervised',output_dir = output_path) + +#pip3 install -r requirements.txt +# python src/models/desi/call_poly.py \ No newline at end of file diff --git a/src/models/sofia_modelle/call_iforest.py b/src/models/sofia_modelle/call_iforest.py new file mode 100644 index 0000000..5063143 --- /dev/null +++ b/src/models/sofia_modelle/call_iforest.py @@ -0,0 +1,26 @@ +from IForest import IForest +import sys +import pathlib +sys.path.append(str(pathlib.Path.absolute)+ '../../') +from src.utils.slidingWindows import find_length_rank +from src.run_model_wrapper import main + +#optimal hyperparameters from autors: 'POLY': {'periodicity': 1, 'power': 4} +params = { + 'n_estimators': [25, 50, 100, 150, 200] + } + +def run_IForest(data, slidingWindow=100, n_estimators=100, max_features=1, n_jobs=1): + clf = IForest(slidingWindow=slidingWindow, n_estimators=n_estimators, max_features=max_features, n_jobs=n_jobs) + clf.fit(data) + score = clf.decision_scores_ + return score.ravel() + +model = 'IForest' +output_path = '../../../docs/evaluation/' + +#writes results in .csv +main(run_IForest,params,model,data_folders = '../../../data/', model_type='unsupervised',output_dir = output_path) + +#pip3 install -r requirements.txt +# python src/models/desi/call_poly.py \ No newline at end of file diff --git a/src/models/sofia_modelle/call_knn.py b/src/models/sofia_modelle/call_knn.py new file mode 100644 index 0000000..efa40fa --- /dev/null +++ b/src/models/sofia_modelle/call_knn.py @@ -0,0 +1,28 @@ +from KNN import KNN +import sys +import pathlib +sys.path.append(str(pathlib.Path.absolute)+ '../../') +from src.utils.slidingWindows import find_length_rank +from src.run_model_wrapper import main + +#optimal hyperparameters from autors: 'POLY': {'periodicity': 1, 'power': 4} +params = { + 'n_neighbors': [10, 20, 30, 40, 50], + 'method': ['largest', 'mean', 'median'] + } + +def run_Sub_KNN(data, n_neighbors=10, method='largest', periodicity=1, n_jobs=1): + slidingWindow = find_length_rank(data, rank=periodicity) + clf = KNN(slidingWindow=slidingWindow, n_neighbors=n_neighbors,method=method, n_jobs=n_jobs) + clf.fit(data) + score = clf.decision_scores_ + return score.ravel() + +model = 'Sub_KNN' +output_path = '../../../docs/evaluation/' + +#writes results in .csv +main(run_Sub_KNN,params,model,data_folders = '../../../data/', model_type='unsupervised',output_dir = output_path) + +#pip3 install -r requirements.txt +# python src/models/desi/call_poly.py \ No newline at end of file -- GitLab