diff --git a/docs/Dataset info.txt b/docs/data/Dataset info.txt
similarity index 100%
rename from docs/Dataset info.txt
rename to docs/data/Dataset info.txt
diff --git a/docs/Datensatz.md b/docs/data/Datensatz.md
similarity index 100%
rename from docs/Datensatz.md
rename to docs/data/Datensatz.md
diff --git a/docs/evaluation/run_Sub_PCA3.csv b/docs/evaluation/run_Sub_PCA3.csv
new file mode 100644
index 0000000000000000000000000000000000000000..f0e714f6d4bbf178292724b802729a75f6aa02ac
--- /dev/null
+++ b/docs/evaluation/run_Sub_PCA3.csv
@@ -0,0 +1,51 @@
+params,file_name,duration,group,point anomaly,seq anomaly,AUC-PR,AUC-ROC,VUS-PR,VUS-ROC,Standard-F1,PA-F1,Event-based-F1,R-based-F1,Affiliation-F,Recall,Precision
+"{'periodicity': 1, 'n_components': 0.75}",224_LTDB_id_9_Medical_tr_4456_1st_4556.csv,101.95554518699646,LTDB,False,True,0.6931952732860769,0.8408107342835561,0.7242651255345304,0.9077673746787842,0.6761440000235509,0.9273921533818569,0.8712476587517366,0.4740390247901641,0.9302260076032931,0.08286403861625101,0.9429577464788732
+"{'periodicity': 1, 'n_components': 0.25}",210_SMD_id_33_Facility_tr_5925_1st_17580.csv,6.3654913902282715,SMD,False,False,0.10580911128447161,0.952443129261249,0.12382153295958935,0.9610991665156456,0.2804635150397183,0.615678776290631,0.31698113207547135,0.3894628099173553,0.6941993012221046,0.031055900621118012,0.025510204081632654
+"{'periodicity': 1, 'n_components': 0.75}",223_LTDB_id_8_Medical_tr_4456_1st_4556.csv,143.71398854255676,LTDB,False,True,0.27089165127507064,0.418663249384865,0.3058611106735742,0.5156220573685341,0.29524675327030697,0.8678746356561194,0.7278040168302217,0.30819813406819624,0.8102144869072894,0.006436041834271922,0.48826291079812206
+"{'periodicity': 1, 'n_components': 0.25}",203_SMD_id_26_Facility_tr_7174_1st_21230.csv,5.8138649463653564,SMD,False,True,0.7315232243568999,0.973967515707287,0.5303150761772312,0.9593409799565055,0.7428524734987381,0.7777777777777778,0.4999999999999996,0.49001917393258265,0.8201419879806882,0.6111111111111112,0.3611940298507463
+"{'periodicity': 1, 'n_components': None}",242_SVDB_id_6_Medical_tr_10726_1st_10826.csv,32.02355456352234,SVDB,False,True,0.7036081536355089,0.9547193654981933,0.6769273905227109,0.9847054498065262,0.6843482709045831,0.8658578856152513,0.821919045898084,0.6947880912499647,0.9418662860841549,0.6754201680672269,0.6326664480157429
+"{'periodicity': 1, 'n_components': 0.25}",206_SMD_id_29_Facility_tr_6250_1st_21230.csv,5.136412620544434,SMD,False,False,0.0022809950321001186,0.43171670178969446,0.002912520979645565,0.4721625387155401,0.008527597754464636,0.010522120366679951,0.008499678042498382,0.014424447026327903,0.9157129997061075,0.0,0.0
+"{'periodicity': 2, 'n_components': 0.25}",231_MGAB_id_7_Synthetic_tr_25000_1st_35544.csv,24.127729892730713,MGAB,False,True,0.008616796454282698,0.5875743486973948,0.0045498620060225115,0.634931323748131,0.037557539323917345,0.3041825095057034,0.17021276595744633,0.0632768361581921,0.7207904914469775,0.005,0.2
+"{'periodicity': 1, 'n_components': None}",221_LTDB_id_6_Medical_tr_500_1st_26.csv,174.1980323791504,LTDB,False,True,0.39133496610404495,0.5573200866036769,0.43949148888769346,0.6249895319419474,0.48144742867706547,0.883795184252153,0.6414645328330003,0.44179568557408216,0.798517444073239,0.015967052114683987,0.6605504587155964
+"{'periodicity': 1, 'n_components': None}",244_SVDB_id_8_Medical_tr_17803_1st_17903.csv,58.1106390953064,SVDB,False,True,0.5437246649504163,0.6925866287424469,0.47012696482381966,0.7534200072573689,0.5927289327390768,0.8010892730286526,0.7305865590121106,0.4706479419816007,0.8339650080228258,0.40395838619639685,0.9476190476190476
+"{'periodicity': 1, 'n_components': 0.25}",205_SMD_id_28_Facility_tr_5925_1st_17580.csv,5.234915494918823,SMD,False,False,0.11322553170001487,0.9467036843363335,0.13911312564599007,0.9596655207659311,0.3208515225117747,0.6363636363636364,0.3643724696356272,0.4467353951890034,0.7008272036148405,0.0,0.0
+"{'periodicity': 2, 'n_components': 0.5}",225_MGAB_id_1_Synthetic_tr_25000_1st_38478.csv,27.615166187286377,MGAB,False,True,0.0027454729370578806,0.5517808116232464,0.0036315813303383236,0.6199588642291249,0.016222359886970707,0.13029315960912052,0.03669724770642172,0.026415094339622643,0.6672967960317953,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",201_SMD_id_24_Facility_tr_7174_1st_21230.csv,6.717716455459595,SMD,False,True,0.006700392298842188,0.5255731219132159,0.009284437219746023,0.5254199090892304,0.02046014031110786,0.027166882276843468,0.0203787794883154,0.05143542517103102,0.6668760625355047,0.0,0.0
+"{'periodicity': 3, 'n_components': 0.75}",230_MGAB_id_6_Synthetic_tr_25000_1st_42441.csv,22.35783553123474,MGAB,False,True,0.10229973721873405,0.5349027054108216,0.006339670139122611,0.5708988658121096,0.18099375526295902,0.18181818181818182,0.18181818181818163,0.4944222171335658,0.6757893739125153,0.1,0.5128205128205128
+"{'periodicity': 1, 'n_components': 0.25}",219_LTDB_id_4_Medical_tr_3618_1st_3718.csv,94.24250864982605,LTDB,False,True,0.8314294074844796,0.9648591620108992,0.9315963429053427,0.9893788428639174,0.8123278318353089,0.946080010307286,0.9251852697985955,0.7300761689375751,0.9484527897810004,0.11474189838305933,0.8631043256997456
+"{'periodicity': 1, 'n_components': None}",234_SED_id_1_Medical_tr_3740_1st_3840.csv,13.439441442489624,SED,False,True,0.024639513090149945,0.01723600241609328,0.035913881362178234,0.09065724714701104,0.09160654991202268,0.09176065761804626,0.0915207329293314,0.28176366457439267,0.6701143912014044,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.5}",245_SVDB_id_9_Medical_tr_12607_1st_12707.csv,122.3690128326416,SVDB,False,True,0.7885896389838972,0.9391329734593149,0.858979040367276,0.9782706360485836,0.773065156936741,0.9154540555106441,0.8940547173486572,0.7002932460098932,0.9385788670357785,0.17446779934188436,0.9235691432634199
+"{'periodicity': 1, 'n_components': None}",213_SMD_id_36_Facility_tr_5925_1st_17580.csv,3.0254178047180176,SMD,False,False,0.9328886603981721,0.9995485800190066,0.973465771574852,0.999889193483643,0.9044894276562249,1.0,0.9999999999999996,0.9019191115927851,0.9994625252973606,1.0,0.7219730941704036
+"{'periodicity': 2, 'n_components': 0.5}",229_MGAB_id_5_Synthetic_tr_25000_1st_33098.csv,25.99569272994995,MGAB,False,True,0.022024790101132542,0.5771203406813628,0.00514254440125066,0.6673358614330757,0.039023914342508015,0.18181818181818182,0.18181818181818163,0.06889952153110049,0.6685751970054096,0.0,0.0
+"{'periodicity': 2, 'n_components': 0.25}",232_MGAB_id_8_Synthetic_tr_25000_1st_32708.csv,27.599674463272095,MGAB,False,True,0.04224821796922215,0.5026451903807615,0.004609365431910683,0.5533010931938839,0.07692233728521841,0.18181818181818182,0.18181818181818163,0.20459362131699882,0.6683672259382775,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.75}",241_SVDB_id_5_Medical_tr_11587_1st_11687.csv,71.082932472229,SVDB,False,True,0.8132711886887715,0.8676026319703829,0.8142543211224857,0.8832869253061612,0.8242619085722103,0.9937963383265245,0.9908420817511722,0.5820490828953071,0.981445608508147,0.021721477872513197,1.0
+"{'periodicity': 1, 'n_components': 0.5}",226_MGAB_id_2_Synthetic_tr_20000_1st_45134.csv,19.61672592163086,MGAB,False,True,0.0024267754211718326,0.5970583342277557,0.003765590818776685,0.6178369209080727,0.007375348415057012,0.016333197223356473,0.007194963525532116,0.010335917312661501,0.6668586827187701,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",235_SED_id_2_Medical_tr_2499_1st_3840.csv,5.831834316253662,SED,False,True,0.019606987156960354,0.012814450078003123,0.028040225131610357,0.0799516090808896,0.07396634923478186,0.07491221225126804,0.07378865234563137,0.3510919980167112,0.669779515043625,0.0,0.0
+"{'periodicity': 3, 'n_components': None}",215_SMD_id_38_Facility_tr_5925_1st_17580.csv,1.9812960624694824,SMD,False,False,0.8045317608841378,0.9607612877421138,0.7605409697951906,0.9644486462827021,0.7999951854885082,1.0,0.9999999999999996,0.6332767402376911,0.9997705951767581,0.8260869565217391,0.5095785440613027
+"{'periodicity': 1, 'n_components': None}",236_SED_id_3_Medical_tr_3740_1st_3840.csv,25.625973224639893,SED,False,True,0.01873606747247649,0.010879668944760366,0.026854721158866248,0.0685998786031083,0.07098868137342569,0.07106819553409777,0.07094456099737147,0.35177568542982607,0.6687211249685547,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.75}",217_LTDB_id_2_Medical_tr_500_1st_266.csv,104.68904781341553,LTDB,False,True,0.165615374902141,0.5564131393072559,0.22034543408223464,0.5699282100804453,0.2764008375299757,0.36453697612321506,0.28768182769694367,0.3346832777875731,0.7204983708191108,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",202_SMD_id_25_Facility_tr_6250_1st_21230.csv,5.169294118881226,SMD,False,False,0.0022946138213774843,0.43037315482570954,0.0029279265194517836,0.46368647520029915,0.008758455695954005,0.010121147063333844,0.008722082727633133,0.01691542288557214,0.9125626063399876,0.0,0.0
+"{'periodicity': 2, 'n_components': 0.75}",233_MGAB_id_9_Synthetic_tr_25000_1st_41300.csv,24.39292287826538,MGAB,False,True,0.03962073592960159,0.46820856713426856,0.009074853694442138,0.612897608048629,0.11718408213093782,0.17937219730941703,0.1666666666666664,0.116805038648726,0.6666609381931233,0.065,0.34210526315789475
+"{'periodicity': 1, 'n_components': 0.25}",222_LTDB_id_7_Medical_tr_3618_1st_3718.csv,70.58428883552551,LTDB,False,True,0.9395362703951824,0.9731478801158067,0.9792049265910931,0.995694927539532,0.9137102624777713,0.9802874049027895,0.974716801711525,0.8872263603882098,0.9782636256055495,0.15438738921588527,0.9802405498281787
+"{'periodicity': 3, 'n_components': None}",212_SMD_id_35_Facility_tr_5925_1st_17580.csv,2.751281499862671,SMD,False,False,0.9352630348115477,0.9988874120047638,0.9082102925573098,0.9991617747043863,0.9118491056343243,1.0,0.9999999999999996,0.915547463696919,0.9998308888439115,0.9316770186335404,0.8875739644970414
+"{'periodicity': 3, 'n_components': None}",209_SMD_id_32_Facility_tr_5925_1st_17580.csv,2.5272674560546875,SMD,False,False,0.8133682893795908,0.9616493529998718,0.7817963120467334,0.9650964454635006,0.761533745887189,1.0,0.9999999999999996,0.6168384879725086,0.9997499494787856,0.8633540372670807,0.6043478260869565
+"{'periodicity': 3, 'n_components': 0.25}",218_LTDB_id_3_Medical_tr_500_1st_266.csv,100.60284543037415,LTDB,False,True,0.13313561765758705,0.41421392363617454,0.17549487036934228,0.37954147965111307,0.2587020494871929,0.25932519942050236,0.25869139349614706,0.5191201232097974,0.6867314394461962,0.0027596419196338428,0.09557109557109557
+"{'periodicity': 1, 'n_components': None}",243_SVDB_id_7_Medical_tr_11393_1st_11493.csv,108.32308268547058,SVDB,False,True,0.30100842981338943,0.6212636307459712,0.2822860430010954,0.6932347994309178,0.37827131907889405,0.9361235338789976,0.7968850126532778,0.38605705588163103,0.9562785222088748,0.12709572742022715,0.7428872497365648
+"{'periodicity': 1, 'n_components': None}",197_SMD_id_20_Facility_tr_5000_1st_15144.csv,4.3297765254974365,SMD,False,True,0.6874880267264082,0.9776483403801303,0.7578887675575475,0.984327029928256,0.6068022484211976,0.9659574468085106,0.9168765743073043,0.7928913370866076,0.9644244294110982,0.32709251101321585,0.8366197183098592
+"{'periodicity': 3, 'n_components': 0.5}",227_MGAB_id_3_Synthetic_tr_25000_1st_44340.csv,28.334885120391846,MGAB,False,True,0.013561975724528264,0.5814422845691383,0.005981013643120703,0.6733297647708948,0.055044356577341906,0.17699115044247787,0.1599999999999997,0.06498194945848376,0.6717604636763851,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",214_SMD_id_37_Facility_tr_5925_1st_17580.csv,5.387251377105713,SMD,False,False,0.01753915738632342,0.780460823024899,0.020889915740638188,0.8087620387408696,0.06211843419863778,0.12534059945504086,0.062405331717661244,0.23931623931623933,0.6666701933631677,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",208_SMD_id_31_Facility_tr_5000_1st_15144.csv,4.249610662460327,SMD,False,True,0.6676377846391301,0.9771182731240615,0.7379767148603048,0.9835111625779432,0.6151481550776507,0.9522810697430519,0.8861689106487143,0.7648775010580636,0.9647036406231998,0.30066079295154186,0.7844827586206896
+"{'periodicity': 1, 'n_components': None}",246_SVDB_id_10_Medical_tr_20100_1st_68460.csv,13.366090059280396,SVDB,False,True,0.06849091977090527,0.7644801303133617,0.08962621944005075,0.8326207105991363,0.18021808941731368,0.25415676959619954,0.1864406779661012,0.20265499170273704,0.8619849501548417,0.2205607476635514,0.08932626797880394
+"{'periodicity': 1, 'n_components': 0.75}",239_SVDB_id_3_Medical_tr_50000_1st_106634.csv,56.09667730331421,SVDB,False,True,0.5302490091520617,0.8452584151828624,0.4580267417121418,0.8766545699476143,0.5296792119682299,0.8386746333514394,0.7800739306460125,0.7138670068760513,0.9444771224062601,0.3542677704824436,0.8820184790334044
+"{'periodicity': 1, 'n_components': 0.25}",207_SMD_id_30_Facility_tr_7174_1st_21230.csv,6.337101221084595,SMD,False,True,0.1010660331099212,0.9071756586143561,0.07842169899150662,0.850619723558611,0.29473230810298967,0.4421052631578947,0.2698145025295105,0.2820512820512821,0.6879808981478636,0.0,0.0
+"{'periodicity': 2, 'n_components': None}",211_SMD_id_34_Facility_tr_5925_1st_17580.csv,1.847517967224121,SMD,False,False,0.9302221892452633,0.999610053341959,0.8813744348597918,0.9995301667752732,0.9252823842584524,1.0,0.9999999999999996,0.9201495788556492,0.9994780649421593,0.9254658385093167,0.861271676300578
+"{'periodicity': 2, 'n_components': 0.25}",238_SVDB_id_2_Medical_tr_25000_1st_71963.csv,15.674978256225586,SVDB,False,False,0.8903665595053488,0.9945561731029571,0.8158875149737453,0.9974282636148147,0.8728130318428021,1.0,0.9999999999999996,0.6539227399442453,0.9999051944151195,0.8284023668639053,0.6534422403733956
+"{'periodicity': 1, 'n_components': 0.5}",240_SVDB_id_4_Medical_tr_18462_1st_18562.csv,47.69154739379883,SVDB,False,True,0.4898009183582106,0.750288577618244,0.46189145018829797,0.8285847874766193,0.5508543328473491,0.825756350105161,0.7396618771081099,0.40437483698906934,0.8344369284986127,0.19353764157228515,1.0
+"{'periodicity': 1, 'n_components': None}",198_SMD_id_21_Facility_tr_5925_1st_17580.csv,2.151216745376587,SMD,False,False,0.8348379883559753,0.9981581748174665,0.8116696434190227,0.9986329552789222,0.8424387361882429,1.0,0.9999999999999996,0.8498402555910544,0.9993674155579475,0.7453416149068323,0.8695652173913043
+"{'periodicity': 2, 'n_components': 0.5}",220_LTDB_id_5_Medical_tr_500_1st_26.csv,175.49703931808472,LTDB,False,True,0.8444294234400469,0.8577473060879282,0.8643569293095935,0.8945848948153265,0.7747561399564302,0.9669034941494441,0.9562087252875872,0.8001264551281746,0.9526315555222189,0.013052431490575004,1.0
+"{'periodicity': 2, 'n_components': None}",237_SVDB_id_1_Medical_tr_11587_1st_11687.csv,52.2216694355011,SVDB,False,True,0.9559292524404097,0.9943738732181099,0.8566535196182951,0.9877887712129285,0.867200672913463,0.8880361173814898,0.8672031257267775,0.5289728453500337,0.9091574771755173,0.7146772228989038,1.0
+"{'periodicity': 3, 'n_components': 0.25}",199_SMD_id_22_Facility_tr_5925_1st_17580.csv,3.1566827297210693,SMD,False,False,0.5956999402067911,0.934477088918919,0.5959323677488267,0.9384451553069098,0.7481433336386645,1.0,0.9999999999999996,0.6878571817340663,0.9992402192588583,0.6583850931677019,0.30994152046783624
+"{'periodicity': 3, 'n_components': None}",200_SMD_id_23_Facility_tr_7174_1st_21230.csv,3.9189844131469727,SMD,False,True,0.930847988085623,0.9794970549058556,0.5469263981935665,0.7939006950059392,0.887635512589003,0.9846153846153847,0.7999999999999995,0.5772941901047013,0.8919237348518005,0.9696969696969697,0.3958762886597938
+"{'periodicity': 1, 'n_components': None}",204_SMD_id_27_Facility_tr_5000_1st_15144.csv,6.250260829925537,SMD,False,True,0.6534559309798793,0.9752496836555846,0.7835984903319327,0.9860467635709116,0.5888639784448273,0.9048330842052815,0.7928286852589637,0.7496233343010703,0.9595220695759011,0.368942731277533,0.7701149425287356
+"{'periodicity': 2, 'n_components': 0.25}",228_MGAB_id_4_Synthetic_tr_25000_1st_38948.csv,23.391931533813477,MGAB,False,True,0.010560176486955765,0.6234871743486975,0.00686554140317505,0.7044173216570216,0.04672774918039528,0.3053435114503817,0.1923076923076918,0.07664233576642336,0.6677442684259269,0.0,0.0
+"{'periodicity': 3, 'n_components': 0.25}",216_LTDB_id_1_Medical_tr_500_1st_266.csv,108.40329217910767,LTDB,False,True,0.13513384338844195,0.4045578769824476,0.17324435147271855,0.35609213970992964,0.2587020494871929,0.2593138837739011,0.25869139349614706,0.5634953032416108,0.6867330472617177,0.00060577505552938,0.0661764705882353
diff --git a/docs/evaluation/run_Sub_PCA6.csv b/docs/evaluation/run_Sub_PCA6.csv
new file mode 100644
index 0000000000000000000000000000000000000000..3727f3573aa8bc745e8f70bb6c52af227e66df7d
--- /dev/null
+++ b/docs/evaluation/run_Sub_PCA6.csv
@@ -0,0 +1,51 @@
+params,file_name,duration,group,point anomaly,seq anomaly,AUC-PR,AUC-ROC,VUS-PR,VUS-ROC,Standard-F1,PA-F1,Event-based-F1,R-based-F1,Affiliation-F,Recall,Precision
+"{'periodicity': 2, 'n_components': 0.5}",542_SMAP_id_12_Sensor_tr_1908_1st_4690.csv,1.9322049617767334,SMAP,False,False,0.2989912673718888,0.9949497307230373,0.6797690214811488,0.9983120325716527,0.5166628347506422,0.5166666666666667,0.5166666666666663,0.5166666666666667,0.9974258454562624,1.0,0.34065934065934067
+"{'periodicity': 1, 'n_components': None}",445_UCR_id_143_Environment_tr_6166_1st_19280.csv,6.173452854156494,UCR,False,False,0.018308816471984065,0.657609560533725,0.020762089185306684,0.6595253996321098,0.08626042208911346,0.21011162179908077,0.08896396396396386,0.11438326931284679,0.6710441605218191,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.5}",534_SMAP_id_4_Sensor_tr_1968_1st_4370.csv,2.336832046508789,SMAP,False,False,0.3798678840831252,0.9953455496988518,0.7712180263136629,0.9956933459673875,0.6442907995449999,0.5795454545454546,0.579545454545454,0.5795454545454546,0.99659806731076,1.0,0.408
+"{'periodicity': 1, 'n_components': None}",499_UCR_id_197_Environment_tr_2046_1st_5703.csv,2.6847593784332275,UCR,False,False,0.006914580846696543,0.7945976307189543,0.0070511331835356635,0.7981157901855133,0.017320186385726036,0.05357142857142857,0.017232640648758218,0.06008583690987124,0.811009487230823,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.5}",449_UCR_id_147_Sensor_tr_2847_1st_9330.csv,4.860529899597168,UCR,False,False,0.0007786273727302436,0.39494638776586394,0.008758665606523898,0.6588232843346873,0.0026968446968287153,0.003097413659594239,0.0026326181387389728,0.005511160099200882,0.6666316174829977,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",541_SMAP_id_11_Sensor_tr_1832_1st_5300.csv,2.962644100189209,SMAP,False,False,0.8084033118687631,0.8306240400780391,0.8211935670435195,0.8607313970740843,0.8724950720278338,1.0,0.9999999999999996,0.8943731490621916,0.9983798293094897,0.578125,1.0
+"{'periodicity': 1, 'n_components': None}",473_UCR_id_171_HumanActivity_tr_2617_1st_7290.csv,3.8434910774230957,UCR,False,False,0.004655021792924354,0.9271649780156758,0.01257775145498839,0.9613764861247854,0.012930779211341432,0.02526315789473684,0.012793176972281436,0.01909237773535027,0.6668135480609921,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",546_SMAP_id_16_Sensor_tr_2117_1st_4770.csv,3.456660270690918,SMAP,False,False,0.007704208064954425,0.09536109010125648,0.009197809115732617,0.11884354010229198,0.028172015612572498,0.033789444289304665,0.027945971122496478,0.21776729559748426,0.6667048070392444,0.0,0.0
+"{'periodicity': 3, 'n_components': 0.25}",437_UCR_id_135_Medical_tr_2499_1st_8000.csv,3.432098627090454,UCR,False,False,0.0015169683213271945,0.20822219993983754,0.0016527602413746604,0.23156050947105983,0.004992461433160541,0.00882768361581921,0.004991514425476683,0.05108975861260839,0.8357404365140623,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",419_UCR_id_117_Facility_tr_3000_1st_6168.csv,6.081723690032959,UCR,False,False,0.01709350581794827,0.8952446850573315,0.025111784408447732,0.8994738118689628,0.05941873474191881,0.06562266964951528,0.058226134055517874,0.05506479955416958,0.7021187803857412,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",467_UCR_id_165_Environment_tr_6166_1st_19280.csv,5.879677772521973,UCR,False,False,0.018440681222998162,0.6598438711388582,0.021758172269258982,0.6605551900259448,0.08888730490994755,0.1982651796778191,0.0865892291446673,0.18034205097491185,0.6818356642372609,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",536_SMAP_id_6_Sensor_tr_2160_1st_5600.csv,4.295377969741821,SMAP,False,False,0.02218998026054548,0.7628922161451418,0.13355144219060086,0.8276922621606201,0.06431010664525882,0.28133704735376047,0.06426980591791275,0.06426980591791281,0.9797083989630498,0.0,0.0
+"{'periodicity': 2, 'n_components': None}",540_SMAP_id_10_Sensor_tr_2051_1st_4575.csv,3.76650333404541,SMAP,False,False,0.6034546587239668,0.9799863764419718,0.5626773104511169,0.979583599558643,0.5890362094606899,1.0,0.9999999999999996,0.6029035012809565,0.9953353893410275,0.44086021505376344,0.7008547008547008
+"{'periodicity': 1, 'n_components': 0.75}",439_UCR_id_137_HumanActivity_tr_48750_1st_110800.csv,57.170063972473145,UCR,True,False,2.6250164063525397e-05,0.8046451520264206,0.000270529108530914,0.8089623131201605,5.249842505052963e-05,4.975619464623345e-05,4.97561946462334e-05,0.00013718362027573906,0.6667285651288042,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",544_SMAP_id_14_Sensor_tr_1978_1st_4450.csv,4.375912189483643,SMAP,False,False,0.007668247504244794,0.15135781687108102,0.009506578530248243,0.1962001633738999,0.027663278595405853,0.058652575957727875,0.027421164153059924,0.3571655122538851,0.714524595825048,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",421_UCR_id_119_HumanActivity_tr_48750_1st_130700.csv,73.62400555610657,UCR,False,False,0.008013283174984958,0.5664354573262979,0.008438703577574539,0.583791828608284,0.027006480040929322,0.5894105894105894,0.03639010189228526,0.061110567035549894,0.9659948597889761,0.017796610169491526,0.012237762237762238
+"{'periodicity': 1, 'n_components': 0.75}",531_SMAP_id_1_Sensor_tr_1811_1st_4510.csv,2.255295991897583,SMAP,False,False,0.6224892771396484,0.9964891598285427,0.8654013325752927,0.997134883847287,0.7881725438909614,0.7864077669902912,0.7864077669902907,0.7864077669902912,0.9974013262426185,1.0,0.648
+"{'periodicity': 1, 'n_components': 0.25}",430_UCR_id_128_HumanActivity_tr_12500_1st_46500.csv,19.84689450263977,UCR,False,False,0.006085139789369535,0.5189920858484238,0.00853382531415016,0.605685693136429,0.014565900460519969,0.11072153533862336,0.014744073050180096,0.034106412005457026,0.718940575705268,0.0,0.0
+"{'periodicity': 2, 'n_components': None}",429_UCR_id_127_Medical_tr_14825_1st_29000.csv,22.837456226348877,UCR,False,False,0.0022797659326705953,0.5948126752474578,0.00460183148387237,0.6925018109500728,0.008974610132657672,0.011526048870447211,0.00893159977388354,0.29721038455032955,0.8400395112850134,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",537_SMAP_id_7_Sensor_tr_2077_1st_5394.csv,2.310974359512329,SMAP,False,False,0.9999873804295701,0.9999995567668625,0.9980377653307482,0.999963200735399,0.9982188011065379,1.0,0.9999999999999996,0.9982238010657194,0.999986831282064,0.9252669039145908,1.0
+"{'periodicity': 3, 'n_components': 0.75}",538_SMAP_id_8_Sensor_tr_2007_1st_3650.csv,1.7179269790649414,SMAP,False,True,0.9490836107748845,0.9762645508445403,0.9743854082818807,0.9912810176441269,0.9420510748103612,1.0,0.9999999999999996,0.95143430286939,0.998983053385486,0.8059701492537313,0.9818181818181818
+"{'periodicity': 2, 'n_components': 0.5}",493_UCR_id_191_Sensor_tr_2847_1st_9330.csv,3.7592408657073975,UCR,False,False,0.0011560333191420226,0.6053788011952892,0.18699056498147945,0.9280717935141026,0.0030408697439689696,0.01288659793814433,0.0029722098380145605,0.00718132854578097,0.994763694635133,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",452_UCR_id_150_Facility_tr_10000_1st_35774.csv,10.108298063278198,UCR,False,False,0.9262636617090261,0.9997726817042607,0.7916856409179823,0.9995795969548354,0.8457093877834684,1.0,0.9999999999999996,0.878680659670165,0.9999019903950581,1.0,0.36496350364963503
+"{'periodicity': 2, 'n_components': 0.25}",496_UCR_id_194_Environment_tr_2046_1st_5391.csv,2.916048765182495,UCR,True,False,0.00046511627906976747,0.737382378100941,0.0007489881133081848,0.7533408634399642,0.0009297907993946131,0.0008869179600886918,0.0008869179600886908,0.007117437722419929,0.8188244199664312,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",530_UCR_id_228_HumanActivity_tr_16250_1st_38500.csv,28.170411586761475,UCR,False,False,0.016276096477074023,0.5602426584234931,0.018925300249276432,0.6523064934206168,0.06982166797908841,0.9404388714733543,0.3448275862068963,0.192090395480226,0.7899151061306622,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",495_UCR_id_193_Environment_tr_2046_1st_6520.csv,2.6371676921844482,UCR,False,False,0.0024474155819239622,0.40371221405228763,0.0028172119367344374,0.4253924377455535,0.007708290003978007,0.0111085396898866,0.007634854771784223,0.03870967741935484,0.7489036673539016,0.0,0.0
+"{'periodicity': 2, 'n_components': None}",525_UCR_id_223_Facility_tr_50000_1st_250720.csv,130.60528302192688,UCR,False,False,0.006646755441736761,0.8112587725839715,0.007340941709119016,0.8253281356781529,0.024145379050713775,0.18851508120649652,0.025634106853750643,0.053977655135280654,0.6674430702042501,0.0,0.0
+"{'periodicity': 3, 'n_components': None}",517_UCR_id_215_Facility_tr_7482_1st_24005.csv,9.694491147994995,UCR,False,False,0.0018290214370025363,0.35750899598483243,0.00193067658036111,0.363642502426618,0.00619162249956243,0.008180423791399194,0.006146507040961417,0.031262110838392976,0.6666980309490982,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.75}",516_UCR_id_214_HumanActivity_tr_2108_1st_4702.csv,3.1548187732696533,UCR,False,False,0.0021910765766547844,0.838495312685416,0.003999372602369567,0.8404538237264444,0.007225361533428074,0.007352941176470588,0.007067137809187271,0.0371900826446281,0.667483642209405,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",426_UCR_id_124_Sensor_tr_2827_1st_4711.csv,5.256867408752441,UCR,False,False,0.2698922042075044,0.4563363614848259,0.41342151325417237,0.5999952473575935,0.44692241945507594,0.8484848484848485,0.6666666666666662,0.509654797767791,0.995398447002389,0.3673469387755102,0.4931506849315068
+"{'periodicity': 3, 'n_components': 0.75}",547_SMAP_id_17_Sensor_tr_2133_1st_5400.csv,3.028170347213745,SMAP,False,False,0.701465559360925,0.9250604843578856,0.7087726662949463,0.9312706018344478,0.7007253748497546,1.0,0.9999999999999996,0.7712031558185405,0.9956780855850148,0.4157303370786517,1.0
+"{'periodicity': 3, 'n_components': 0.5}",533_SMAP_id_3_Sensor_tr_2052_1st_5300.csv,2.8473188877105713,SMAP,False,False,1.0,1.0,1.0,1.0,0.9999950000249999,1.0,0.9999999999999996,1.0,0.9999999999999996,0.01694915254237288,1.0
+"{'periodicity': 1, 'n_components': 0.25}",436_UCR_id_134_Medical_tr_1875_1st_4526.csv,4.164120197296143,UCR,False,False,0.0038675483312459995,0.506348993887476,0.0066173477408883515,0.6303229901628324,0.009983261730607072,0.025839793281653745,0.009973404255319137,0.06260296540362438,0.7928203597852213,0.0,0.0
+"{'periodicity': 2, 'n_components': 0.75}",432_UCR_id_130_Facility_tr_23000_1st_26970.csv,25.66312599182129,UCR,False,False,0.003967859613733806,0.5436873137041076,0.006185813366268187,0.6623251097573294,0.013020936077282391,0.04645401052957572,0.01283245368933042,0.01564858209548018,0.7429784875009748,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",539_SMAP_id_9_Sensor_tr_1857_1st_4270.csv,3.680722236633301,SMAP,False,False,0.005928611271939479,0.32132704584380634,0.008442218557289029,0.40656038034968506,0.02151274786366511,0.027620556939098935,0.02142982610223079,0.019107282693813624,0.7249492513820837,0.0,0.0
+"{'periodicity': 3, 'n_components': 0.25}",463_UCR_id_161_Environment_tr_2046_1st_6006.csv,2.9184703826904297,UCR,False,False,0.004342537949609039,0.37385283513602097,0.005024232480688852,0.41610137842072076,0.013540062977258833,0.031883095317170373,0.013507809202195003,0.023258552670317376,0.8503522082422569,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.5}",471_UCR_id_169_Facility_tr_10000_1st_35774.csv,14.671133995056152,UCR,False,False,0.005039546498380405,0.5969583959899749,0.007330816691935049,0.6640259961030803,0.02516307958801427,0.14738393515106854,0.025799214806505856,0.025747822794396066,0.7212781396458102,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.75}",494_UCR_id_192_Facility_tr_22500_1st_72150.csv,36.16772437095642,UCR,False,False,0.0053309250033189304,0.46788628551153016,0.00679976553300449,0.5348992794320835,0.030786274421421338,0.5437352245862884,0.03773584905660374,0.044963503649635035,0.6988291380763176,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",548_SMAP_id_18_Sensor_tr_2094_1st_5600.csv,3.9509801864624023,SMAP,False,False,0.003774924264129874,0.3383206285572154,0.0054985731535941215,0.3487278916436886,0.01449004876286632,0.014737598849748382,0.014391014391014376,0.014614150775262878,0.6666583604855878,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",474_UCR_id_172_Environment_tr_2046_1st_6520.csv,2.542681932449341,UCR,False,False,0.0022231207824646108,0.33474775326797385,0.0026343156874077856,0.35909326800607816,0.007518722087919048,0.009478672985781991,0.007402837754472539,0.026097763048881527,0.7687485676082214,0.0,0.0
+"{'periodicity': 3, 'n_components': None}",535_SMAP_id_5_Sensor_tr_1113_1st_1890.csv,0.8136067390441895,SMAP,False,False,0.9410293813884578,0.9847754461225483,0.9215808145674463,0.9886767525786923,0.9397540368969677,1.0,0.9999999999999996,0.9444956666052,0.9997781217043534,0.9024390243902439,0.925
+"{'periodicity': 1, 'n_components': None}",543_SMAP_id_13_Sensor_tr_2020_1st_4550.csv,3.504760265350342,SMAP,False,False,0.45192355635307013,0.9747128229999356,0.4074390013954191,0.9758256661483408,0.41462977175942023,1.0,0.9999999999999996,0.5584415584415585,0.9979682960332887,0.27927927927927926,0.6739130434782609
+"{'periodicity': 3, 'n_components': 0.25}",500_UCR_id_198_Facility_tr_7482_1st_23357.csv,11.105804920196533,UCR,False,False,0.006241915935224253,0.09052374886807268,0.007526907629150721,0.14676346963055376,0.023769201599163754,0.056751004965712934,0.02370497540361185,0.4417756431946858,0.6667161026230187,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",420_UCR_id_118_Facility_tr_13750_1st_52600.csv,12.837410688400269,UCR,False,False,0.8988513445425055,0.9996108576642335,0.8525410939036406,0.9995627609803719,0.8315959734206128,1.0,0.9999999999999996,0.8607961032042013,0.9997880830149726,1.0,0.6578947368421053
+"{'periodicity': 1, 'n_components': 0.75}",459_UCR_id_157_HumanActivity_tr_50000_1st_110260.csv,61.536360025405884,UCR,False,False,0.0003849943594856556,0.012609155326469178,0.0005020757054554941,0.03908736992031509,0.0015199620122734099,0.0016465719887773119,0.0015196656735518169,0.022861626402290912,0.7572724920685745,0.0,0.0
+"{'periodicity': 2, 'n_components': None}",506_UCR_id_204_Environment_tr_2046_1st_5549.csv,2.9252841472625732,UCR,False,False,0.03391668496497175,0.8768231727302525,0.04847708640128039,0.9002455333723023,0.12592430619367373,0.19047619047619047,0.1268656716417909,0.297196261682243,0.8837343248391044,0.0,0.0
+"{'periodicity': 1, 'n_components': None}",504_UCR_id_202_Environment_tr_2046_1st_5549.csv,2.6536738872528076,UCR,False,False,0.02680895063862923,0.8909297156669944,0.028921236917842964,0.8966805499863763,0.07069088053179336,0.24120603015075376,0.07361963190184041,0.19354838709677422,0.8244464977327631,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.5}",526_UCR_id_224_Sensor_tr_2827_1st_4711.csv,5.808629274368286,UCR,False,False,0.026514811408072672,0.4089779533579712,0.037787553463207994,0.5293123393703363,0.12458580267887291,0.6901408450704225,0.1783439490445858,0.32854179500048597,0.8165896799933247,0.0,0.0
+"{'periodicity': 1, 'n_components': 0.25}",545_SMAP_id_15_Sensor_tr_1173_1st_2750.csv,2.3520584106445312,SMAP,False,False,0.35907013709938385,0.9914844007400461,0.7387481553967095,0.9971610914948849,0.6891846722355942,0.7555555555555555,0.6853146853146848,0.6845637583892618,0.9950712506535755,0.0,0.0
+"{'periodicity': 2, 'n_components': None}",532_SMAP_id_2_Sensor_tr_2075_1st_5550.csv,3.4671173095703125,SMAP,False,False,0.21492635811559677,0.9294130968134239,0.22548894212153012,0.9305320216408012,0.44285338575636435,0.6971201588877854,0.45641838351822467,0.4520283322601417,0.9313520919999877,0.0,0.0
diff --git a/src/models/ahmad/PCA.ipynb b/src/models/ahmad/PCA.ipynb
index cf99c7d2a349e25954285fffbd793e867d5cde68..16fcf03650f3bdb294f9f3c2d019b9edfb801376 100644
--- a/src/models/ahmad/PCA.ipynb
+++ b/src/models/ahmad/PCA.ipynb
@@ -2,38 +2,9 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 12,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "CUDA available:  False\n",
-      "cuDNN version:  90100\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/wattar/DataMining_Projekt/data-mining/src/affiliation/_integral_interval.py:126: SyntaxWarning: invalid escape sequence '\\i'\n",
-      "  \"\"\"\n",
-      "/home/wattar/DataMining_Projekt/data-mining/src/affiliation/_integral_interval.py:145: SyntaxWarning: invalid escape sequence '\\i'\n",
-      "  \"\"\"\n",
-      "/home/wattar/DataMining_Projekt/data-mining/src/affiliation/_integral_interval.py:178: SyntaxWarning: invalid escape sequence '\\i'\n",
-      "  \"\"\"\n",
-      "/home/wattar/DataMining_Projekt/data-mining/src/affiliation/_integral_interval.py:214: SyntaxWarning: invalid escape sequence '\\i'\n",
-      "  \"\"\"\n",
-      "/home/wattar/DataMining_Projekt/data-mining/src/affiliation/_integral_interval.py:245: SyntaxWarning: invalid escape sequence '\\i'\n",
-      "  \"\"\"\n",
-      "/home/wattar/DataMining_Projekt/data-mining/src/affiliation/_integral_interval.py:307: SyntaxWarning: invalid escape sequence '\\i'\n",
-      "  \"\"\"\n",
-      "/home/wattar/DataMining_Projekt/data-mining/src/affiliation/_integral_interval.py:423: SyntaxWarning: invalid escape sequence '\\i'\n",
-      "  \"\"\"\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "from PCA import PCA\n",
     "import sys\n",
@@ -45,7 +16,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 13,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -58,24 +29,11 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def run_PCA(data, slidingWindow=100, n_components=None, n_jobs=1):\n",
-    "    clf = PCA(slidingWindow = slidingWindow, n_components=n_components)\n",
-    "    clf.fit(data)\n",
-    "    score = clf.decision_scores_\n",
-    "    return score.ravel()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 14,
    "metadata": {},
    "outputs": [],
    "source": [
-    "def run_Sub_PCA(data, periodicity=1, n_components=None, n_jobs=1):\n",
+    "def run_Sub_PCA(data, periodicity=1, n_components=None, n_jobs=-1):\n",
     "    slidingWindow = find_length_rank(data, rank=periodicity)\n",
     "    clf = PCA(slidingWindow = slidingWindow, n_components=n_components)\n",
     "    clf.fit(data)\n",
@@ -85,374 +43,106 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 16,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Start Processing files\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
+      "Start Processing files\n",
       "Start Hyperparameter Tuning\n"
      ]
     },
     {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "File: 542_SMAP_id_12_Sensor_tr_1908_1st_4690.csv, best hyperparameter: {'periodicity': 2, 'n_components': 0.5}\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "File: 807_YAHOO_id_257_WebService_tr_500_1st_1210.csv, best hyperparameter: {'periodicity': 1, 'n_components': 0.75}\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "File: 344_UCR_id_42_Sensor_tr_2851_1st_5365.csv, best hyperparameter: {'periodicity': 2, 'n_components': 0.5}\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "File: 334_UCR_id_32_HumanActivity_tr_1671_1st_2764.csv, best hyperparameter: {'periodicity': 1, 'n_components': 0.5}\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "File: 160_Stock_id_12_Finance_tr_500_1st_14.csv, best hyperparameter: {'periodicity': 1, 'n_components': 0.25}\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "File: 371_UCR_id_69_Medical_tr_1853_1st_6200.csv, best hyperparameter: {'periodicity': 2, 'n_components': 0.25}\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "File: 445_UCR_id_143_Environment_tr_6166_1st_19280.csv, best hyperparameter: {'periodicity': 1, 'n_components': None}\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "File: 405_UCR_id_103_Sensor_tr_2827_1st_5988.csv, best hyperparameter: {'periodicity': 1, 'n_components': None}\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
-      "/home/wattar/miniconda3/lib/python3.12/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.\n",
-      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
-     ]
-    },
-    {
-     "ename": "KeyboardInterrupt",
-     "evalue": "",
+     "ename": "AttributeError",
+     "evalue": "module 'numpy' has no attribute 'RankWarning'",
      "output_type": "error",
      "traceback": [
       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
-      "Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mmain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrun_Sub_PCA\u001b[49m\u001b[43m,\u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mSub_PCA\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43mdata_folders\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m../../../data/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43munsupervised\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43moutput_dir\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m../../../docs/evaluation/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
-      "File \u001b[0;32m~/DataMining_Projekt/data-mining/src/run_model_wrapper.py:265\u001b[0m, in \u001b[0;36mmain\u001b[0;34m(run_model, hyperparams, model_name, data_folders, model_type, output_dir)\u001b[0m\n\u001b[1;32m    262\u001b[0m sliding_window \u001b[38;5;241m=\u001b[39m time_series[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msliding_window\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m    264\u001b[0m \u001b[38;5;66;03m# Hyperparameter-Optimierung\u001b[39;00m\n\u001b[0;32m--> 265\u001b[0m best_params \u001b[38;5;241m=\u001b[39m \u001b[43mhyperparameter_optimization\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrun_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43mlabel\u001b[49m\u001b[43m,\u001b[49m\u001b[43mtrain_data\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mhyperparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43msliding_window\u001b[49m\u001b[43m,\u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    266\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFile: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfilename\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, best hyperparameter: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mbest_params\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    267\u001b[0m \u001b[38;5;66;03m#grid_list looks like this: [{ params: {key:value}, file_name:str,train_data:list,data:list, label:list, sliding_window:int}]\u001b[39;00m\n",
-      "File \u001b[0;32m~/DataMining_Projekt/data-mining/src/run_model_wrapper.py:78\u001b[0m, in \u001b[0;36mhyperparameter_optimization\u001b[0;34m(run_model, data, label, train_data, hyperparams, slidingWindow, model_type)\u001b[0m\n\u001b[1;32m     63\u001b[0m     scores \u001b[38;5;241m=\u001b[39m run_model(train_data, data, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mparams)\n\u001b[1;32m     65\u001b[0m \u001b[38;5;66;03m#function from autors creates from scores the evaluation: returns\u001b[39;00m\n\u001b[1;32m     66\u001b[0m \u001b[38;5;66;03m# '''{\u001b[39;00m\n\u001b[1;32m     67\u001b[0m \u001b[38;5;66;03m#     'AUC-PR':float,\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     75\u001b[0m \u001b[38;5;66;03m#     'Affiliation-F':float\u001b[39;00m\n\u001b[1;32m     76\u001b[0m \u001b[38;5;66;03m# }'''\u001b[39;00m\n\u001b[0;32m---> 78\u001b[0m metrics \u001b[38;5;241m=\u001b[39m \u001b[43mget_metrics\u001b[49m\u001b[43m(\u001b[49m\u001b[43mscores\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlabels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlabel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mslidingWindow\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mslidingWindow\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     79\u001b[0m auc_pr \u001b[38;5;241m=\u001b[39m metrics\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAUC-PR\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;241m0\u001b[39m)\u001b[38;5;66;03m# get value from auc-pr\u001b[39;00m\n\u001b[1;32m     81\u001b[0m \u001b[38;5;66;03m#check if score is better as best score\u001b[39;00m\n",
-      "File \u001b[0;32m~/DataMining_Projekt/data-mining/src/evaluation.py:833\u001b[0m, in \u001b[0;36mget_metrics\u001b[0;34m(score, labels, slidingWindow, pred, version, thre)\u001b[0m\n\u001b[1;32m    831\u001b[0m PointF1PA \u001b[38;5;241m=\u001b[39m grader\u001b[38;5;241m.\u001b[39mmetric_PointF1PA(labels, score, preds\u001b[38;5;241m=\u001b[39mpred)\n\u001b[1;32m    832\u001b[0m EventF1PA \u001b[38;5;241m=\u001b[39m grader\u001b[38;5;241m.\u001b[39mmetric_EventF1PA(labels, score, preds\u001b[38;5;241m=\u001b[39mpred)\n\u001b[0;32m--> 833\u001b[0m RF1 \u001b[38;5;241m=\u001b[39m \u001b[43mgrader\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmetric_RF1\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlabels\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mscore\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpreds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpred\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    834\u001b[0m Affiliation_F \u001b[38;5;241m=\u001b[39m grader\u001b[38;5;241m.\u001b[39mmetric_Affiliation(labels, score, preds\u001b[38;5;241m=\u001b[39mpred)\n\u001b[1;32m    836\u001b[0m metrics[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mAUC-PR\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m AUC_PR\n",
-      "File \u001b[0;32m~/DataMining_Projekt/data-mining/src/evaluation.py:273\u001b[0m, in \u001b[0;36mbasic_metricor.metric_RF1\u001b[0;34m(self, label, score, preds)\u001b[0m\n\u001b[1;32m    270\u001b[0m preds \u001b[38;5;241m=\u001b[39m (score \u001b[38;5;241m>\u001b[39m threshold)\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;28mint\u001b[39m)\n\u001b[1;32m    272\u001b[0m Rrecall, ExistenceReward, OverlapReward \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrange_recall_new(label, preds, alpha\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.2\u001b[39m)\n\u001b[0;32m--> 273\u001b[0m Rprecision \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrange_recall_new\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpreds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlabel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m    274\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m Rprecision \u001b[38;5;241m+\u001b[39m Rrecall\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m    275\u001b[0m     Rf\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m\n",
-      "File \u001b[0;32m~/DataMining_Projekt/data-mining/src/evaluation.py:380\u001b[0m, in \u001b[0;36mbasic_metricor.range_recall_new\u001b[0;34m(self, labels, preds, alpha)\u001b[0m\n\u001b[1;32m    378\u001b[0m OverlapReward \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[1;32m    379\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m range_label:\n\u001b[0;32m--> 380\u001b[0m     OverlapReward \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mw\u001b[49m\u001b[43m(\u001b[49m\u001b[43mi\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mp\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;241m*\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mCardinality_factor(i, range_pred)\n\u001b[1;32m    383\u001b[0m score \u001b[38;5;241m=\u001b[39m alpha \u001b[38;5;241m*\u001b[39m ExistenceReward \u001b[38;5;241m+\u001b[39m (\u001b[38;5;241m1\u001b[39m\u001b[38;5;241m-\u001b[39malpha) \u001b[38;5;241m*\u001b[39m OverlapReward\n\u001b[1;32m    384\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m Nr \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n",
-      "File \u001b[0;32m~/DataMining_Projekt/data-mining/src/evaluation.py:62\u001b[0m, in \u001b[0;36mbasic_metricor.w\u001b[0;34m(self, AnomalyRange, p)\u001b[0m\n\u001b[1;32m     60\u001b[0m     MaxValue \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m  bi\n\u001b[1;32m     61\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m p:\n\u001b[0;32m---> 62\u001b[0m         MyValue \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m bi\n\u001b[1;32m     63\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m MyValue\u001b[38;5;241m/\u001b[39mMaxValue\n",
-      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
+      "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
+      "Cell \u001b[0;32mIn[16], line 3\u001b[0m\n\u001b[1;32m      1\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrun_Sub_PCA\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m      2\u001b[0m output_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m../../../docs/evaluation/\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m----> 3\u001b[0m \u001b[43mmain\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrun_Sub_PCA\u001b[49m\u001b[43m,\u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_folders\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m../../../data/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43munsupervised\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43moutput_dir\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43moutput_path\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m~/DataMining_Projekt/data-mining/src/run_model_wrapper.py:283\u001b[0m, in \u001b[0;36mmain\u001b[0;34m(run_model, hyperparams, model_name, data_folders, model_type, output_dir)\u001b[0m\n\u001b[1;32m    280\u001b[0m sliding_window \u001b[38;5;241m=\u001b[39m time_series[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msliding_window\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m    282\u001b[0m \u001b[38;5;66;03m# Hyperparameter-Optimierung\u001b[39;00m\n\u001b[0;32m--> 283\u001b[0m best_params \u001b[38;5;241m=\u001b[39m \u001b[43mhyperparameter_optimization\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrun_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43mlabel\u001b[49m\u001b[43m,\u001b[49m\u001b[43mtrain_data\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mhyperparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43msliding_window\u001b[49m\u001b[43m,\u001b[49m\u001b[43mmodel_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    284\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFile: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfilename\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, best hyperparameter: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mbest_params\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    285\u001b[0m \u001b[38;5;66;03m#grid_list looks like this: [{ params: {key:value}, file_name:str,train_data:list,data:list, label:list, sliding_window:int}]\u001b[39;00m\n",
+      "File \u001b[0;32m~/DataMining_Projekt/data-mining/src/run_model_wrapper.py:53\u001b[0m, in \u001b[0;36mhyperparameter_optimization\u001b[0;34m(run_model, data, label, train_data, hyperparams, slidingWindow, model_type)\u001b[0m\n\u001b[1;32m     50\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mhyperparameter_optimization\u001b[39m(run_model, data,label,train_data, hyperparams,slidingWindow, model_type \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124munsupervised\u001b[39m\u001b[38;5;124m'\u001b[39m):\n\u001b[1;32m     51\u001b[0m     \u001b[38;5;66;03m#ignore warnings for hyperparameter tuning\u001b[39;00m\n\u001b[1;32m     52\u001b[0m     warnings\u001b[38;5;241m.\u001b[39msimplefilter(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m, category\u001b[38;5;241m=\u001b[39mUndefinedMetricWarning)\n\u001b[0;32m---> 53\u001b[0m     warnings\u001b[38;5;241m.\u001b[39msimplefilter(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m, category\u001b[38;5;241m=\u001b[39m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mRankWarning\u001b[49m)\n\u001b[1;32m     54\u001b[0m     best_params \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m     55\u001b[0m     best_score \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mfloat\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m-inf\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
+      "File \u001b[0;32m~/miniconda3/lib/python3.12/site-packages/numpy/__init__.py:410\u001b[0m, in \u001b[0;36m__getattr__\u001b[0;34m(attr)\u001b[0m\n\u001b[1;32m    407\u001b[0m     \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mnumpy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mchar\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mchar\u001b[39;00m\n\u001b[1;32m    408\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m char\u001b[38;5;241m.\u001b[39mchararray\n\u001b[0;32m--> 410\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodule \u001b[39m\u001b[38;5;132;01m{!r}\u001b[39;00m\u001b[38;5;124m has no attribute \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    411\u001b[0m                      \u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{!r}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(\u001b[38;5;18m__name__\u001b[39m, attr))\n",
+      "\u001b[0;31mAttributeError\u001b[0m: module 'numpy' has no attribute 'RankWarning'"
      ]
     }
    ],
    "source": [
-    "main(run_Sub_PCA,params,'Sub_PCA',data_folders = '../../../data/', model_type='unsupervised',output_dir = '../../../docs/evaluation/')"
+    "model = 'run_Sub_PCA'\n",
+    "output_path = '../../../docs/evaluation/'\n",
+    "main(run_Sub_PCA,params, model, data_folders = '../../../data/', model_type='unsupervised',output_dir = output_path)\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 81,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "2"
+      ]
+     },
+     "execution_count": 81,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
    "metadata": {},
    "outputs": [],
    "source": [
     "import pandas as pd\n",
+    "import os\n",
+    "data_empty = {\n",
+    "    'params':[],\n",
+    "    'file_name': [],\n",
+    "    'duration': [],\n",
+    "    'group': [],\n",
+    "    'point anomaly': [],\n",
+    "    'seq anomaly': [],\n",
+    "    'AUC-PR': [],\n",
+    "    'AUC-ROC': [],\n",
+    "    'VUS-PR': [],\n",
+    "    'VUS-ROC': [],\n",
+    "    'Standard-F1': [],\n",
+    "    'PA-F1': [],\n",
+    "    'Event-based-F1': [],\n",
+    "    'R-based-F1': [],\n",
+    "    'Affiliation-F': [],\n",
+    "    'Recall': [],\n",
+    "    'Precision': []\n",
+    "}\n",
+    "\n",
+    "df = pd.DataFrame(data_empty)\n",
     "\n",
-    "path = '../../../docs/evaluation/Sub_PCA.csv'\n",
-    "df = pd.read_csv(path)"
+    "path = '../../../docs/evaluation/'\n",
+    "model = 'run_Sub_PCA'\n",
+    "#concant all batch-files to big one\n",
+    "for file in os.listdir(path):\n",
+    "    file_path = os.path.join(path,file_path)\n",
+    "    #check if current file belongs to selected model and avoid overwriting existing model.csv data\n",
+    "    if file.startswith(model) and file.split('.')[0] != model:\n",
+    "        df_batch = pd.read_csv(file_path)\n",
+    "        #join with dataframe with all data\n",
+    "        df = pd.concat(df,df_batch)\n",
+    "\n",
+    "df.shape"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": null,
    "metadata": {},
    "outputs": [
     {
@@ -491,90 +181,78 @@
        "      <th>Event-based-F1</th>\n",
        "      <th>R-based-F1</th>\n",
        "      <th>Affiliation-F</th>\n",
+       "      <th>Recall</th>\n",
+       "      <th>Precision</th>\n",
        "    </tr>\n",
        "  </thead>\n",
        "  <tbody>\n",
        "    <tr>\n",
        "      <th>0</th>\n",
-       "      <td>{'periodicity': 3, 'power': 4}</td>\n",
-       "      <td>001_NAB_id_1_Facility_tr_1007_1st_2014.csv</td>\n",
-       "      <td>1.578039</td>\n",
-       "      <td>NAB</td>\n",
-       "      <td>False</td>\n",
-       "      <td>True</td>\n",
-       "      <td>0.423304</td>\n",
-       "      <td>0.680252</td>\n",
-       "      <td>0.424395</td>\n",
-       "      <td>0.684142</td>\n",
-       "      <td>0.478923</td>\n",
-       "      <td>1.000000</td>\n",
-       "      <td>1.000000</td>\n",
-       "      <td>0.537912</td>\n",
-       "      <td>0.966155</td>\n",
-       "    </tr>\n",
-       "    <tr>\n",
-       "      <th>1</th>\n",
-       "      <td>{'periodicity': 1, 'power': 4}</td>\n",
+       "      <td>{'periodicity': 1, 'n_components': 0.25}</td>\n",
        "      <td>002_NAB_id_2_WebService_tr_1500_1st_4106.csv</td>\n",
-       "      <td>3.787581</td>\n",
+       "      <td>3.342668</td>\n",
        "      <td>NAB</td>\n",
        "      <td>False</td>\n",
        "      <td>False</td>\n",
-       "      <td>0.623451</td>\n",
-       "      <td>0.825962</td>\n",
-       "      <td>0.625950</td>\n",
-       "      <td>0.829796</td>\n",
-       "      <td>0.659626</td>\n",
-       "      <td>1.000000</td>\n",
-       "      <td>1.000000</td>\n",
-       "      <td>0.572999</td>\n",
-       "      <td>0.994413</td>\n",
+       "      <td>0.531921</td>\n",
+       "      <td>0.725510</td>\n",
+       "      <td>0.531449</td>\n",
+       "      <td>0.736615</td>\n",
+       "      <td>0.604596</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.543667</td>\n",
+       "      <td>0.995006</td>\n",
+       "      <td>0.205651</td>\n",
+       "      <td>1.0</td>\n",
        "    </tr>\n",
        "    <tr>\n",
-       "      <th>2</th>\n",
-       "      <td>{'periodicity': 3, 'power': 1}</td>\n",
-       "      <td>005_NAB_id_5_Traffic_tr_594_1st_1645.csv</td>\n",
-       "      <td>1.826716</td>\n",
+       "      <th>1</th>\n",
+       "      <td>{'periodicity': 3, 'n_components': 0.25}</td>\n",
+       "      <td>001_NAB_id_1_Facility_tr_1007_1st_2014.csv</td>\n",
+       "      <td>1.325033</td>\n",
        "      <td>NAB</td>\n",
        "      <td>False</td>\n",
-       "      <td>False</td>\n",
-       "      <td>0.286365</td>\n",
-       "      <td>0.755784</td>\n",
-       "      <td>0.294678</td>\n",
-       "      <td>0.759568</td>\n",
-       "      <td>0.447757</td>\n",
-       "      <td>0.520788</td>\n",
-       "      <td>0.471014</td>\n",
-       "      <td>0.452990</td>\n",
-       "      <td>0.889674</td>\n",
+       "      <td>True</td>\n",
+       "      <td>0.278238</td>\n",
+       "      <td>0.568376</td>\n",
+       "      <td>0.274697</td>\n",
+       "      <td>0.572207</td>\n",
+       "      <td>0.280371</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.664639</td>\n",
+       "      <td>0.966270</td>\n",
+       "      <td>0.102041</td>\n",
+       "      <td>1.0</td>\n",
        "    </tr>\n",
        "  </tbody>\n",
        "</table>\n",
        "</div>"
       ],
       "text/plain": [
-       "                           params  \\\n",
-       "0  {'periodicity': 3, 'power': 4}   \n",
-       "1  {'periodicity': 1, 'power': 4}   \n",
-       "2  {'periodicity': 3, 'power': 1}   \n",
+       "                                     params  \\\n",
+       "0  {'periodicity': 1, 'n_components': 0.25}   \n",
+       "1  {'periodicity': 3, 'n_components': 0.25}   \n",
        "\n",
        "                                      file_name  duration group  \\\n",
-       "0    001_NAB_id_1_Facility_tr_1007_1st_2014.csv  1.578039   NAB   \n",
-       "1  002_NAB_id_2_WebService_tr_1500_1st_4106.csv  3.787581   NAB   \n",
-       "2      005_NAB_id_5_Traffic_tr_594_1st_1645.csv  1.826716   NAB   \n",
+       "0  002_NAB_id_2_WebService_tr_1500_1st_4106.csv  3.342668   NAB   \n",
+       "1    001_NAB_id_1_Facility_tr_1007_1st_2014.csv  1.325033   NAB   \n",
        "\n",
        "   point anomaly  seq anomaly    AUC-PR   AUC-ROC    VUS-PR   VUS-ROC  \\\n",
-       "0          False         True  0.423304  0.680252  0.424395  0.684142   \n",
-       "1          False        False  0.623451  0.825962  0.625950  0.829796   \n",
-       "2          False        False  0.286365  0.755784  0.294678  0.759568   \n",
+       "0          False        False  0.531921  0.725510  0.531449  0.736615   \n",
+       "1          False         True  0.278238  0.568376  0.274697  0.572207   \n",
+       "\n",
+       "   Standard-F1  PA-F1  Event-based-F1  R-based-F1  Affiliation-F    Recall  \\\n",
+       "0     0.604596    1.0             1.0    0.543667       0.995006  0.205651   \n",
+       "1     0.280371    1.0             1.0    0.664639       0.966270  0.102041   \n",
        "\n",
-       "   Standard-F1     PA-F1  Event-based-F1  R-based-F1  Affiliation-F  \n",
-       "0     0.478923  1.000000        1.000000    0.537912       0.966155  \n",
-       "1     0.659626  1.000000        1.000000    0.572999       0.994413  \n",
-       "2     0.447757  0.520788        0.471014    0.452990       0.889674  "
+       "   Precision  \n",
+       "0        1.0  \n",
+       "1        1.0  "
       ]
      },
-     "execution_count": 8,
+     "execution_count": 7,
      "metadata": {},
      "output_type": "execute_result"
     }
diff --git a/src/run_model_wrapper.py b/src/run_model_wrapper.py
index 5211a9171d937be57892b5614ff81c0b0786c884..2275d78c2ae6e223a369cabe94908f6fb64241b6 100644
--- a/src/run_model_wrapper.py
+++ b/src/run_model_wrapper.py
@@ -50,7 +50,7 @@ Semisupervise_AD_Pool = ['SAND','OCSVM','AutoEncoder', 'CNN', 'LSTMAD', 'USAD',
 def hyperparameter_optimization(run_model, data,label,train_data, hyperparams,slidingWindow, model_type = 'unsupervised'):
     #ignore warnings for hyperparameter tuning
     warnings.simplefilter("ignore", category=UndefinedMetricWarning)
-    warnings.simplefilter("ignore", category=np.RankWarning)
+    #warnings.simplefilter("ignore", category=np.RankWarning)
     best_params = None
     best_score = float("-inf")