diff --git a/src/models/sofia_modelle/call_knn.py b/src/models/sofia_modelle/call_knn.py index 18a2e885fdc44be4eaeaec7a2353a71796689c3e..34c3b4e865e87ca05540defd972865b2e02269b1 100644 --- a/src/models/sofia_modelle/call_knn.py +++ b/src/models/sofia_modelle/call_knn.py @@ -5,6 +5,7 @@ sys.path.append(str(pathlib.Path.absolute)+ '../../') from src.utils.slidingWindows import find_length_rank from src.run_model_wrapper import main +#Hyperparameter tested for multivariats #optimal hyperparameters from autors: {'n_neighbors': 50, 'method': 'mean'}, params = { 'n_neighbors': [10, 20, 30, 40, 50], diff --git a/src/models/sofia_modelle/call_knnV2.py b/src/models/sofia_modelle/call_knnV2.py new file mode 100644 index 0000000000000000000000000000000000000000..b7ffaaa2a71efb3ea92dc94e41799f43d3cd4972 --- /dev/null +++ b/src/models/sofia_modelle/call_knnV2.py @@ -0,0 +1,28 @@ +from KNN import KNN +import sys +import pathlib +sys.path.append(str(pathlib.Path.absolute)+ '../../') +from src.utils.slidingWindows import find_length_rank +from src.run_model_wrapper import main + +#hyperparameters tested for univariats +#optimal hyperparameters from autors: {'periodicity': 2, 'n_neighbors': 50}, +params = { + 'periodicity': [1, 2, 3], + 'n_neighbors': [10, 20, 30, 40, 50], + } + +def run_Sub_KNNV2(data, n_neighbors=10, method='largest', periodicity=1, n_jobs=1): + slidingWindow = find_length_rank(data, rank=periodicity) + clf = KNN(slidingWindow=slidingWindow, n_neighbors=n_neighbors,method=method, n_jobs=n_jobs) + clf.fit(data) + score = clf.decision_scores_ + return score.ravel() + +model = 'Sub_KNN_V2' +output_path = '../../../docs/evaluation/' + +#writes results in .csv +main(run_Sub_KNNV2,params,model,data_folders = '../../../data/', model_type='unsupervised',output_dir = output_path) + +#pip3 install -r requirements.txt \ No newline at end of file