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Abstract. Online detection of outliers and change points from a data stream are 

two very exciting topics in the area of data mining. This paper explores the 

relationship between these two issues, and presents a unifying method for 

dealing with both of them. Previous approaches often use parametric techniques 

and try to give exact results. In contrast, we present a nonparametric method 

based on local polynomial fitting, and give approximate results by fuzzy 

partition and decision. In order to measure the possibility of being an outlier 

and a change point, two novel score functions are defined based on the forward 

and backward prediction errors. The proposed method can detect outliers and 

changes simultaneously，and can distinguish between them. Comparing to the 

conventional parametric approaches, our method is more convenient for 

implementation, and more appropriate for online and interactive data mining. 

Simulation results confirm the effectiveness of the proposed method. 

Keywords: Data stream, outlier, change point, data mining, local polynomial 

fitting, fuzzy partition. 

1   Introduction 

As there is a growing number of emerging applications of data streams, mining of 

data streams is becoming increasingly important. Recent research indicates that online 

mining of the changes in data streams is one of the core issues with applications in 

event detection and activity monitoring [1]. On the other hand, outlier detection is 

also a popular issue in data mining, which is closely related to fraud detection, 

abnormality discovery and intrusion detection [2]. In the previous literature, outlier 

detection and change detection are often derived from respective problems and are 

addressed independently. Both statistical methods and fuzzy approaches have been 

employed to solve these two issues, such as methods based on regression analysis, 

hidden Markov model (HMM), hierarchical Bayesian model and fuzzy clustering, 

fuzzy entropy principle [7], etc. 

However, the outliers and change points often exist simultaneously in real data 

streams. It’s necessary to design a unifying method to detect the outliers and change 

points simultaneously. Thus, in this paper, we explore the relationship between outlier 

and change detection, and deal with them together. Intuitively, an outlier is a point 
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largely deviating from the holistic regularity, while a change point is a point from 

which the holistic regularity changes. Although outlier and change are two different 

concepts, they can be unified based on a probabilistic model. When a data stream is 

modeled as a time series with some probabilistic structure, both outliers and changes 

can be defined by the variation of statistical regularity, and the only difference is the 

variation kind. In [4], a unifying framework for mining outliers and changes was 

proposed, but the two issues were dealt with at two different stages. In [5], we have 

developed this work into a one-stage framework based on the forward and backward 

predictions. However, these two methods need pre-selected parametric models, and 

the parameters must be estimated adaptively in real time implementation. These will 

increase the difficulty in application, and are the drawbacks of all the parametric 

methods.  

In this paper, we propose a nonparametric unifying method for online mining 

outliers and changes from data streams. The data stream herein is modeled as a time 

series with some probabilistic structure. An outlier is defined as a point with both 

small forward and backward conditional density, while a change is a point with small 

forward conditional density and large backward conditional density. In order to 

measure the possibility of being an outlier and a change point, we define two score 

functions based on the forward and backward prediction errors. Unlike parametric 

approaches, all predictions are estimated using the local polynomial fitting technique 

[6] which does not need parameter estimation, but approximates the predictions by 

fitting a polynomial using the local data around the testing point. This nonparametric 

method provides many advantages. For example, there’s no need to determine the 

type of the time series model. The prediction accuracy will not be affected by the 

parameter estimation error. It is appropriate to both the linear and nonlinear time 

series, which is difficult for parametric methods. 

Approaches proposed in the previous literature often try to give an exact partition 

among outliers, changes, and normal points. However, exact answers from data 

streams are often too expensive, and approximate answers are acceptable [3]. So in 

this paper, fuzzy partition and decision approaches are used to alarm possible outliers 

and changes. The magnitude of the possibility is visualized by the values of 

membership functions based on which people can make their own decisions. Thus, we 

believe that our method will be more effective in online and interactive mining of 

outliers and changes. 

The rest of the paper is organized as follows: In Section 2, we formulate the 

problem of outlier and change detection, and give formal definition of outlier and 

change point. We give a brief introduction to the local polynomial fitting technique in 

Section 3, and present the unifying nonparametric outlier and change detection 

method in Section 4. Simulation results on several data sets are provided in Section 5 

and a section of conclusion follows.  

2   Problem Formulation 

In this section, we will formulate the problem of outlier and change detection from the 

statistical point of view. While the term “outliers” or “changes” sounds general and 
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intuitive, it is far from easy to define them. One natural description is that an outlier is 

a point largely deviates from the holistic regularity, while a change point is a point 

from which the holistic regularity changes. Although this description is inexplicit, it 

suggests something common between outlier and change. The holistic regularity 

varies at both outlier and change point, and only the type of the variation is different. 

Therefore, detection of outliers and changes is to find the variations of the regularity 

and distinguish between the different types. Considering a data 

stream { : 1,2, } 
t

x t = , if it is modeled with some probabilistic structure, its 

conditional probability distribution can be incrementally learned from the data stream 

every time a datum 
t

x  is input.  That means we can learn the statistical regularity of 

the data stream adaptively and find the variations. 

We model the real data stream{ }
t

x as a local stationary time-series. Here, each
t

x is 

regarded as a continuous random variable. We use the notation 1( | )t

t t L
p x x

−

− to 

represent the conditional density of
t

x given by
2 1

, , ,
t L t t

x x x− − − , and call it forward 

conditional density. Similarly, the notation
1

( | )t L

t t
p x x

+

+  is used to represent the 

conditional density of
t

x given by
1 2
, , ,

t t t L
x x x+ + + , and is named backward 

conditional density. Then, the formal definition of outlier and change point is given as 

follows: an outlier
t

x is a point with small 1( | )t

t t L
p x x

−

− and small
1

( | )t L

t t
p x x

+

+ , while a 

change point
t

x is a point with small 1( | )t

t t L
p x x

−

− and large
1

( | )t L

t t
p x x

+

+ . Here, we are 

only interested in the sudden changes. 

Now, some criterions should be selected to measure the possibility of being an 

outlier and a change point. In many previous literature, parametric time-series model 

is employed, and the form of the conditional density function is pre-decided. Then, 

the unknown parameters in the conditional density function can be estimated 

adaptively from { }
t

x . Two score functions are often used as criterions in the 

parametric approaches [4], [5]. One is based on logarithmic loss: 

1

1
( ) log ( | , )t

t t t L t
Score x p x x θ−

− −= − , (1) 

where 1

1
( | , )t

t t L t
p x x θ−

− − is the estimated parametric conditional density function at time 

point 1t − . Another one is based on quadratic loss: 

2ˆ( ) ( )
t t t

Score x x x= − , (2) 

where, ˆ
t

x denotes the prediction for 
t

x  given 
2 1

, , ,
t L t t

x x x− − − based on the estimated 

conditional density function as follows: 

1 1

1
ˆ [ | ] ( | , ) .

t t

t t t L t L tx E x x xp x x dxθ− −

− − −= = ∫  (3) 

However, the estimation for the parametric conditional density function is based on 

parametric modeling and enough data. In online data mining, only limited data are 

available for parametric modeling. Thus the modeling biases may arise with high  
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probability and the detection accuracy will be degraded. Moreover, many data in 

applications exhibit nonlinear features that require nonlinear models to describe. 

However, beyond the linear parametric models, there are infinitely many nonlinear 

forms that can be explored. This would be a daunting task for any analysts to try one 

model after another. In addition, both of the two score functions only consider the 

forward conditional density, which can not distinguish between the outliers and 

changes. Thus, in this paper, we propose two novel score functions based on the 

forward and backward prediction errors (see Section 4.1), and employ a simpler and 

effective nonparametric approach, the local polynomial fitting, to calculate the 

predictions. 

3   Local Polynomial Fitting 

Local polynomial fitting is a widely used nonparametric technique. It possesses 

various nice statistical properties [6]. Consider a bivariate sequence 

{( , ) : 1, , }
t t

X Y t N= that can be regarded as a realization from a stationary time 

series. We are interested in estimating 
t

Y  by
t

X , and the best estimation of
t

Y  based 

on 
t

X x=  is the conditional expectation of 
t

Y  given
t

X x= . Define a regression 

function in the following form: 

( ) ( | ),
t t

m x E Y X x= =  (4) 

then
t

Y can be expressed as follows: 

( ) ( ) ,
t t

Y m x xσ ε= +  (5) 

where 2 ( ) ( | )
t t

x Var Y X xσ = = , and
t

ε is a random variable that 

satisfies ( | ) 0
t t

E Xε = , ( | ) 1
t t

Var Xε = . 

Denote an arbitrary value of the regression function by
0

( )m x . Local polynomial 

fitting is a method for estimating
0

( )m x . Since the form of ( )m x is not specified, a 

remote data point from
0

x provides very little information about
0

( )m x . Hence, we can 

only use the local data around
0

x . Assume that ( )m x has the ( 1)p + derivative at the 

point
0

x . By Taylor’s expansion, for x in the local neighborhood of
0

x , we have the 

local model: 

0

0

( ) ( ) ,
p

j

j

j

m x x xβ
=

≈ −∑  (6) 

where
( )

0
( ) !

j

j
m x jβ =  and are called local parameters. One can estimate the local 

parameters by minimizing 
2

0 0

1 0

( ) ( ).
pN

j

t j t h t

t j

Y X x K X xβ
= =

⎧ ⎫
− − −⎨ ⎬

⎩ ⎭
∑ ∑  (7) 
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The weight function ( )
h

K ⋅ is defined as ( ) ( )
h

K K h h⋅ ⋅ , where ( )K ⋅ is a kernel 

function and h is a window bandwidth controlling the size of the local area. The 

parameter p is named fitting order. Formula (7) means the local parameters are 

estimated by fitting the local model (6) using the local data in the area
0 0

[ ,  ]x h x h− + . 

Since
0 0

ˆˆ ( )m x β= , estimate for
0

( )m x is actually the weight least square (WLS) 

solution to the minimizing problem of (7). 

4   Outlier and Change Detection 

As mentioned before, both of the two score functions (1) and (2) need parametric 

estimation of the conditional density function, and can not distinguish between the 

outliers and changes. So in this section, we define two novel score functions based on 

the forward and backward prediction errors. These two scores are then used to alarm 

possible outliers and changes based on fuzzy partition and decision. If the prediction 

of
t

x is regarded as a regression function, it can be calculated by local polynomial 

fitting without parametric modeling. Thus, the outliers and changes can be detected 

by nonparametric techniques. 

4.1   Forward and Backward Scores 

We first consider two bivariate sequences 
1 2 1

{( , ), , ( , )}
t L t L t t

x x x x− − + − − and 

2 1 1
{( , ), , ( , )}

t t t L t L
x x x x+ + + + − . Then two regression functions can be defined as the 

forward prediction of
t

x which means prediction of
t

x given by
1t

x − : 

1
( ) ( | ),

f t t
m x E x x x−= =  (8) 

and the backward prediction of
t

x which means prediction of
t

x given by
1t

x + : 

1
( ) ( | ).

b t t
m x E x x x+= =  (9) 

Similar local models can be defined as (6), and forward and backward local 

parameters can be defined as 

( ) ( )

1
( ) !

f j

j f t
m x jβ −= , and

( ) ( )

1
( ) !,   0, ,

b j

j b t
m x j j pβ += = . (10) 

Fitting the local models using the forward data
2

{ , , }
t L t

x x− − and the backward data 

2
{ , , }

t t L
x x+ + respectively, estimates for the forward and backward predictions can be 

obtained:  

( ) 1ˆ ( ) ,f T T

f f f f f f
X W X X W yβ −=  (11) 

and 
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( ) 1ˆ ( ) .b T T

b b b b b b
X W X X W yβ −=  (12) 

where  

1 1 1 1

1 2 1

2 1 1

( ,..., ) ,  ( ,..., ) ,

( ( ), , ( )),

( ( ), , ( )),

T T

f t L t b t t L

f h t L t h t t

b h t t h t L t

y x x y x x

W diag K x x K x x

W diag K x x K x x

− + − + + −

− − − −

+ + + +

= =

= − −

= − −

 

1 1

2 1 2 1

1 ( ) ( )

,

1 ( ) ( )

p

t L t t L t

f

p

t t t t

x x x x

X

x x x x

− − − −

− − − −

⎛ ⎞− −
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

2 1 2 1

1 1

1 ( ) ( )

1 ( ) ( )

p

t t t t

b

p

t L t t L t

x x x x

X

x x x x

+ + + +

+ + + +

⎛ ⎞− −
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

. 

 

Thus the forward and backward predictions of
t

x are ( )

0
ˆ fβ and ( )

0
ˆ bβ , based on which 

two novel score functions are defined to measure the possibility of being an outlier 

and a change point. One is Forward Score: 

( ) 2 2

0
ˆ ˆ( ) ( ) ,f

f t t f
Score x x β σ= −  (13) 

another one is Backward Score: 

( ) 2 2

0
ˆ ˆ( ) ( ) .b

b t t b
Score x x β σ= −  (14) 

Where 
2ˆ
f

σ  is the moment estimate for the variance of the forward data
2

{ , , }
t L t

x x− − , 

and 2ˆ
b

σ  is the moment estimate for the variance of the backward data
2

{ , , }
t t L

x x+ + .  

Dividing by the estimated variance is to make the scores more adaptive to the data 

stream with varying variance. 

Predictions based on local polynomial fitting do not need pre-selected parametric 

models, and can be adjusted to both the linear and nonlinear data streams. 

Furthermore, the window bandwidth h is always small enough to keep the mined 

outliers outside the local data, which otherwise may degrade the detection 

performance in parametric methods. So we believe that our method is simpler and 

effective, and more convenient for implementation. 

4.2   Fuzzy Partition and Decision 

According to the definition of outlier and change point (see Section 2), an outlier 

always has both large forward and backward scores, while a change point usually has 

a large forward score and a small backward score. Here, these characters will be used 

basing on fuzzy partition and decision theory to distinguish between outliers and 

change points. 
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We consider the data set { }
t

X x as a domain, and define four fuzzy sets on it: 

{ }
{ }

{ }
{ }

( , ( )) | ,

( , ( )) | ,

( , 1 ( )) | ,

( , 1 ( )) | ,

t f t t

t b t t

t f t t

t b t t

FNormalX x FNormalX S x x X

BNormalX x BNormalX S x x X

NotFnormalX x NotFnormalX S x x X

NotBnormalX x NotBnormalX S x x X

µ

µ

µ

µ

= = ∈

= = ∈

= = − ∈

= = − ∈

 
 

(15) 

 

where ( ) ( ( ))
f t f t

S x S Score x , ( ) ( ( ))
b t b t

S x S Score x , and 

2

2

1,

1 2 , ( ) 2

( ) .

2 , ( ) 2

0,

x a

x a
a x a b

b a
S x

b x
a b x b

b a

x b

≤⎧
⎪

−⎛ ⎞⎪ − < ≤ +⎜ ⎟⎪ −⎪ ⎝ ⎠
= ⎨

−⎛ ⎞⎪
+ < ≤⎜ ⎟⎪ −⎝ ⎠⎪

>⎪⎩

                       

   

      

                     

 (16) 

The parameters ,a b in (16) are two predefined constants that are used to control the 

value of the membership functions. 

Then, we define two fuzzy sets named as Outlier and Change respectively as 

,

.

Outlier NotFnormalX NotBnormalX

Change NotFnormalX BNormalX

= ∩

= ∩
 (17) 

Their membership functions are 

min( , ),

min( , ).

Outlier NotFnormalX NotBnormalX

Change NotFnormalX BNormalX

µ µ µ

µ µ µ

=

=
 (18) 

Finally, point
t

x with high value of Outlierµ is highly probably an outlier, while 

point
t

x with high value of Changeµ is highly probably a change point. 

Note that there is another character of a change point
t

x . That is
1t

x −  often has a 

small forward score and a large backward score. Hence, if one wants to reduce the 

false alarm rate, he can add another four fuzzy sets: 

{ }
{ }

{ }
{ }

1

1

1

1

( , ( )) | ,

( , ( )) | ,

( , 1 ( )) | ,

( , 1 ( )) | ,

t f t t

t b t t

t f t t

t b t t

PFNormalX x PFNormalX S x x X

PBNormalX x PBNormalX S x x X

NotPFnormalX x NotPFnormalX S x x X

NotPBnormalX x NotPBnormalX S x x X

µ

µ

µ

µ

−

−

−

−

= = ∈

= = ∈

= = − ∈

= = − ∈

 
(19) 

Then the data set Change can be revised to 

,Change PFNormalX NotPBnormalX NotFnormalX BNormalX= ∩ ∩ ∩  (20) 

and its membership function is  
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min( , , , ).

Change

PFNormalX NotPBnormalX NotFnormalX BNormalX

µ

µ µ µ µ

=
 (21) 

The possibility of being an outlier or a change can be visualized by the values of 
the membership functions. Analysts can set a threshold to alarm possible outliers and 
changes. Users can also make their own decisions according to the membership 
functions and the practical experience. So we believe that our method which 
synthesizes both statistical and fuzzy approaches will be more effective in interactive 
online mining of outliers and changes. 

4.3   Parameter Selection  

In the proposed detection method, some parameters are essential to the detection 

performance, such as the bandwidth h of the weight function, and the fitting order p. 

It is shown in [6] that, for all choices of p, the optimal kernel function is 

Epanechnikov kernel which is
23

( ) (1 )
4

K z z += − . Nevertheless, some other kernels 

have comparable efficiency for practical use of p. Hence, the choice of the kernel 

function is not critical. 

Selection of the bandwidth h is important for the detection performance. Too large 

bandwidth will result in large estimated bias, while too small bandwidth will results in 

large estimated variance. A basic idea for searching the optimal bandwidth is to 

minimize the estimated mean integrated square error (MISE) which is defined as 

2ˆ ˆarg min {( ( ( ))) ( ( ))}
opt

h

h Bias m x Var m x dx= +∫  (22) 

However, the solution of (22) is too complex for practical use. In this paper, we 

employ a more convenient method to find a suboptimal bandwidth. First, we set an 

acceptable threshold of the MISE denoted by δ and an initial value of h, which 

is
max min

[ )] ( 1)f fh X X L= − − for forward parameter estimation, and 

max min
[ )] ( 1)b bh X X L= − − for backward parameter estimation. 

Here,
max 2

max( , , )f

t L t
X x x− − , and

min 2
min( , , )f

t L t
X x x− − . The

max

bX and
min

bX are 

defined similarly. If ( )MISE h δ> , then multiply h by an expanding factor 1C > , 

i.e. h Ch= , until it satisfies ( )MISE h δ≤ . An advisable value of C is 1.1. This 

searching algorithm can find a reasonable h quickly. 

From the analysis in [6], we know that local polynomial fitting with odd order is 

better than that with even order.  Increasing fitting order will increase computational 

complexity. So we set 1p = for most cases and add it to 3 if necessary. 

5   Simulations 

We evaluate our methods by numerical simulations using different data sets.  

Case (1). The first data set is generated from an AR(2) model: 

1 1 2 2
,

t t t t
x a x a x e− −= + +  (23) 
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where,
t

e is a Gaussian random variable with mean 0 and variance 1, and 

1 2
0.6, 0.5a a= = − . The data length is 10000. The mean of data changes at time 

1000 1 ( 1,2, ,9) t τ τ= ∆ + ∆ = with change size 10x τ∆ = − ∆ . Outliers occur at 

time 1000 501 ( 0,1, ,9) t τ τ= ∆ + ∆ = with deviation size 10 0.8( 1)x τ∆ = − ∆ + . Fig.1 

(a) shows the data set 1 and the membership functions of the fuzzy sets Outlier and 

Change at different time points. Here, we set 8, 30a b= = . As shown in the figure, 

the outliers and changes can be distinguished and detected simultaneously if the size 

is not very small.  

Fig.1 (b) shows false alarm rate versus effective alarm rate of the outlier detection 

for data set 1. The effective alarm points are defined as the points during the area 
* *[ 10,  10]t t− + where *

t is the true non-normal point. Three different detection 

methods are compared. They are the proposed method, the CF method proposed in 

[4], and the parametric method proposed in [5] which is denoted by CIS method. We 

test the outlier of size 2.8 at time t=8501 for 1000 independent runs. It is observed 

that for the linear data stream with changing mean and constant variance, the 

proposed method performs comparably to the other two parametric methods. 

 

 

Fig. 1. Outlier and change detection for data set 1. (a) shows the data set 1, and the membership 

functions of Outlier and Change. (b) shows the false alarm rate vs. the effective alarm rate of 

outlier detection for data set 1. 

Case (2). In this case, we use the similar AR(2) model as data set 1. The only difference 

is the variance of 
t

e varies gradually: 2 ( ) 0.1/[0.01 (10000 ) /10000]
e

t tσ = + − . Changes 

and outliers occur at the same time points as data set 1, but all with size 1. The second 

data set and the membership functions of Outlier and Change are given in Fig.2 (a). 

Here we set 25, 60a b= = . Similar as the case (1), Fig.2 (b) shows false alarm rate 

versus effective alarm rate of the change detection for data set 2. Here, we testing the 

change point of size 5 at time t=5001. Comparing Fig.1 and Fig.2, we can see the 

advantage of the proposed score functions. Because of dividing by the estimated 

variance, the influence of the slow varying variance has been decreased a lot. That’s 

why the proposed method outperforms the other two parametric methods in this case. 
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Fig. 2. Outlier and change detection for data set 2. (a) shows the data set 2, and the membership 

functions of Outlier and Change. (b) shows the false alarm rate vs. the effective alarm rate of 

change detection for data set 2. 

Case (3). In this case, we change the AR(2) model to a nonlinear time series model, 

the ARCH(1) model:  

2 2

0 1 1
,  and .

t t t t t
X e c b Xσ σ −= = +  (24) 

where ~ (0,1)
t

e N , 
0

0.5c = and 
1

0.5b = . The mean of data also changes at 

1000 1 ( 1,2, ,9) t τ τ= ∆ + ∆ = with size 10x τ∆ = − ∆ . Outliers occur at 

time 1000 501 ( 0,1, ,9) t τ τ= ∆ + ∆ = with deviation size 7. Fig.3 (a) shows the third 

data set and the membership functions of Outlier and Change. Curves of false alarm 

rate versus effective alarm rate of outlier and change detection for data set 3 are 

shown in Fig.3 (b). Here, we test the outlier of size 7 at time t=1501, and the change  

 

 

Fig. 3. Outlier and change detection for data set 3. (a) shows the data set 3, and the membership 

functions of Outlier and Change. (b) shows the false alarm rate vs. the effective alarm rate of  

outlier and change detection. 
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Fig. 4. Outlier and change detection for real data 

point of size 3 at time t=7001. It is easy to see the proposed nonparametric detection 

method is also appropriate to the nonlinear data streams, which is difficult for the 

parametric methods. 

Case (4). The real data case. Here, we test our method by a real data set sampling 

from the dataset KDD Cup 1999 which is prepared for network intrusion detection. 

There are 3 intrusions in this real data set, respectively at time t=250, t=1087, and 

t=1434. The mean and variance of the normal data suddenly change at t=501, and 

recover at t=602. We present the real data set and the membership functions of 

Outlier and Change in Fig.4. It is shown that the proposed method is effective in the 

real data case. The intrusions are detected as outliers, and the sudden change of the 

normal data is detected as change points. 

6   Conclusion 

This paper presents a unifying method for outlier and change detection from data 

streams. Unlike conventional parametric methods, the proposed method is based on a 

nonparametric technique, the local polynomial fitting. Fuzzy partition and decision 

method are used to alarm possible outliers and changes. The proposed method is more 

appropriate to online and interactive data mining. Simulation results reveal its 

robustness and efficiency. 
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