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Abstract

Time series anomaly detection is an important field of data science. Statistical, distance-based, clustering-based, or density-
based approaches can detect anomalies. Generally, distance-based methods are relatively straightforward, but the method’s 
effectiveness depends on how well they handle the distribution of data points. To address the challenge, a preprocessing step 
is used to convert the underlying time series into a more useful format. In this paper, a novel clustering-based representation 
of time series is proposed. This representation is then used to compute anomaly scores and detect anomalies. Experimental 
studies on synthetic and real datasets show that proposed method outperforms other methods by up to 75% for five standard 
performance metrics.
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1  Introduction

The application of data science has been widely adopted in 
numerous fields and is considered a powerful tool for scien-
tific investigations. A significant type of data, time series, 
continues to grow and is used in many areas. Especially, 
detecting anomalies in time series is a valuable task in many 
aspects of society, such as economics, environment, astron-
omy (Hundman et al. 2018), process monitoring (Huang 
et  al. 2020), communication, medicine, climate change 
(Cheng et al. 2021), industry (Pham et al. 2019), intrusion 
detection (Azzaoui et al. 2022), cyber-attack detection, fraud 
detection, etc. Blázquez-García et al. (2021).

Generally, there are three types of time series anomalies: 
point outliers, collective outliers, and contextual outliers. 
Point outliers are anomalies that occur at different points in 
the time series. Collective outliers are anomalies that occur 
in groups of points in the time series. Contextual outliers 
are points or groups that indicate anomalies based on their 
context (Lindemann et al. 2021). This paper addresses the 
problem of anomaly detection in univariate time series in 
which one value is captured at a time.1

Time series anomalies can be detected using both sta-
tistical and machine learning approaches. Generally, the 
former is more straightforward, while the latter is more 
suitable for larger problems. Machine learning approaches 
are divided into supervised, semi-supervised, and unsuper-
vised methods. In general, supervised approaches can cover 
anomaly detection adequately. However, they require suf-
ficiently labeled data, which is difficult to obtain in many 
applications.

Anomaly detection techniques may use representa-
tion techniques (Zhang et al. 2021). Data representation 
approaches transform input data values into symbols, which 
can be either numeric values or symbols such as alphabets 
(Zhou et al. 2021).

Recently, Zhou et al. (2021) introduced interval-based 
and first-order representation methods that generate alter-
native forms of time series. First, the input time series is 
divided into several sliding windows with a fixed length. In 
the interval-based method, a sliding window is represented 

http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-023-09543-8&domain=pdf
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by a line. The line is constructed with the interval [a, b]. The 
values of a and b are defined in Eq. (1) (Zhou et al. 2021):

where input time series is represented by X(n), which has a 
length of n. The lower and upper bounds of the interval are 
denoted by a and b, repectively. The variable k ranges from 
1 to n, and x(k) represents the kth point in X(n). Functions f

1
 

and f
2
 are defined by Eq. (2) and � = 0.5.

Following that, anomalous sliding windows are detected by 
computing distances between the windows based on dis-
tances between intervals. The first-order method shows a 
sliding window with a rectangle. The method generates the 
width and length of the rectangle by Eq. (1).

The PAA2 method is another representation method that 
uses average values to represent sliding windows (Keogh 
et al. 2001). The results in (Zhou et al. 2021) indicate that 
Zhou’s methods are more informative than PAA. The two 
methods effectively represent sliding windows using lines 
and rectangles.

While Zhou’s methods take advantage of the interval rep-
resentation of time series, they lose some vital information 
about sliding windows. Sometimes, the methods may lose 
the original data distributions and fail to generate appropri-
ate representations. For example, Fig. 1 shows two sliding 
windows, A and B, with different trends: A(n) = (1, 2, 3, 4, 
6, 5, 7, 8, 9, 11, 10, 13, 12, 14, 15, 15, 14, 12, 13, 10, 11, 9, 
8, 7, 5, 6, 4, 3, 2, 1) (Fig. 1a) and B(n) = (5, 14, 13, 12, 11, 
9, 10, 8, 7, 5, 6, 4, 3, 2, 1, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 11, 
13, 14, 15) (Fig. 1b) in two sliding windows of size 30. In 
this case, A and B are represented by the same interval [6, 9] 
in the interval-based method (Eqs. (1) and (2)). More inter-
estingly, the rectangle constructed by the first-order method 
is [6, 9] and [−1, 1] for both sliding windows, as illustrated 
in Fig. 1c. The example shows that interval-based and first-
order methods suffer from a lack of specificity (Wang et al. 
2022).

To address the problem, this paper proposes a method 
to represent data in a more compact and informative way 

(1)

V(a) = f
1

(
count

{
x(k) ∈ X(n)|a ≤ x(k) < med(X(n))

})

× f
2
(|med(X(n)) − a|)

V(b) = f
1

(
count

{
x(k) ∈ X(n)|med(X(n)) ≤ x(k) ≤ b

})

× f
2
(|med(X(n)) − b|

)

(2)
f
1
(u) = u

f
2
(u) = exp(−�u)

using clustering. In the previous example, the original slid-
ing window is clustered optimally into three groups (Fig. 1a, 
b where blue, orange, and green points show clusters 1, 2, 
and 3, respectively). Thus, time series is represented by cen-
troids of groups. In this representation, window A is repre-
sented by c1 = 4, c2 = 11.5 , and c

3
= 4 . Meanwhile, window 

B is replaced by c�
1
= 12, c

�

2
= 4.5 , and c�

3
= 12 , where c

i
 and 

c
′

i
 are ith centroids in A and B, respectively (red points in 

Fig. 1a, b).
Additionally, As shown in Fig. 1a, b, a clustering algo-

rithm divides sliding windows into clusters with different 
sizes. For example, sliding window A is divided into clus-
ters with 7, 16, and 7 points. Using a clustering algorithm 
presents an adaptive segmentation mechanism for sliding 
windows which is more flexible than interval-based and first-
order methods. Concerning the sequential nature of time 
series, a clustering algorithm is an appropriate segmentation 
technique potentially. This motivating example illustrates 
how a clustering method can provide a more useful transfor-
mation than interval-based and first-order techniques.

This paper makes the following major contributions: 

1.	 It introduces a novel clustering-based representation 
method that segments time series into subsequences of 
different lengths. The method locates time series cut 
points that are adaptive, data-oriented, and reflects data 
behaviors.

2.	 to improve the effectiveness of the sliding window 
anomaly detection methods.

Fig. 1   a Time series A and its clustering, b time series B and its clus-
tering, c first-order representation of A and B 

2  Piecewise Aggregate Approximation.
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The remainder of the paper is organized as follows. Sec-
tion 2 provides the background knowledge required for this 
study. Section 3 briefly introduces the context of the study by 
providing a review of related literature. Section 4 describes 
the clustering-based representation method for time series 
representation and then demonstrates proposed anomaly 
detection method. Experimental results of the method and 
discussions are presented in Sect. 5. Finally, conclusions are 
given in Sect. 6.

2 � Preliminary

This section briefly reviews the preliminaries of time series 
anomaly detection TAD to facilitate understanding of rel-
evant concepts. The definition of a univariate time series is 
given in Definition 1.

Definition 1  (Univariate time series) (Blázquez-García et al. 
2021): A univariate time series X(n) = (x1,… , x

i
,… , x

n
) is 

an ordered set of x
i
∈ ℝ for 1 ≤ i ≤ n.

There is no universally accepted definition of TAD. In 
this work, time series anomaly detection is the process of 
identifying records or subsets that do not fit the normal 
behavior of other records (Geiger et al. 2020). The follow-
ing is a more formal definition of anomaly detection (Defini-
tion 4) based on sliding window (Definition 2) and anomaly 
score (Definition 3) concepts (Liu et al. 2020).

Definition 2  (Sliding window) : Given a time series 
X(n) = (x1,… , x

n
) . A sliding window W(m) of length m is 

a subsequence of m successive points in X(n) starting from 
x

i
 , i.e. W = (x

i
, x

i+1,… , x
i+m−1) . The window is denoted by 

x
i∶i+m−1

 in this paper.

Definition 3  (Anomaly score) : Given a time series 
X(n) = (x1,… , x

n
) , the anomaly score AS = (as1,… , as

n
) 

is an associated sequence of non-negative real values that 
shows the degree of anomalies in X(n). The great value of 
the anomaly score means the point is more likely to be an 
anomaly.

Definition 4  (Time series anomaly detection) : Time 
series anomaly detection is the process of finding a set of 
anomalies = {x

i
∈ X(n)|as

i
> �} where � is the threshold for 

anomaly score.

In this paper, a representation method is proposed by 
using a clustering algorithm. The clustering algorithm 
attempts to divide the time series X(n) into k-partitions 

C = {c1,… , c
k
}, k ≤ n , taking into account the order of the 

time series, so that:

A distance or similarity measure determines the proximity 
of members and clusters. Let D(xi, xj) shows the distance 
between x

i
 and xj . The measure satisfies the following prop-

erties (Figueroa et al. 2018).

3 � Related work

Detecting anomalies is not a new area of research in the 
field. Fox first determined and categorized time series 
anomalies in 1972 (Fox 1972). A statistical method for 
detecting anomalies in time series was also proposed by 
Tukey (1977) as well. Researchers have been active in 
studying the anomaly detection problem in a wide range of 
settings, including time series, where they have proposed 
several statistical and machine learning approaches 
(Hundman et al. 2018; Cheng et al. 2021; Li et al. 2021). In 
the following, we discuss TAD and preprocessing methods, 
and their representations.

3.1 � Preprocessing techniques for time series 
anomaly detection

Preprocessing methods have always been critical to 
TAD. They include normalization, dimension reduction, 
segmentation, and data representation tasks (Liang et al. 
2021). For instance, data representation techniques are used 
to reduce input dimensions, transfer data to a new space 
in which their important properties are shown better, and 
improve the computational cost of underlying algorithms 
(Sim et  al. 2018; Pérez et  al. 2021). Moreover, data 
representation methods facilitate TAD in the face of memory 
scarcity and power constraints (Bountrogiannis et al. 2021).

Generally, two types of representation methods are used: 
pattern and model-based. Pattern representations can pre-
serve the pattern information of time series such as trends, 
amplitudes, and frequencies. Many methods have been 

(3)

⎧
⎪
⎨
⎪
⎩

ci ≠ ∅, i = 1,… , k

ci ∩ cj = ∅, i, j = 1,… , k, i ≠ j

∪k
i=1

ci = X(n)

(4)

Symmetry ∶ D(xi, xj) = D(xj, xi)

Positivity ∶ D(xi, xj) ≥ 0,∀xi, xj

Triangle inequality ∶ D(xi, xj) ≤ D(xi, xz) + D(xz, xj)

Reflexivity ∶ D(xi, xj) = 0, ⟺ xi = xj
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proposed within this category, including PAA, SAX,3 DFT,4 
DWT,5 SVD,6 and PCA.7 The model-based representation 
methods use model parameters to detect time series features, 
including regression methods, hidden Markov techniques, 
and neural networks (Ren et al. 2017).

Segmentation is another key preprocessing task in TAD, 
usually joined with the representation task. Segmentation 
consists of splitting a time series into subsequences and 
creating sliding windows. Some representation methods, 
like PAA and SAX modifications, use fixed or adaptive 
sliding window techniques (Bountrogiannis et al. 2021; 
Ghalyan et al. 2021). The right length of sliding windows is 
computed by different techniques. (Carmona-Poyato et al. 
2020) presented an optimal segmentation method based on 
A
∗ algorithm. An adaptive sliding window approach is also 

introduced in Wang et al. (2022) based on time series trends.

3.2 � Anomaly detection approaches

Different approaches to anomaly detection have led to the 
creation of several categories. Some of the most popular cat-
egories for anomaly detection approaches include statistical, 
distance-based, clustering-based, and density-based meth-
ods (Singh and Upadhyaya 2012). However, many proposed 
methods overlap and may be categorized into more than one 
class.

3.2.1 � Statistical methods

Given the statistical nature, statistical methods use the prob-
ability or distribution of datasets to fit a model. When points 
or groups of points do not follow the fitted model, the data-
sets are confronted with anomalies. Since 1972, the use of 
statistical methods, e.g., Arumugam and Saranya (2018), 
SARIMA (Zhang et al. 2022), EWMA (Zhou and Tang 
2016), GMM8 (Reddy et al. 2017), and SOS9 (Janssens et al. 
2012), has been popular due to their potential. In 2023, Fer-
nandes et al. (2019) used autoregressive integrated moving 
average models for fault detection mechanisms. Identifying 
anomalous flight by incorporating the GMM with dynamic 
trajectory pattern classification is investigated in Choi et al. 
(2023). Statistical methods are mainly based on assumptions 
about the probability and distribution of the data, which lim-
its their use in practice (Yu and Sun 2020).

3.2.2 � Distance-based methods

Distance-based methods benefit from distance calculations 
between points within the same time series or two time series 
in which one of them is used as a reference normal time 
series (Mahmoodi et al. 2021). Distance measures play a key 
role in the success of the methods (Hagemann and Katsarou 
2020). The measures in time series can be classified into 
four categories: shape-based, edit-based, feature-based, 
and structure-based (Steland et al. 2015). Euclidean and 
Manhattan distance measures are more common among 
other measures (Mahmoodi et al. 2021). Although extensive 
research papers have been written to introduce and utilize 
more practical distance measures in TAD scope (Aljawarneh 
and Vangipuram 2020; Yazdi and Douzal-Chouakria 2018). 
Various attempts fall into this category. In a study by 
Wahid and Rao (2019), a distance-based outlier detection 
method is presented in which a particle swarm optimization 
technique is applied to find outlying subspaces. To improve 
the efficiency of the TAD method in Tran et al. (2020), the 
CPOD algorithm is proposed with multi-distance indexing. 
It must be noted that some weaknesses make these methods 
vulnerable, and their performance is strictly tied to selecting 
proper distance measures.

3.2.3 � Clustering-based methods

Clustering-based methods mainly focus on the detection 
of data structures. There are two different strategies for 
detecting anomalies using clustering-based techniques. In 
one strategy, fitness values are assigned to data records. 
The fitness value shows the deviation value of a point from 
other observations in clusters. Records with the lowest 
fitness value are considered anomalies (Li et al. 2021). In 
Akhmedova et al. (2022), a clustering-based method was 
proposed that computes the deviation and finds anomalous 
points by a fuzzy and evolutionary algorithm. The second 
strategy identifies clusters with a few members as anomalies 
(Mahmoodi et al. 2021). Authors in Pramitarini et al. (2022) 
used a clustering algorithm with cosine similarity in VANET 
to find anomalous network packets.

K-means and FCM are among the most common cluster-
ing algorithms widely used by CBLOF10 (Li et al. 2021; 
Chadha et al. 2021). IForest11 is another well-known method 
in this category (Liu et al. 2008; Cook et al. 2019). The 
underlying principle of the iForest is that anomalous points 
are far from normal points. The algorithm uses an ensemble 
method with a decision tree technique (Pham et al. 2019). 

3  Symbolic Aggregate approXimation.
4  Discrete Fourier Transform.
5  Discrete Wavelet Transform.
6  Singular Value Decomposition.
7  Principal Component Analysis.
8  Gaussian Mixture Models.
9  Stochastic Outlier Selection.

10  Clustering-Based Local Outlier Factor.
11  Isolation Forest.
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Despite the popularity of clustering-based methods, they 
suffer a significant disadvantage: the results completely 
depend upon selecting the cluster center (Li et al. 2021).

3.2.4 � Density-based methods

Density-based methods capture overall data patterns of time 
series. Patterns are detected by both density and neighbor-
hood factors. Density is defined by two concepts: local den-
sity and global density (Mahmoodi et al. 2021). The defini-
tion of the neighborhood concept is more complex for time 
series data than other types of data because time series are 
ordered data (Blázquez-García et al. 2021). Many studies 
have applied density-based methods to identify abnormal 
data points (Ramotsoela et al. 2019; Munir et al. 2018). A 
density-based method was proposed in Wang and Fan (2022) 
to address preserving projection process monitoring prob-
lems. The method computes the density by the sample dis-
tance entropy. LOF (Breunig et al. 2000) is one of the most 
popular density-based methods in the field that has been 
extended by many researchers (Yang et al. 2021). Like the 
methods mentioned above, density-based methods also have 
their own weaknesses. One shortcoming becomes apparent 
when some input time series exhibit regular fluctuations due 
to seasonal variations (Munir et al. 2018).

4 � The proposed method

This section describes our proposed anomaly detection 
method for univariate time series, CUBOID. The algorithm 
uses a clustering-based representation method to represent 

Fig. 2   The main diagram of proposed method (CUBOID)

Algorithm 1   CUBOID 
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time series. The method is categorized as an unsupervised 
and distance-based technique. As shown in Fig. 2, CUBOID 
contains three components: a data representation module, 
an anomaly modeling module, and an anomaly detection 
module.

The data representation module benefits from proposed 
clustering-based representation method.12 This module seg-
ments the underlying time series into multiple sliding win-
dows and changes their representations using a sequence 
clustering algorithm. The anomaly modeling module calcu-
lates anomaly scores of represented sliding windows using 
n-neighbor distance. Finally, the anomaly detection module 
selects anomalous sliding windows based on anomaly score 
values. In the following, the algorithm is detailed. The pseu-
docode of proposed method is presented in Algorithm 1. 
The inputs of Algorithm 1 are time series, and its outputs 
are anomalous points.

4.1 � Data representation

In this section, we present proposed clustering-based rep-
resentation method and use it for anomaly detection in the 
CUBOID algorithm.

According to Eqs. (3) and (4), clustering methods have 
important properties that make them ideal volunteers for the 
representation task. The following are some of the key points 

1.	 The clustering algorithm can efficiently locate data 
change points. The boundaries identified by change 
points can be used to partition time series.

2.	 The clustering algorithm can predict anomalous points 
in time series to be partitioned into isolated clusters.

In the first step, the time series is partitioned into fixed-
length windows, and each window is partitioned into clus-
ters. Since preserving the order of data points is critical, 
a typical clustering algorithm cannot be employed for the 
task. In this study, OSC13 (Lin and chan 2002) is applied to 
cluster data points in each sliding window. It is an optimal 
univariate clustering algorithm that uses the squared Euclid-
ean distance to determine clustering quality. The algorithm 
can efficiently achieve optimal clusters with the lowest pos-
sible overall cost using a dynamic programming approach.

In the data representation module, the input time series 
X(n) is transformed into ΔX(n − 1) = (Δx1,Δx2,… ,Δx

n−1) 
where Δx

i
= x

i+1 − x
i
, 1 ≤ i ≤ n − 1 (Lines 2 to 4 of 

Algorithm 1). It is to capture amplitude changes of time 
series more easily (Zhu et  al. 2016) and to facilitate 

decision-making of time series pattern changes. Further-
more, ΔX(n − 1) is divided into m sliding windows of length 
w where m = ⌊(n − 1)∕w⌋ . Sliding windows are denoted with 
W = {w1,… , w

m
}, 1 ≤ i ≤ m where w

i
 is the ith sliding win-

dow (Lines 5 to 7 of Algorithm 1). Sliding windows are 
clustered by the OSC algorithm into k clusters (Line 8 of 
Algorithm 1) and a set of cluster centroids C = {c1,… , c

m
} 

is returned as a new representation of the original time series 
where c

i
 includes k cluster centers of the ith sliding window.

4.2 � Anomaly modeling

Anomaly scores are computed to rank sliding windows in the 
anomaly modeling module. This module uses the distances 
between neighboring sliding windows as anomaly scores, 
AS = {as1,… , as

m
} where as

i
 is the anomaly score of w

i
 

and each w
i
 is partitioned into k clusters. More formally, to 

calculate as
i
 , the average of absolute distances between w

i
 

and two previous sliding windows ( w
i−1

 and w
i−2

 ) are con-
sidered by Eq. (5).

where ci,j is the jth center of the ith sliding window. Cluster 
centers are calculated by the data representation module, 
where k is the number of clusters in each sliding window, 
and m is the number of sliding windows. The pseudocode 
of the anomaly modeling module is shown in Line 9 of 
Algorithm 1.

4.3 � Anomaly detection

In this module, anomaly scores are sorted in decreasing 
order (Line 14 of Algorithm 1). The anomaly detection 
strategy is to set an overall percentage of anomalies ( � ) as 
a threshold and select anomalous sliding windows based on 
it (Lines 11 and 12 of Algorithm 1). Therefore, � percent of 
sliding windows with the highest anomaly scores are marked 
as anomalies.

4.4 � Complexity analysis

In this subsection, the running time complexity of Algo-
rithm 1 is analyzed.

Theorem  1   The  com p lex i t y  o f  CUBOID i s 

O(max(nkw, n∕w log(n∕w))) , where n is the number of data 

points in the dataset, w is the window size, k is the number 

of clusters, and m is the number of sliding windows.

(5)

asi =

⎧
⎪⎨⎪⎩

0 i = 1∑k

j=1
�ci−1,j − ci,j� i = 2∑k

j=1
(�ci−2,j − ci,j� + �ci−1,j − ci,j�)∕2 i = 3,… , m

12  It should be noted that the clustering-based representation mecha-
nism is completely different from the clustering-based anomaly detec-
tion approaches discussed in Sect. 3.
13  Optimal Sequence Clustering algorithm.
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Proof  First, the complexity of Algorithm 1 is related to two 
loops (lines 3 and 6). These loops contain n and m iterations, 
respectively. The total number of iterations (Line 8 of Algo-
rithm 1) depends on the complexity of the clustering algo-
rithm. Since OSC is used in CUBOID, the complexity of the 
clustering process for each of m sliding windows is O(kw2) 
(Lin and chan 2002). Therefore, this line is completed in 
O(mkw2) iterations. In Lines 9 and 10 of Algorithm 1, com-
puting anomaly scores of m sliding windows and sorting 
them require O(m log(m)) operations. Consequently, the total 
complexity of the model is determined by Eq. (6).

Since m = n∕w , the model’s complexity can be rewritten 
as Eq. (7).

	�  ◻

5 � Experimental studies

In this section, the performance of proposed method is eval-
uated using some scenarios for different datasets based on 
five index measures. More details are given below.

5.1 � Datasets

The paper uses several time series datasets containing syn-
thetic and real data to evaluate CUBOID’s performance. 
Generally, the current work is applied to three datasets.

(6)
O(n + m + mkw

2 + m log(m)) = O(max(mkw
2, m log(m)))

(7)O(max(mkw
2, m log(m))) = O(max(nkw,

n

w
log(

n

w
))

•	 Yahoo S5 Webescope,14 is one of the most popular 
benchmarks for anomaly detection in time series (Hage-
mann and Katsarou 2020; Ren et al. 2019; Maciąg et al. 
2021). Yahoo S5 contains four sub-datasets: A1, A2, 
A3, and A4. A1 benchmark contains real traffic data on 
Yahoo systems. In addition, A2, A3, and A4 benchmarks 
contain synthetic datasets. All repositories in Yahoo S5 
are unbalanced or highly unbalanced, so the percentage 
of input values representing anomalies is less than 1% 
on average (Maciąg et al. 2021). More details on these 
repositories can be found in Tables 1 and 2.

•	 Synthetic dataset includes 100-time series. These time 
series are generated using agots package15 and contain 
four types of anomalies: extreme, shift, trend, and 
variance.

•	 Additionally, a synthetic Sin time series is generated by 
Eq. (8). The time series includes three anomalous sub-
sequences ( e1(t), e2(t) , and e

3
(t) ). This time series has 

been studied in related works, such as the interval-based 
method (Zhou et al. 2021; Ren et al. 2018). 

 where e1, e2 , and e
3
 are three synthetic anomalies 

computed by Eq. (9). Also, a Gaussian noise n(t) with 
� = 0, � = 0.1 is in Eq. (8). 

 where in e
2
(t) a normal distribution is used.

5.2 � Evaluation criteria

In this section, several index measures are introduced to 
evaluate the method’s performance. Anomaly detection 
performance can be calculated by index measures defined 
by the confusion matrix. The matrix is a 2 × 2 matrix and 
contains indexes such as True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN). This 
study used five facilitative criteria to assess the quality of 
underlying methods: accuracy, precision, recall, F-score 
(Eq. (10)), and CI (Eq. (11)).

(8)

X(t) = sin(
40�t

K
) + n(t) + e1(t) + e2(t) + e3(t), t ∈ [0, 2000], k = 1200

(9)

e1(t) =

{

−0.5 t ∈ [550, 600]

0 otherwise

e2(t) =

{

rnorm(0, 0.8) t ∈ [1000, 1049]

0 otherwise

e3(t) =

{

0.2X(t) t ∈ [1520, 1559]

0 otherwise

Table 1   Overview of datasets

Yahoo Synthetic Sin

# Time series 367 100 1

# Anomalous points 3915 2593 141

# Total data points 572,966 354,656 2000

Table 2   Overview of Yahoo Benchmark Datasets

A1 A2 A3 A4

# Time series 67 100 100 100

# Anomalous points 1669 466 943 837

# Total data points 94,866 142,100 168,000 168,000

14  https://​websc​ope.​sandb​ox.​yahoo.​com/​catal​og.​php?​datat​ype=​s&​
did=​70.
15  https://​github.​com/​KDD-​OpenS​ource/​agots.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://github.com/KDD-OpenSource/agots
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Some researchers such as Zhou et al. (2021) have called the 
recall index as AR (Accuracy Rate). The AR is employed 
throughout the paper.

The ability to distinguish abnormal points from normal 
points is defined by the data anomaly resolution concept. 
Data anomaly resolution is assessed by CI (Confidence 
Index) (Zhou et al. 2021). Equation (11) formalizes CI.

where the average anomaly score for all anomalous subse-
quences is mean(

∑

asanomaly) and the average anomaly score 

for all subsequences is mean(
∑

as
all
).

5.3 � Configuration settings

In this section, some experiments were conducted to evalu-
ate the efficiency of clustering-based representation and the 
performance of CUBOID. Anomaly detection modules use 
the same threshold in all experiments, i.e., � = 1% is applied 
to provide fair conditions. Therefore, all data points within 
one percent of sliding windows with the highest anomaly 
scores are considered anomalies.

Some anomaly detection methods are used for compari-
son in the following scenarios, such as interval-based, first-
order (Zhou et al. 2021), PAA, and CBLOF (He et al. 2003). 
The proposed, interval-based, and first-order methods were 

(10)

Acurracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-score = 2 ×
Precision × Recall

Precision + Recall

(11)CI =
mean(

∑

asanomaly)

mean(
∑

asall)

implemented in Python 3.8.16 Other method implementa-
tions are available in pyts17 and pycaret18 packages.

In the following, three scenarios are organized. In the 
first scenario, the anomaly score assignment process of 
the CUBOID is visualized. The second scenario compares 
the CUBOID performance against other methods. The last 
scenario evaluates how changing the number of clusters (k) 
affects proposed method’s results. Scenario parameters are 
shown in Table 3.

5.3.1 � Scenario 1—Visualization of anomaly score 

assignment

The first scenario highlights the effectiveness of CUBOID’s 
anomaly score assignment, using multiple competitive meth-
ods, such as PAA, interval-based, and first-order methods. 
These methods were chosen because they share common 
features with proposed method, including anomaly score cal-
culation and sliding window segmentation. In the scenario, 
each time series is divided into several sliding windows, and 
anomaly scores are assigned to each window using the four 
methods (CUBOID, PAA, interval-based, and first-order). 
Figures 3, 4, 5, 6, 7 display anomaly scores in bar charts.

Yahoo time series are selected based on attributes and 
anomalies. Real-29 and TS-16 have no trend. The trend is 
negative for TS-10 and positive for Synthetic-62. TS-10 
has amplitude and shape anomalies. In the scenario, k = 3 
is passed to the proposed algorithm (Algorithm 1). Each 
experiment has a fixed window size. For the selected time 
series of A1, A2, A3, A4, and Sin, set the values of w to 13, 
13, 12, 10, and 60, respectively.

Figure 3 presents results obtained for Real-29 time series. 
In particular, Fig. 3a shows the time series with seven anom-
alous points. The points were placed in four sliding windows 
during segmentation process. Among these windows, the 
second and third contained two and three anomalous points, 

Table 3   Details of the experiments

Scenario parameters Scenario 1 Scenario 2 Scenario 3

Number of clusters 3 3 2–5

Window size 60, 13, 13, 12 10–100 10–100

Dataset A1 Real-29, A2 Synthetic-62, A3 TS-10, A4 
TS-16

Yahoo, Sin, Synthetic A1 Real-29, A2 
Synthetic-62, A3 
TS-10, A4 TS-16

Baseline methods Interval-based (Zhou et al. 2021), PAA (Keogh 
et al. 2001), first-order (Zhou et al. 2021)

Interval-based, PAA, first-order, iForest (Liu 
et al. 2008), LOF, SOS (Janssens et al. 2012), 
CBLOF (He et al. 2003)

–

16  https://​github.​com/​ir1979/​CUBOID.
17  https://​pyts.​readt​hedocs.​io.
18  https://​pycar​et.​readt​hedocs.​io.

https://github.com/ir1979/CUBOID
https://pyts.readthedocs.io
https://pycaret.readthedocs.io
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Fig. 3   Scenario 1—Anomaly score assignment on A1 Real-29 data-
set. Note that the anomaly score bars are in blue in all scenario fig-
ures. Anomalous subsequences are marked with red in the original 

time series (part (a) of all scenario figures). The dashed bars show 
anomalous sliding windows detected by these methods (color figure 
online)

Fig. 4   Scenario 1—anomaly score assignment on A2 Synthetic-62 dataset
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Fig. 5   Scenario 1—anomaly score assignment on A3 TS-10 dataset

Fig. 6   Scenario 1—anomaly score assignment on A4 TS-16 dataset
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respectively, and were found to be more anomalous than oth-
ers. Both proposed method, and PAA, as shown in Fig. 3b, 
c, correctly identified the third anomalous window as an 
anomaly (dashed bar charts). Other methods could not find 
any anomalous sliding windows.

Additionally, CUBOID fared better than the other 
approaches in determining anomaly scores because only the 
anomaly scores of anomalous windows or their neighbors 
were 0.5 or higher. Figure 3c–e show high anomaly scores 
allocated to normal windows, but the anomaly score assign-
ments of the other approaches lacked consistency. Moreover, 
proposed method’s confidence index, which has a value of 
7.383, is significantly higher than that of the PAA method 
(two times).

Synthetic-62 time series, which contains nine ampli-
tude anomalies, is presented in Fig. 4a (As anomalies have 
appeared in three sequential subsequences, they are not 
clearly visible in figure). After the segmentation step, these 
anomalies were grouped into three sliding windows, each 
containing three sequence point anomalies. The superior-
ity of CUBOID method is clearly shown in Fig. 4b. Unlike 
other competing approaches that just followed the initial 
time series changes in the anomaly score assignment pro-
cedure, our method successfully recognized all anomalous 
windows by giving them high anomaly ratings. Moreover, 
the experiment shows that proposed method outperformed 

other approaches when applied to a time series showing a 
positive trend and periodicity, indicating that clustering rep-
resentation was able to effectively capture the underlying 
patterns of such a time series.

Figure 5a shows that TS-10 follows a periodic pattern 
which has a negative trend. The time series contains ten 
anomalous points and eight anomalous windows. Among 
these windows, the sixth one stands out as the most anoma-
lous, with three anomalies. As shown in Fig. 5b, e, both 
CUBOID and first-order methods correctly identified this 
window as anomalous.

The anomaly score bars in Fig. 5b are highly discrimi-
native, with significantly higher scores observed near 
anomalous windows compared to normal windows. While 
the first-order method also performed well in identifying 
anomalous windows scored half as high, which is not suf-
ficiently discriminative.

The experiment clearly shows that proposed method 
surpasses other competitive methods when applied to time 
series data similar to TS-10. Using n-neighboring strategy 
for anomaly score computation results in producing more 
discriminative scores, which contributes to CUBOID’s 
superiority.

TS-16 is the third time series included in the experiment. 
Out of all the time series, it has only one anomaly (as depicted 
in Fig. 6a). It may be considered the most challenging time 

Fig. 7   Scenario 1—anomaly score assignment on Sin dataset
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series to detect the anomalous window. Figure 6 shows that 
only the proposed technique successfully identifies the anom-
alous sliding window. The anomaly score assignment for the 
time series using other methods in the scenario is illustrated 
in Fig. 6b–e. The stability, and discriminability of proposed 
method for assigning anomaly scores are evident from the 
figure. CUBOID method assigns scores of less than 0.25 to 
the normal points, while other methods assign scores in the 
wide range of [0,1] to the normal points. The robust dissimi-
larity approach of the suggested technique, which uses the 
distance calculation between the n prior neighbors to discover 
changes in the time series’ behavior, is responsible for its 
efficient performance.

In Sin time series, there are three anomalous windows 
(as indicated by the red points in Fig. 7a, based on Eq. (8)). 
While all scenario methods can detect one anomalous win-
dow, the interval-based, and PAA methods are more effec-
tive in assigning anomaly scores to anomalous windows, 
with scores of over 0.5 (as shown in Fig. 7c, d). On the other 
hand, the CUBOID method performs well to assign scores 
close to zero for normal windows.

In summary, CUBOID usually achieves the most desir-
able results. However, in some cases, PAA or first-order 
methods win. A distinguishing feature of proposed method 
is that it assigns the lowest average of anomaly score values 
for normal points compared with other techniques.

Fig. 8   Scenario 2—a F-score , b precision, c accuracy, and d AR measures of different methods. The error bars represent 95% confidence inter-
vals

Fig. 9   Scenario 2—the CI measures of different methods. The error 
bars represent 95% confidence intervals
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5.3.2 � Scenario 2—Evaluation of the CUBOID Performance

The second scenario is designed to show the comprehen-
sive results of proposed method compared to other anom-
aly detection methods. Unlike the first scenario, these 

competitive methods do not necessarily have the same 
characteristics as proposed method. Several unsupervised 
methods such as CBLOF, first-order, iForest, LOF, inter-
val-based, PAA, and SOS are selected for fair compari-
son. These methods are introduced in Sects. 1 and 3. In 

Fig. 10   Scenario 2—box plots of F-score distributions for different 
methods in Yahoo S5 dataset. The × marker represents the mean of 
the data, the − marker represents the median, and the colored box 
indicates the interquartile range (IQR) from the first quartile (Q1) to 

the third quartile (Q3). The lower and upper whiskers extend to the 
furthest data points within 1.5 times the IQR in each wing (color fig-
ure online)

Fig. 11   Scenario 2—Precision distributions of different methods for 
Yahoo S5 dataset. The × marker represents the mean of the data, the 
− marker represents the median, and the colored box indicates the 

interquartile range (IQR) from the first quartile (Q1) to the third quar-
tile (Q3). The lower and upper whiskers extend to the furthest data 
points within 1.5 times the IQR in each wing (color figure online)

Fig. 12   Scenario 2—Accuracy distributions of different methods for 
Yahoo S5 dataset. The × marker represents the mean of the data, the 
− marker represents the median, and the colored box indicates the 

interquartile range (IQR) from the first quartile (Q1) to the third quar-
tile (Q3). The lower and upper whiskers extend to the furthest data 
points within 1.5 times the IQR in each wing (color figure online)



1128	 Evolving Systems (2024) 15:1115–1136

1 3

second scenario, the window size varies between 10 and 
100 for sliding window-based methods such as CUBOID, 
first-order, interval-based, and PAA. The best results of 
each method are reported in this scenario. The scenario is 
applied to Yahoo S5 and Synthetic datasets.

Performance evaluation results are presented using dif-
ferent index measures: F-score , precision, accuracy, AR, 
and CI. We used one-way ANOVA, and Post Hoc test to 
analyze the results. Furthermore, the normalization test 
was conducted using one-sample Kolmogorov–Smirnov 
test. The results of the scenario are presented in three dif-
ferent ways. Figures 8 and 9 provide an overall overview. 
More detailed information about the charts and their index 
measure distributions is displayed through box plots in 
Figs. 10, 11, 12, 13, 14. Appendix contains numerical 
results (Tables 5, 6, 7, 8).

Figure  8 displays the results in line charts based on 
four indices: F-score and precision, accuracy, and AR. In 
Fig. 8a–c, it can be observed that orange chart, which cor-
responds to the F-score , precision, and accuracy measures of 
the CUBOID method, is situated at the top of all the charts 

except A1. It indicates that CUBOID method attains the 
highest indices across datasets.

The high performance of CUBOID method in F-score 
index can be attributed to its superior precision index. 
Increasing the number of true positive samples or decreas-
ing the number of false positive samples in the confusion 
matrix will result in superiority. This improvement is par-
ticularly noteworthy in Yahoo datasets, where anomalies are 
often rare and consist of point anomalies. In these cases, 
reducing false positives is critical to achieving high preci-

sion. CUBOID method attains these results using an optimal 
clustering algorithm that accurately captures the underlying 
data distribution. By enabling the model to detect changes in 
the normal data distribution more accurately, false positives 
can be reduced.

The AR measure performs differently from the other 
measures in Yahoo dataset, as shown in Fig. 8d. The iForest 
method shows the highest performance for Yahoo dataset, 
while CUBOID performs the best for the Synthetic dataset. 
Additionally, CUBOID, and interval-based methods show 
similar AR effectiveness for all datasets.

Fig. 13   Scenario 2—AR distributions of different methods for Yahoo 
S5 dataset. The × marker represents the mean of the data, the − 
marker represents the median, and the colored box indicates the inter-

quartile range (IQR) from the first quartile (Q1) to the third quartile 
(Q3). The lower and upper whiskers extend to the furthest data points 
within 1.5 times the IQR in each wing (color figure online)

Fig. 14   Scenario 2—Performance index measure distributions of different methods for Synthetic dataset
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Figure 9 confirms the findings of the first scenario that 
the anomaly score assignments of proposed method are sig-
nificantly discriminative compared to other methods. It is 
achieved through two critical steps in TAD method: (1) the 
representation step and (2) the calculation of window simi-
larity or dissimilarity step. A common approach to compute 
window dissimilarity is to calculate the distance between 
each window, and all other windows, as is done in Zhou’s 
method. In contrast, proposed method employs the distance 
between a window, and its n previous neighbors ( n = 2 ) as 
the dissimilarity score.

The charts in Fig. 8 demonstrate that n-neighbor strat-
egy used by proposed method outperforms other solutions. 
This superiority is achieved because the clustering algorithm 
used in the time series representation process effectively 
captures the patterns of subsequences. Furthermore, detect-
ing changes in window patterns using n-neighbor distance 
strategy is sufficient.

To provide a more precise and statistical discussion of 
scenario results, the box plots of the indices are presented 
in Figs. 10, 11, 12, 13. The results for F-score , and precision 
values presented in Fig. 8a, b are supported by the box plots 
shown in Figs. 10 and 11 for Yahoo datasets. In addition, 
the short length of the interquartile range (IQR) for the sug-
gested technique demonstrates that the variation of index 
measures for the CUBOID is minimal, verifying the consist-
ent performance of proposed method across various time 
series. Moreover, the ANOVA test results showed that there 
was a significant and meaningful difference in the perfor-
mance of the algorithms ( p < 0.05 ). Further analysis using 
Tukey HSD test on the F-score results reveals that proposed 
method outperforms other algorithms on all datasets except 
A1. Moreover, PAA method achieves better performance 
than the other baseline methods on the A1 dataset.

There are no significant differences in the precision index 
between proposed method and PAA. Moreover, the Post Hoc 
test shows that PAA and interval-based methods demonstrate 
the most significant differences compared to scenario meth-
ods for A1 dataset.

In Fig. 12, the distribution of the CUBOID box plot is not 
only skewed toward the top (one), but it is also positioned 
above the other approaches with a narrow interquartile 
range. ANOVA analysis indicated a significant difference 
in the accuracy scores of proposed method compared to the 
baseline models for A3 and A4 datasets.

The boxplots of AR in Fig. 13 do not show a clear superi-
ority of a particular method for Yahoo datasets. The distri-
bution and skewness of box plots and ANOVA test results 
indicate different winners for each Yahoo subset. For A1, 
the ANOVA test indicates that CBLOF outperforms the 
other methods, and the performance of the other methods 
does not have significant differences. Sheffe test results 
show that the effectiveness of CBLOF, first-order, iForest, 

LOF, and interval-based is the same in A2, and the best 
average is attributed to CBLOF. In A3 dataset, the results of 
CUBOID, and interval-based tests are homogenous accord-
ing to homogenous Scheffe test. The p-value for A4 dataset 
is greater than 0.05, indicating that there are no significant 
differences in AR measures among the methods.

Figure 14 shows the box plot distributions for Synthetic 
dataset, revealing that the CUBOID method has whisk-
ers that are more skewed towards the top. The p-value for 
ANOVA test is less than 0.05, indicating a statistically sig-
nificant difference between the techniques. The Post Hoc test 
suggests that the suggested CUBOID approach has a higher 
F-score than the other methods. In terms of precision and 
accuracy measures, CUBOID and PAA methods show simi-
lar performance levels in the dataset. Furthermore, Scheffe 
test results show that both the CUBOID and first-order meth-
ods outperform the other methods in terms of AR measure.

In general, proposed method outperforms other baseline 
methods in this scenario, except for a few cases in AR index 
measure or A1 dataset. However, the ANOVA and Post Hoc 
tests show that different methods may have better perfor-
mance in different datasets, which highlights the importance 
of selecting appropriate methods for specific anomaly detec-
tion tasks.

Moreover, the computational cost of the interval-based 
and first-order methods, according to Sect. 4.4, is about the 
same as that of proposed method. On the one hand, these 
methods use all sliding windows to calculate anomaly score 
values. This contrasts with CUBOID, in which only n previ-
ous neighbors are considered for calculating anomaly scores. 
This results in a more efficient algorithm. This is supported 
in experiments where CUBOID was much faster than inter-
val-based and first-order methods. However, even though the 
simple implementation of the algorithm in this study was 
not optimized for achieving the fastest running time in the 
first place, the experiments show promising improvements 
in this direction when compared with similar techniques of 
interval-based and first-order algorithms.

5.3.3 � Scenario 3—The effect of the number of clusters 

on the CUBOID performance

The third scenario evaluates the effect of changing the 
number of clusters (k) in proposed method. The scenario is 
divided into two parts. The first part contains the anomaly 
score visualization of the scenario experiments on selected 
datasets (Figs. 15, 16, 17, 18, and 19). The second part 
includes the evaluation results of the scenario on all data-
sets (Table 4).

The method is run on datasets from the first scenario in 
first part of the scenario. The window sizes are also similar 
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Table 4   Scenario 3- 
Performance results of 
Yahoo S5, Synthetic, and Sin 
datasets for different values of 
k ∈ {2, 3, 4, 5}

Clusters Precision Accuracy F-score AR CI

A1 2 0.282 ± 0.08 0.982 ± 0.01 0.290 ± 0.07 0.415 ± 0.09 10.512 ± 2.04

3 0.267 ± 0.06 0.979 ± 0.00 0.282 ± 0.05 0.420 ± 0.07 10.060 ± 2.07

4 0.275 ± 0.06 0.978 ± 0.07 0.289 ± 0.00 0.465 ± 0.05 10.106 ± 2.03

5 0.272 ± 0.06 0.979 ± 0.00 0.292 ± 0.07 0.468 ± 0.07 9.901 ± 1.97

A2 2 0.169 ± 0.02 0.991 ± 0.00 0.229 ± 0.01 0.610 ± 0.07 10.609 ± 2.09

3 0.155 ± 0.01 0.990 ± 0.00 0.221 ± 0.01 0.610 ± 0.06 10.923 ± 2.00

4 0.178 ± 0.01 0.991 ± 0.00 0.240 ± 0.01 0.610 ± 0.06 11.425 ± 1.98

5 0.196 ± 0.02 0.992 ± 0.00 0.256 ± 0.01 0.610 ± 0.06 11.812 ± 1.91

A3 2 0.100 ± 0.01 0.987 ± 0.00 0.121 ± 0.01 0.211 ± 0.04 4.216 ± 0.24

3 0.106 ± 0.01 0.987 ± 0.00 0.127 ± 0.13 0.214 ± 0.04 4.019 ± 0.21

4 0.108 ± 0.01 0.988 ± 0.00 0.126 ± 0.01 0.207 ± 0.04 3.816 ± 0.11

5 0.122 ± 0.01 0.989 ± 0.00 0.139 ± 0.01 0.214 ± 0.04 3.850 ± 0.10

A4 2 0.090 ± 0.01 0.986 ± 0.00 0.114 ± 0.01 0.259 ± 0.06 4.503 ± 0.38

3 0.099 ± 0.01 0.988 ± 0.00 0.122 ± 0.01 0.255 ± 0.05 4.742 ± 0.36

4 0.098 ± 0.01 0.988 ± 0.00 0.120 ± 0.01 0.242 ± 0.05 4.214 ± 0.23

5 0.107 ± 0.01 0.988 ± 0.00 0.128 ± 0.01 0.259 ± 0.05 4.114 ± 0.22

Synthetic 2 0.518 ± 0.12 0.991 ± 0.00 0.476 ± 0.06 0.577 ± 0.07 8.417 ± 1.17

3 0.515 ± 0.06 0.992 ± 0.00 0.476 ± 0.06 0.559 ± 0.06 11.132 ± 1.30

4 0.519 ± 0.06 0.991 ± 0.00 0.480 ± 0.05 0.577 ± 0.06 11.168 ± 1.14

5 0.520 ± 0.06 0.991 ± 0.00 0.474 ± 0.05 0.581 ± 0.06 11.759 ± 1.12

Sin 2 1.000 0.955 0.523 0.355 5.114

3 1.000 0.955 0.523 0.355 8.166

4 1.000 0.955 0.523 0.355 6.632

5 1.000 0.955 0.523 0.355 8.479

Fig. 15   Scenario 3—results of the CUBOID experiments on Sin dataset, the number of clusters k ∈ {2, 3, 4, 5}
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Fig. 16   Scenario 3—results of the CUBOID experiments on A1 Real-29 dataset with the number of clusters k ∈ {2, 3, 4, 5}

Fig. 17   Scenario 3—results of the CUBOID experiments on A2 Synthetic-62 dataset with the number of clusters k ∈ {2, 3, 4, 5}
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Fig. 18   Scenario 3—results of the CUBOID experiments on A3 TS-10 dataset with the number of clusters k ∈ {2, 3, 4, 5}

Fig. 19   Scenario 3—results of the CUBOID experiments on A4 TS-16 dataset with the number of clusters k ∈ {2, 3, 4, 5}
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to the first scenario while the number of clusters (k) varies 
between 2 and 5.

Figure 15 shows the results of implementing the scenario 
on the Sin dataset with k = 2, 3, 4, and 5. The bar charts in 
the figure illustrate that the detected anomalous window is 
the same across all experiments for the dataset. However, 
the experiment with k = 3 yielded the highest CI index, 
indicating that setting the number of clusters to 3 results in 
the CUBOID producing the most discriminative anomaly 
scores, as shown in Fig. 15c.

The evaluation results of proposed method for Real-29 
in Fig. 16 and TS-16 in Fig. 19 show that the model per-
formance is quite independent of the number of clusters. 
Moreover, all experiment indices, except CI, were almost 
the same. In all experiments of Real-29 and TS-16, a certain 
anomalous sliding window is chosen.

Figures 17 and 18 for Synthetic-62 and TS-10 show that 
the results of the method are the same in most cases. Two out 
of four experiments with Synthetic-62 ( k = 2, 4 and k = 3, 5 ) 
and three with TS-10 ( k = 2, 3, 5 ) show the same anomalous 
sliding window, and their performance indices are the same.

In the second part of the scenario, overall evaluation 
results with Yahoo S5, Synthetic, and Sin datasets are pre-
sented in Table 4. The table shows the performance results 
of the model using various index measures such as precision, 
accuracy, F-score , AR, and CI with a confidence interval of 
95%. The table confirms that variations in the number of 
clusters have small effects on index measures.

The table shows some indices are approximately constant. 
For example, precision in Synthetic, AR in A2, accuracy in 
A2, A3, A4, and Synthetic, and F-score in A1 and A2 have 
no significant changes. For Sin, all index measures remained 
completely constant (Table 4). In other cases, index meas-
ures show very small amplitude changes. For example, in 
A1, when k varied between 2 and 5, the F-score changed 
slightly between 0.290 and 0.292.

The table generally illustrates that accuracy changes by 
0.004 for different cluster numbers. Changes for other indi-
ces ranged from 0.001 to 0.01 (Table 4). In summary, the 
results confirm that proposed model is very insensitive to 
the number of clusters. Therefore, k = 3 is recommended for 
practical applications based on the experiment.

6 � Conclusion

This paper presents a novel clustering-based time series rep-
resentation technique and a method for anomaly detection 
called CUBOID. Proposed representation method transforms 

the original time series into cluster centroids. The suggested 
representation method has two advantages: (1) the primary 
time series is transformed into a modified form that can bet-
ter capture changes in time series, and (2) the input length is 
reduced, enabling a faster algorithm. The results show that 
proposed anomaly detection method achieved almost the high-
est performance among the other anomaly detection methods.

For future work, some components of CUBOID can be 
further developed. For example, an adaptive window size 
algorithm may be an interesting extension to the representa-
tion module. In addition, a weighted distance measure can 
be considered in the anomaly score computation phase. An 
adaptive threshold mechanism can improve the performance 
of an anomaly detection algorithm by dynamically adjust-
ing the threshold based on the data. Setting the threshold to 
a predetermined value may not be appropriate for all types 
of data. In contrast, an adaptive threshold mechanism may 
modify the threshold depending on the properties of the 
data. This strategy allows the algorithm to be more adapt-
able and sensitive to changes in the data, which may lead 
to improved performance. Also, the work could extend to 
multivariate TAD.

Appendix: Tables of Scenario 2

The numerical results in Tables 5, 6, 7, 8 are presented by a 
confidence interval of 95%.

Table 5   Scenario 2—Performance indices of different methods for 
Sin dataset

Values in bold and italics indicate the first and second-best results, 
respectively

Precision Accuracy F-score AR CI

CBLOF 0.350 0.915 0.290 0.249 4.161

CUBOID 1.000 0.955 0.524 0.355 8.166

First-order 1.000 0.955 0.523 0.355 6.011

iForest 0.320 0.912 0.265 0.227 4.153

Interval-based 0.714 0.945 0.473 0.355 7.376

LOF 0.330 0.913 0.273 0.234 7.965

PAA 0.927 0.953 0.520 0.362 4.493

SOS 0.130 0.893 0.108 0.092 2.659
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Table 6   Scenario 2—
Performance indices of different 
methods for Yahoo dataset

Values in bold and italic indicate the first and second best results, respectively

Precision Accuracy F-score AR CI

CBLOF A1 0.156 ± 0.05 0.948 ± 0.00 0.204 ± 0.05 0.702 ± 0.09 7.744 ± 0.98

A2 0.052 ± 0.01 0.952 ± 0.00 0.094 ± 0.02 0.775 ± 0.08 3.871 ± 0.16

A3 0.041 ± 0.01 0.949 ± 0.00 0.073 ± 0.01 0.373 ± 0.06 4.088 ± 0.10

A4 0.034 ± 0.01 0.948 ± 0.00 0.060 ± 0.01 0.319 ± 0.05 4.712 ± 0.18

CUBOID A1 0.267 ± 0.07 0.979 ± 0.01 0.282 ± 0.07 0.420 ± 0.09 10.181 ± 2.03

A2 0.155 ± 0.01 0.990 ± 0.00 0.221 ± 0.01 0.610 ± 0.06 10.925 ± 2.00

A3 0.106 ± 0.01 0.987 ± 0.00 0.127 ± 0.01 0.214 ± 0.04 4.019 ± 0.21

A4 0.099 ± 0.01 0.988 ± 0.00 0.122 ± 0.01 0.255 ± 0.05 4.742 ±0.36

First-order A1 0.434 ± 0.07 0.982 ± 0.00 0.461 ± 0.07 0.651 ± 0.07 1.787 ± 0.24

A2 0.061 ± 0.01 0.966 ± 0.00 0.099 ± 0.01 0.617 ± 0.05 1.247 ± 0.03

A3 0.067 ± 0.01 0.980 ± 0.00 0.084 ± 0.01 0.193 ± 0.03 1.146 ± 0.02

A4 0.060 ± 0.01 0.978 ± 0.00 0.079± 0.01 0.271 ± 0.05 1.187 ± 0.03

iForest A1 0.174 ± 0.05 0.950 ± 0.00 0.223 ± 0.05 0.733 ± 0.09 4.644 ± 0.26

A2 0.053 ± 0.01 0.952 ± 0.00 0.096 ± 0.02 0.791 ± 0.07 3.933 ± 0.13

A3 0.043 ± 0.01 0.949 ± 0.00 0.076 ± 0.01 0.382 ± 0.06 4.406 ± 0.09

A4 0.036 ± 0.01 0.949 ± 0.00 0.063 ± 0.01 0.337 ± 0.05 4.243 ± 0.10

Interval-based A1 0.467 ± 0.09 0.982 ± 0.01 0.450 ± 0.08 0.583 ± 0.08 2.624 ± 0.39

A2 0.032 ± 0.01 0.982 ± 0.00 0.051 ± 0.01 0.244 ± 0.06 1.271 ± 0.03

A3 0.060 ± 0.01 0.982 ± 0.00 0.074 ± 0.01 0.153 ± 0.03 1.823 ± 0.11

A4 0.050 ± 0.01 0.982 ± 0.00 0.061 ± 0.01 0.193 ± 0.05 1.471 ± 0.05

LOF A1 0.117 ± 0.03 0.945 ± 0.01 0.157 ± 0.03 0.579 ± 0.09 8.181 ± 2.01

A2 0.052 ± 0.01 0.952 ± 0.00 0.094 ± 0.02 0.766 ± 0.08 2.107 ± 0.34

A3 0.037 ± 0.01 0.948 ± 0.00 0.065 ± 0.01 0.328 ± 0.06 1.369 ± 0.08

A4 0.032 ± 0.01 0.948± 0.00 0.056 ± 0.01 0.298± 0.04 1.317 ± 0.03

PAA A1 0.502 ± 0.08 0.986 ± 0.00 0.505 ± 0.08 0.626 ± 0.08 10.344 ± 2.13

A2 0.124 ± 0.02 0.984 ± 0.00 0.161 ± 0.02 0.473 ± 0.07 4.221 ± 0.72

A3 0.074 ± 0.01 0.984 ± 0.00 0.086 ± 0.01 0.173 ± 0.03 2.090 ± 0.07

A4 0.060± 0.01 0.982 ± 0.00 0.076± 0.01 0.181 ± 0.04 2.711 ± 0.13

SOS A1 0.007 ± 0.01 0.972 ± 0.01 0.007 ± 0.00 0.033 ± 0.02 0.507 ± 0.22

A2 0.003 ± 0.00 0.949 ± 0.00 0.005 ± 0.00 0.190 ± 0.08 2.175 ± 0.08

A3 0.014± 0.00 0.946 ± 0.00 0.025 ± 0.00 0.138 ± 0.03 2.254 ± 0.01

A4 0.011 ± 0.00 0.949 ± 0.00 0.019 ± 0.00 0.129 ± 0.04 2.137 ± 0.10

Table 7   Scenario 2—
Performance indices of different 
methods for Synthetic dataset

Values in bold and italic indicate the first and second best results, respectively

Precision Accuracy F-score AR CI

CBLOF 0.043 ± 0.01 0.946 ± 0.00 0.069 ± 0.02 0.232 ± 0.05 4.326 ± 0.16

CUBOID 0.515 ± 0.06 0.992 ± 0.00 0.476 ± 0.05 0.559 ± 0.06 11.132 ± 1.30

First-order 0.307 ± 0.00 0.986 ± 0.00 0.309 ± 0.04 0.447 ± 0.06 1.159 ± 0.02

iForest 0.042 ± 0.01 0.946 ± 0.00 0.068 ± 0.02 0.220 ± 0.05 4.288 ± 0.16

Interval-based 0.264 ± 0.05 0.985 ± 0.00 0.248 ± 0.04 0.338 ± 0.06 1.796 ± 0.04

LOF 0.035 ± 0.01 0.945 ± 0.00 0.056 ± 0.01 0.203 ± 0.04 1.346 ± 0.05

PAA 0.426 ± 0.06 0.990 ± 0.00 0.375 ± 0.05 0.404 ± 0.06 5.191 ± 0.46

SOS 0.007 ± 0.00 0.970 ± 0.01 0.010 ± 0.00 0.029 ± 0.01 1.007 ± 0.22
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Data availibility  Yahoo S5 datasets analyzed during the current study 
are available at https://​websc​ope.​sandb​ox.​yahoo.​com/​catal​og.​php?​datat​
ype=​s&​did=​70, and the Synthetic datasets generated by https://​github.​
com/​KDD-​OpenS​ource/​agots repository. The Sin dataset is also gener-
ated by Eq. (8).
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