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Abstract
Outlier detection is a crucial research problem in data mining, aiming to identify data objects that significantly deviate from
the distribution of other data. To solve the issues of low-density patterns and low local density problems in nearest neighbor-
based outlier detection methods, this paper proposes an outlier detection algorithm based on the relative skewness density
ratio outlier factor. An adaptive determination of the number of neighbors (k value) and neighborhood is achieved using the
natural neighbor search algorithm, effectively addressing parameter setting challenges. It introduces the concept of relative
skewness to quantify howmuch data objects deviate from their neighbors, along with a local density ratio to capture variations
in local density. This leads to a new outlier measure called the Relative Skewness Density Ratio Outlier Factor, which uses
the ratio of relative skewness to local density as the outlier factor. The outlier degree of each data object is further assessed
by evaluating the deviation of this factor from its neighbors. Experimental validation of the proposed algorithm is conducted
on both artificial and real-world datasets, with comparisons against recent novel outlier detection algorithms, demonstrating
the effectiveness of the proposed algorithm.

Keywords Data mining · Outlier detection · Skewness · K nearest neighbors · Outlier factor

1 Introduction

Outlier detection is an essential research problem in datamin-
ing, aiming to discover data objects that significantly deviate
from the distribution of other data [1, 2]. The presence of out-
liers in a dataset typically affects the quality of data mining
and analysis results. Outlier detection methods can identify
abnormal data in the dataset, while also revealing valuable
information. Outlier detection holds significant value and
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practical applications in real life. For instance, in the finan-
cial domain, outlier detection aids in timely identification of
fraudulent activities, safeguarding investors’ interests. Sim-
ilarly, in the realm of cybersecurity, outlier detection helps
in detecting network attacks and intrusion attempts, thereby
ensuring network security. Currently, outlier detection has
found widespread applications in these practical domains,
including medical diagnosis [3], wireless sensor networks
[4], fraud detection [5–7], fault detection [8], network intru-
sion detection [9], and urban abnormal traffic detection [10,
11].

The main research methods for outlier detection can be
divided into supervised, semi-supervised, and unsupervised
approaches. Supervised methods require a training set with
labels for normal data and outliers, which can be challeng-
ing to obtain inmany applications. Semi-supervisedmethods
only require labels for normal data during training, making
them more practical than supervised methods. Unsupervised
methods, on the other hand, have awider applicability as they
do not require any labels or training data.

In supervised and semi-supervisedmethods, outlier detec-
tion is treated as a binary classification problem requiring
labels [12]. With complete labels for normal and outlier data
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points, supervised methods can identify known outliers but
may miss unknown outliers. Currently, there are no special-
ized supervised outlier detection algorithms, and existing
classifiers such as random forests [13] and neural networks
[14] are often used.However, supervisedmethods suffer from
inaccuracies in labeling and may fail to detect all types of
outliers, limiting their effectiveness to known types of out-
liers. Semi-supervised methods aim to utilize partial labels
for detection while retaining the ability to detect unknown
types of outliers. In recent years, some research has focused
on effectively utilizing partial label data to improve detec-
tion performance and promote representation learning. For
example, some semi-supervised algorithms train only on nor-
mal samples and detect outliers deviating from the learned
normal representation [15–17].

Unsupervised outlier detection methods can be classified
into clustering-based andnearest neighbor-based approaches.
Clustering-based methods partition data objects into differ-
ent clusters based on their similarity and define outliers as
objects not belonging to any cluster or lying far from the
nearest cluster. Ester et al. proposed a density-based cluster-
ing algorithm called DBSCAN [18] (Density-Based Spatial
Clustering of Applications with Noise), which can identify
clusters of different shapes but requires setting thresholds
and may not work well for clusters with varying densities.
He et al. [19] proposed a new clustering-based local outlier
factor algorithm called CBLOF (Cluster-based Local Outlier
Factor), which defines the outlier factor based on the size of
clusters and the distance of data objects from their nearest
clusters. Rodriguez and Laio [20] proposed a method that
identifies cluster centers as local density maxima far from
high-density points, relying solely on relative density rather
than absolute values. However, clustering methods primarily
focus on optimizing clustering, and if the clustering is poor
or if outliers are assigned to clusters, this approach may not
be effective.

Nearest neighbor-based methods can be further divided
into distance-based and density-based approaches. The core
of distance-based methods for outlier detection lies in eval-
uating the distance relationship between a data point and its
neighboring data points. In essence, outliers are identified
due to their significant deviation from the majority of points
in the dataset. This is typically achieved by computing the
distance from each data point to its nearest neighbor and
performing comparative analysis based on these distances.
During the data traversal process, the emphasis is placed on
measuring and comparing these distance values to identify
points that are markedly isolated. Based on the construction
of the reference set, outliers can be classified into global out-
liers and local outliers. Global outliers are identified with
respect to the entire dataset as the reference set, while local
outliers are identified using the nearest neighbors of the data
point as the reference set. When the pattern of normal data is

homogeneous, distance-basedmethods can effectively detect
global outliers.However,when the data distribution is uneven
and forms clusters with varying densities, such methods may
incorrectly classify sparse normal points as outliers, leading
to reduced detection accuracy. Knorr and Ng [21] first pro-
posed distance-based outlier detection methods, followed by
Ramaswamy et al. [22] proposing a partition-based method
that uses the k-th nearest neighbor to determine outlier val-
ues. Zhang et al. proposed amethod called LDOF [23] (Local
Distance-based Outlier Factor) based on local distance out-
lier factors, where the relative positions of data objects and
their neighbors determine the degree to which an object
deviates from its neighbors; if a data object is far from its
neighborhood space, it is considered an outlier. However,
this method cannot detect outliers between two dense clus-
ters. Yang et al. proposed MOD [24] (Mean-shift Outlier
Detection), an outlier detection method using mean shift. It
measures outliers based on the distance of data shifts: larger
distances indicate higher likelihood of being an outlier. How-
ever, this method is inefficient due to iterative shifts and
may not detect local outliers well. In summary, Distance-
based methods are good at detecting global outliers but have
difficulty effectively identifying local outliers. Additionally,
selecting appropriate parameters is crucial, such as choosing
the number of neighbors (k) in many distance-based meth-
ods.

However, density-basedmethods effectively address these
issues by considering the density relationships of data objects
within a neighborhood. These methods compare the density
of a data object to the density of its surrounding neighbor-
hood, where objects with lower density may be identified as
outliers. Breunig et al. introduced the concept of local out-
lier factor (LOF) [25], which measures the outlier degree
of data points by computing LOF scores. This method per-
forms poorly on sparse datasets, and if the density of outliers
is close to their neighborhood density, normal scoring may
not be achieved. Subsequently, other methods were intro-
duced to improve the efficiency of the LOF algorithm, such
as the connectivity-based outlier factor (COF) [26], a robust
kernel-based outlier factor (RKOF) [27], kernel density esti-
mates outlier score (KDEOS) [28], influenced outlierness
(INFLO) [29] and neighborhood weighted local outlier fac-
tor (NWLOF) [30]. However, density-based outlier detection
methods mostly face the problem of low density, where the
density of outliers cannot be well distinguished from the den-
sity of their neighborhoods in sparse datasets. Additionally,
density-based methods face parameter selection issues, such
as setting the parameter k for object neighbors.

In addition, numerous algorithms have been developed to
enhance existing outlier detection methods by combining the
advantages of density and distance. For instance, Zhang et al.
proposed a two-parameter outlier detection algorithm called
TPOD [31] (Two-Parameter Outlier Detection). This method
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utilizes the ratio of local density to relative distance as an out-
lier factor and optimizes the algorithm through a combination
of these two parameters. Similarly, Li et al. introduced an out-
lier detection algorithm based on a density-distance decision
graph [32] (Outlier Detection Based on the Density-Distance
Decision Graph). This approachmeasures the degree of local
outlierness using local density ratios and assesses global out-
lierness using distance, subsequently integrating these two
metrics to create a density-distance decision graph and com-
pute the product of the two indicators as thefinal outlier score.
Although many existing algorithms attempt to address the
limitations of density and distance by combining them, this
remains a challenging issue that requires further resolution.

In summary, the aforementioned methods do not effec-
tively address issues such as excessive dependence on
parameter selection, as well as the handling of data that is
sensitive to low density and variations in local density. To
overcome these challenges, this paper proposes an outlier
detection algorithm based on the relative skewness density
ratio, named SDROF (Outlier Detection AlgorithmBased on
Relative Skewness Density Ratio Outlier Factor). First, the
algorithm introduces a method for adaptively selecting the
value of k using the concept of natural neighbors, determin-
ing the natural neighborhood to avoid uncertainties caused
by manually setting the value of k. Then, it defines relative
skewness to characterize the distribution of data objects and
their natural neighborhoods, where relative skewness reflects
the distance of data objects from their neighborhoods; global
outliers often have greater distances. Next, to address the
problem of low-density patterns, the algorithm defines local
density ratio to extract local information of data objects,
thereby improving the algorithm’s ability to identify local
outliers. Finally, the ratio of relative skewness to local den-
sity ratio is used as the outlier factor, and the difference
between the outlier factor of data objects and their neigh-
borhoods is calculated as the final outlier value measure; the
greater the difference, the more likely it is an outlier. This
algorithm can adapt well to datasets with complex density
distributions and can identify both global and local outliers.
Additionally, for high-dimensional datasets, this paper uses
Manhattan distance instead of Euclidean distance to enhance
the algorithm’s detection capabilities on high-dimensional
datasets.

The main contributions of this paper are summarized as
follows:

1. This paper applies the concept of natural neighbors to
the SDROF algorithm, eliminating the need to manu-
ally define the number of neighbors k. This avoids issues
of redundant or insufficient neighbor information caused
by parameter selection, resulting in a more stable perfor-
mance of the SDROF algorithm that does not depend on
the k value.

2. A new outlier measure, the Relative Skewness Density
Ratio Outlier Factor, is introduced. This method uses
the ratio of relative skewness to local density ratio as
an outlier factor. Relative skewness clearly describes the
distribution relationship between data objects and their
natural neighborhoods, considering outlierness from a
global perspective, while the local density ratio extracts
local information, characterizing the closeness between
data objects and natural neighbors and evaluating outlier-
ness from a local perspective.

3. This concept of factor difference is proposed to com-
pute the deviation of theRelative SkewnessDensityRatio
Outlier Factor between data objects and their neighbors.
This effectively captures local differences between data
objects and neighbors, allowing for a deeper exploration
of the distribution relationship based on the Relative
Skewness Density Ratio Outlier Factor.

4. This paper validates the correctness and effectiveness of
the SDROF algorithm through comparative experiments
on synthetic and real datasets. Compared to existing algo-
rithms, SDROF demonstrates significant improvements
in detecting local outliers and achieves better perfor-
mance.

The rest of this paper is organized as follows: Sec-
tion 2 outlines the prerequisites, including concepts related
to k-nearest neighbors, natural neighbors, and skewness.
Section 3 introduces the proposed method. Section 4 demon-
strates the effectiveness of our approach through experimen-
tal results on synthetic and real-world datasets. Section 5
presents the conclusions.

2 Prerequisite

Prior to exploring the subsequent content, it is imperative to
establish a groundwork of fundamental concepts and defini-
tions. These serve as the prerequisites and cornerstone for
comprehending the methodologies presented in this paper.
This section will elucidate the pertinent notions of K Nearest
Neighbors, Natural Neighbors, and Skewness.

2.1 K nearest neighbors

Definition 1 (KNN distance of xi). The k-nearest neigh-
bor distance [33] of a data object xi refers to the average
Euclidean distance from xi to its k nearest neighbors, denoted
as di . The calculation formula is as follows:

di = 1

k

∑

x j∈K NNi

dist(xi , x j ) (1)
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In (1), KNN represents the k nearest neighbors of the
data object xi , and dist(xi ,x j ) denotes the Euclidean distance
between xi and x j . The KNN distance can reflect the com-
pactness between data objects.

Definition 2 (KNN local density of xi).Thek-nearest neigh-
bor local density [33] of a data object is defined as the
reciprocal of the average distance to its k nearest neighbors,
denoted as deni . The calculation formula is as follows:

deni = 1

di
= k∑

x j∈K NNi
dist(xi , x j )

(2)

The KNN local density is a classic density calculation
method based on Euclidean distance. When a data object is
located near a dense cluster, its KNN local density will be
large, whereas when it is located near a sparse cluster, its
KNN local density will be relatively small.

2.2 Natural neighbors

In recent years, natural neighbors [34] have been widely
applied in data mining fields such as clustering analysis
and outlier detection. Zhu et al. [35] proposed a novel con-
cept of parameter-free natural neighbors, inspired by human
social networks: when two individuals consider each other as
friends, they are considered true friends. This concept can be
extended to data objects, where if data object x is a neighbor
of data object y and y is also a neighbor of x , then data objects
x and y are natural neighbors. The natural neighbor method
does not require any parameters to determine the neighbor-
hood of data objects. Its core idea is to gradually expand the
search scope to find neighbors until all objects are considered
neighbors, or until the number of individuals not considered
neighbors by other objects remains stable.

Definition 3 (Natural Neighborhood). The natural neigh-
borhood of data object xi , denoted as NaN (xi ), refers to the
closest neighbor set searched during the process of finding
natural neighbors based on the parameter λ, which represents
the adaptively selected number of neighbors.

In Algorithm 1, r represents the search rounds, K NN (x)
denotes the nearest neighbors of data object x , NaN (x) rep-
resents the natural neighborhood of x , and Nb(x) indicates
the number of objects considering x as a neighbor. To shorten
the search time, this paper utilizes the KD-Tree data structure
to enhance the efficiency of neighbor search.

2.3 Skewness

Skewness [36] has been widely applied in the field of data
mining. Skewness refers to the degree of deviation of a data
object relative to its neighbors. If a data object is located at

Algorithm 1 Natural neighbor search algorithm.
Input: D(the dataset);
Output: λ (the natural characteristic value), NaN (the set of natural
neighbors)
Initial:K NN (x) = ∅, NaN (x) = ∅, Nb(x) = 0, r = 1, num = 0;
Create a KD-Tree T from the dataset D.
while true do

for each xi ∈ T do
Find the r-th neighbor x j of xi .
K NNr (xi ) = K NNr−1(xi ) ∪ {x j };
Nb(x j ) = Nb(x j ) + 1;

end for
num = count(Nb(xi ) == 0);
if num remains unchanged or num == 0 then

break;
end if
r = r + 1;

end while
for each xi ∈ D do

NaN (xi ) = K NNr (xi );
end for
λ = r ;
return λ, NaN ;

the center of a cluster, its neighbors will be evenly distributed
around it. However, if a data object is located at the boundary
of a cluster or far away from the cluster, its neighbors will
significantly lean towards one side. Figure 1 illustrates the
skewed distribution of two-dimensional data objects with the
nearest neighbor parameter k = 4. In the figure, three points
A, B, and C are taken as centers, and a Cartesian coordinate
system is established. The dimensions of the neighbors of
these three points are mapped onto the x-axis and y-axis,
respectively. From the figure, it can be observed that point
A is located in a dense area, and its neighbors are evenly
distributed around the coordinate axes. Point B is located at
the edge of the cluster, with its neighbors leaning towards
one side of the coordinate axis. Point C is situated at a more
distant position, with its neighbors all mapped within the
same quadrant of the coordinate axis. Compared to point
A and point B, point C obviously deviates more from their
neighborhoods. Moreover, as the expansion continues from
the central area outward, the degree of deviation of the data
objects at the periphery gradually increases. This illustrates
how the position of a data object can affect its skewness
relative to its neighbors.

Definition 4 (Skewness). Skewness of data object xp refers
to the degree of skewness of xp relative to its k-neighborhood,
denoted as Sc(xp). The calculation formula is as follows:

Sc(xp) =
∑m

j=1
∑k

i=1 (xi j − xpj )2

k
, xi j ∈ K NNp (3)

In (3),m represents the dimensionality of the dataset, and
k denotes the number of neighbors of a data object. From
the formula, it can be observed that when a data object xp
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Fig. 1 Skewed distribution of
data

is located in a dense region, the distances between xp and
its neighbors in each dimension are relatively small, result-
ing in a small skewness value. As the data object expands
outward from the dense region, the outer data objects grad-
ually deviate from their neighborhoods, and the distances
between them and their neighbors in each dimension gradu-
ally increase. The skewness also increase, and the degree of
outlier gradually increase.

3 SDROF algorithm

In this section, we present the full process and basic defini-
tions of the SDROF algorithm. SDROF integrates global and
local outlier detection methods, offering a detailed and pre-
cise assessment of data object abnormalities. The algorithm
combines the strengths of relative skewness and local density
ratio.Relative skewness, incorporating the concept of relative

distance, portrays the distribution between data objects and
their neighborsmore clearly, enablingglobal anomaly assess-
ment. The local density ratio captures local information and
proximity between objects, facilitating local outlier detec-
tion. By combining these two indicators as a ratio, SDROF
provides a comprehensive anomaly assessment from both
perspectives. To delve deeper into data object distribution,
we introduce the concept of factor difference, which mea-
sures deviations in the relative skewness density ratio outlier
factor between objects and their neighbors, effectively cap-
turing local differences.

3.1 Definition of SDROF algorithm

In this section, we introduce a novel outlier detection algo-
rithm based on the Relative Skewness Density Ratio Outlier
Factor (SDROF) and demonstrate its entire process. We
incorporate the concept of relative distance into the frame-
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work of skewness, leading to the development of a new
metric, relative skewness. Relative skewness provides a
clearer characterization of the distributional relationship
between a data object and its natural neighbors, thereby
assessing the outlierness of data objects from a global per-
spective. Additionally, we define the local density ratio, a
metric that extracts local information about data objects and
captures the closeness between a data object and its natural
neighbors, thus evaluating outlierness from a local perspec-
tive. We combine relative skewness and local density ratio
in a ratio form to form the Relative Skewness Density Ratio
Outlier Factor, enabling a comprehensive assessment of out-
lierness from both global and local perspectives. To further
explore the distributional relationship of data objects based
on the Relative Skewness Density Ratio Outlier Factor, we
propose the concept of factor difference. The factor dif-
ference calculates the deviation of the Relative Skewness
Density Ratio Outlier Factor between a data object and its
neighbors, thereby more effectively characterizing the local
differences between a data object and its natural neighbors.

Definition 5 (KNNRelative Distance of xi). The KNNRel-
ative Distance ωi refers to the shortest distance to the data
object xi among the objects whose density is greater than xi
among its k nearest neighbors. The calculation formula is as
follows:

ωi = {
min(dist(xi , x j ))

∣∣x j ∈ K NNi , den j > deni
}

(4)

In (4), deni represents the local density of the data object
xi . TheKNNRelativeDistanceωi is a density-based distance
metric, which varies with the density change around the data
object itself, thereby identifying the shortest distance tending
towards dense clusters.

Definition 6 (Relative Skewness of xi). Relative skewnes
ReSi refers to the product of the skewness of data object xi
and its KNN relative distance. The calculation formula is as
follows:

ReSi = Sc(xi ) ∗ ωi =
∑m

j=1
∑λ

i=1 (xi j − xpj )2 ∗ ωi

λ
,

xi j ∈ NaNi

(5)

In (5), Sci represents the skewness of data object xi , ωi

represents the relative distance of data object xi with respect
to its NaN neighbors, NaNi represents the natural neighbors
of the data object, and λ represents the number of data objects
in NaNi . RelativeSkewness ReSi characterizes the deviation
degree of data object xi relative to its k natural neighbors.

The concept of relative skewness introduces the notion of
relative distance based on skewness. When a data object is
located in a dense region, its skewness tends to be small
because the distances between data objects in the dense

region are relatively close. Consequently, in the k nearest
neighbor region of this data object, the distances to the data
objectswith a higher density are also small, indicating a small
relative distance for this data object. As shown in (5), the rel-
ative skewness value of data objects in dense regions tends to
be small. Conversely,when a data object is situated in a sparse
region, both the skewness and relative distance tend to be
large, resulting in a large relative skewness value. The com-
bination of skewness and relative distance further enhances
the deviation degree of data objects from their neighbor-
hoods, highlighting the outlier characteristics of data objects,
thereby enabling the algorithm to effectively detect outliers.

Definition 7 (Local Density Ratio of xi).The Local Density
Ratio ldri refers to the ratio of the density of data object xi
to the average density of data objects in its natural neighbor-
hood. The calculation formula is as follows:

ldri = λ × deni∑
j∈NaNi

den j
(6)

In (6), deni and den j represent the local densities of
data objects xi and x j respectively, NaNi denotes the natural
neighbor set of data object xi , and λ represents the number
of data objects in the natural neighborhood NaNi .

From the description of Definition 7, it can be seen that
the local density ratio ldr is related to both the density of
the data object itself and the densities of its neighbors. For
normal data, their distribution is similar to that of their neigh-
borhood, so the difference between the density of the data
object itself and the average density of its neighbors is not
significant, and the local density ratio tends to be close to
1. However, for outliers, their distribution differs from that
of their neighborhood, resulting in a significant difference
between the density of the data object itself and the average
density of its neighbors, leading to a large variation in the
local density ratio. If only the local density of the data object
itself is considered, it may not be a good indicator for dis-
tinguishing outliers. For example, a data object located in a
normal sparse cluster, i.e. , a low-density area, although it is
a normal data object, may be mistakenly identified as an out-
lier because it has a smaller density compared to data objects
in high-density areas. Because the local density ratio reflects
the relative size of densities in the form of a ratio, it is more
adaptable to situations with complex density distributions.

As shown in Fig. 2, point A is located near a high-density
region, indicating a local outlier, while point B resides in a
low-density area, representing a normal point within a sparse
cluster. However, if only the local density of each point is
considered, point A would likely have a higher local den-
sity compared to point B, as point A is closer to other data
objects in its neighborhood. Consequently, point B might
erroneously be considered as an outlier. By utilizing the local
density ratiomethod, it’s observed that the average density of
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Fig. 2 Local density

point A’s neighborhood significantly exceeds its own density,
resulting in a local density ratio (ldr ) much smaller than 1 for
point A. Conversely, point B exhibits a similar distribution
to its neighborhood, leading to an ldr close to 1. Thus, the
local density ratio method correctly identifies point A as the
more probable outlier.

Based on relative skewness and local density ratio, it can
be observed that normal data objects exhibit smaller relative
skewness and larger local density ratio values. Conversely,
outliers tend to have larger relative skewness and smaller
local density ratio values. Therefore, this section proposes
a novel outlier measurement metric, termed as the rela-
tive skewness-density ratio outlier factor. This outlier factor
effectively captures the relationship between the deviation
degree of data objects and their local density, thereby high-
lighting the outlier degree for each data object.

Definition 8 (Relative Skewness-Density Ratio Outlier
Factor of xi).The relative skewness-density ratio outlier fac-
tor (SDROFi ) is defined as the ratio of the relative skewness
to the local density ratio of a data object. The calculation for-
mula is as follows:

SDROFi = ReSi
ldri

(7)

In (7), ReSi represents the relative skewness of the data
object xi , and ldri represents the local density ratio of the
data object xi .

This outlier factor is composed of the ratio of relative
skewness and local density ratio. From a distance perspec-
tive, this section combines relative distance with skewness,
using relative skewness to characterize the degree to which
data objects deviate from their neighbors. Typically, out-
liers have greater distances from their neighbors, indicating
a higher degree of deviation. From a density standpoint, the
local density ratio represents the relative difference in den-
sity between a data object and its neighbors through a ratio.
This effectively captures the density differences between data
objects and their neighbors, regardless of whether they are in
high-density or low-density regions. In general, outliers tend
to have lower local densities compared to their neighbors,

resulting in smaller local density ratios. Therefore, the rela-
tive skewness density ratio outlier factor (SDROF) highlights
the outlier characteristics, enabling better outlier detection.
The larger the outlier value, the more likely it is to be an
outlier.

Definition 9 (Factor Difference of xi). Factor Difference
(FDi ) refers to the average difference between the outlier
values of data object xi and its neighbors. The calculation
formula is as follows:

FDi =
∑

j∈NaNi

∣∣SDROFi − SDROFj
∣∣

λ
(8)

In (8), λ represents the number of natural neighbors. To
better characterize the local differences between data objects
and their neighbors, this section introduces the factor dif-
ference to calculate the deviation of outlier values between
data objects and their neighbors. Normal data objects exhibit
small differences in outlier values with their neighbors, and
their outlier values are close to each other. Conversely,
outliers demonstrate distinct characteristics from their neigh-
bors; the outlier values of outliers are significantly larger
than those of surrounding normal data objects, resulting in
larger factor differences. By incorporating factor differences
on top of the relative skewness density ratio outlier factor,
thismethod further extracts local differentiation information,
enabling a better characterization of the outlier degree of data
objects.

3.2 Description of SDROF algorithm

Based on the relevant definitions proposed in Section 3.1,
this section presents an outlier detection algorithm based
on relative skewness density ratio outlier factor. The algo-
rithm first employs the natural neighbor search algorithm
described in Algorithm 1 to select the natural neighbors for
each data object and determine the adaptively selected num-
ber of neighbors, λ. Then, it executes the outlier detection
algorithm based on relative skewness density ratio outlier
factor as described in Algorithm 2. In Algorithm 2, it first
computes the skewness and relative distances for each data
object and calculates the relative skewness value based on
the concept of relative skewness, which better characterizes
the deviation degree of data objects under complex data dis-
tributions. Next, it calculates the density for each data object
and the average density of its natural neighbors, using their
ratio as the local density ratio for the object. The local density
ratio reflects the relative density size and is more adaptable to
complex density distributions. Subsequently, it calculates the
ratio of relative skewness and local density ratio as the rel-
ative skewness-density ratio outlier factor (SDROF), which
highlights the outlier characteristics of data points. Finally, it
computes the deviation of outlier values between each data

123



67 Page 8 of 21 Z. Zhang et al.

object and its neighbors as the final outlier value measure-
ment, denoted as FDi . The factor difference, FDi , further
extracts local differentiation informationon topof the relative
skewness-density outlier factor, enabling a better character-
ization of the outlier degree of data objects. The SDROF
algorithm ultimately selects the top o data objects with the
largest factor differences as outliers, where the value of o is
determined based on the number of labeled outliers in the
dataset. Algorithm 2 describes the specific steps of the out-
lier detection algorithm based on relative skewness density
ratio outlier factor.

Algorithm 2 Outlier detection algorithm based on relative
skewness density ratio outlier factor (SDROF).
Input: D (the dataset), λ (the natural characteristic value), NaN (the
set of natural neighbors).

Output: o outliers.
Initial:K NN (x) = ∅, NaN (x) = ∅, Nb(x) = 0, r = 1, num = 0;
for each x ∈ D do

Compute the local density of x using (2).
Compute the skewness of x using (3).

end for
for each x ∈ D do

Compute the K NN relative distance of x using (4).
end for
for each x ∈ D do

Compute the relative skewness of x using (5).
Compute the local density ratio ldri of x using (6).

end for
for each x ∈ D do

Compute the relative skewness density outlier factor (SDROFi )
of x using (7).
end for
for each x ∈ D do

Calculate the factor difference (FDi ) of x using (8).
end for
Sort the factor differences of each data object in descending order.
Output the top o data objects as outliers.

3.3 SDROF algorithm analysis

3.3.1 Rationality analysis

In the SDROF algorithm, first, the natural neighbors of each
data object are identified using Algorithm 1. The natural
neighbor search algorithm avoids the uncertainty introduced
by manually setting the value of k and speeds up the search
process byusing theKD-Tree indexing structure.Then, based
on the natural neighbors, the relative skewness and local den-
sity ratio of each data object are computed to characterize
the degree to which a data object deviates from its neighbors
and the relative density. Finally, the ratio of relative skew-
ness to local density ratio is used as the relative skewness
density ratio outlier factor (SDROF), and the factor differ-
ence is introduced to highlight the local differences between

the data object and its neighbors, further characterizing the
degree of outlier of the data object. A larger factor difference
indicates a higher likelihood of being an outlier.

3.3.2 Time complexity analysis

The time complexity of the SDROF algorithm can be decom-
posed into three parts: (1) Natural Neighbor Search: When
executing the natural neighbor search algorithm using the
KD-Tree indexing structure, the time complexity is O(n ·
logn), where n is the number of data objects. (2) Comput-
ing Relative Skewness and Local Density Ratio: Calculating
the relative skewness and local density ratio for each data
object has a time complexity of O(n · m · λ) + O(n · λ),
wherem is the dimensionality of the dataset and λ is the nat-
ural neighbor feature, representing the adaptively selected
number of neighbors. (3) Calculating Factor Difference for
Each Data Object: The time complexity of computing the
factor difference for each data object is O(n · λ). There-
fore, the overall time complexity of the SDROF algorithm is
O(n · logn) + O(n ·m · λ) + O(n · λ) + O(n · λ), which can
be simplified to O(n(logn + m · λ)).

3.3.3 Space complexity analysis

The space complexity of SDROF consists of two main parts:
(1) Algorithm 1 requires storing the natural neighbor infor-
mation for all data objects, leading to a space complexity of
O(λ·n),whereλ represents the number of adaptively selected
neighbors and n is the number of data objects. (2) Algorithm
2 needs to store results such as local density ratios, relative
skewness, relative skewness density ratios, factor differences,
and temporary data structures generated during computation,
resulting in a space complexity of O(n). Thus, the overall
space complexity of the SDROF algorithm is O(λ · n).

4 Experimental evaluation and analysis

The experimental setup is illustrated in Table 1, primarily
encompassing the software and hardware environment, along
with the parameters corresponding to each configuration.

To evaluate the performance of the SDROF algorithm,
experiments are conducted using seven comparison algo-
rithms: LOF [25], COF [26], NANOD [37], ADD [38],
RDOF [39], MOD [24], and DOD [24]. These seven algo-
rithms are all based on nearest neighbors and are thus highly
comparable to the SDROF algorithm presented in this paper,
demonstrating its detection performance. Additionally, the
SDROF algorithm does not require parameter selection,
whereas the parameters for comparison algorithms are kept
consistent with those in the original literature. The compared
algorithms are detailed in Table 2.
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Table 1 Experimental setup Software and hardware environment Parameters

CPU Inter Core i9-12900H 2.5GHz 14-core

Memory 32.0 GB

Hard Disk 512 GB

Operating System 64-bit Windows 11

Develop Environment PyCharm

Compilation Environment Python 3.8

Virtualization Tools Python 3.8

4.1 Experimental evaluation indicators

This paper will evaluate the performance of the proposed
algorithm using three evaluation metrics: precision (Pr), area
under the ROC curve (AUC), andRank Power (RP) [39]. Pre-
cision is used to indicate the proportion of correctly detected
outliers to the total number of outliers, as shown in (9).

Pr = o

n
(9)

In (9), n represents the total number of outliers in the
dataset, and o represents the number of truly outliers among
the top n outliers output by the algorithm. As can be observed
from the equation, a higher value of Pr indicates that the
algorithm has correctly detected more outliers.

Due to the presence of class imbalance in most datasets,
particularly in the field of outlier detection where outliers
constitute only a small portion of the dataset, the Area Under
the Receiver Operating Characteristic Curve (AUC) is insen-
sitive to the balance of sample classes. In situations of sample
imbalance, it can still provide a reasonable evaluation of the
classifier. Therefore, using the AUC value as an evaluation
metric is highly appropriate. The ROC graph can be deter-
mined by evaluation of all possible thresholds, suggesting
that the number of samples correctly classified (abnormal
scores) known to be true-positive changes with the num-
ber of false-positive samples (ordinary or inliers) [37]. From
a probabilistic perspective, AUC can be understood as the
probability that the predicted probability of positive samples
exceeds that of negative samples. In this paper, positive sam-

ples refer to outliers, with values ranging from 0 to 1. A
higher AUC value indicates a better performance in predict-
ing outliers. The AUC can be expressed as:

AUC =
∫ 1

0
ROC(t) dt (10)

Precision is used to assess the detection capability of the
algorithm, but it overlooks the positions of the detected out-
liers. This paper employs Rank Power to determine the order
of true outliers among the outlier scores generated by the
algorithm. For instance, if the algorithm outputs 10 outliers,
among which 5 are true outliers, these 5 outliers can be posi-
tioned either near the top or near the bottom. Although the
precision calculated remains the same, the algorithm’s per-
formance differs. Sorting the outlier scores in descending
order, the better the performance of the algorithm, the higher
the position of the outliers. The formula for calculating the
Rank Power (RP) is shown as follows:

RP = t0(t0 + 1)

2(
∑t0

i=1 Ri )
(11)

In (11), t0 represents the number of true outliers among
the first t data objects, and Ri denotes the position of the
i-th true outlier. For a fixed value of t , a higher RP value
indicates better performance of the algorithm. If all the first
t data objects are true outliers, the maximum value of RP is
1.

Table 2 The compared
algorithms

Algorithm Basis Publication and year

LOF Density ACM SIGMOD, 2000

COF Density Advances in Knowledge Discovery and Data Mining, 2002

NANOD Density Neural Computing and Applications, 2021

ADD Distance Applied Intelligence, 2022

RDOF Density Expert Systems, 2022

MOD Meanshift Pattern Recognition, 2021

DOD Meanshift Pattern Recognition, 2021
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Fig. 3 Data distribution of synthetic Datasets from D1 to D6

4.2 Description of experimental data for algorithm
SDROF

To examine the outlier detection capability of the proposed
algorithm under different data distributions, the SDROF
algorithm conducted comparative experiments using six syn-
thetic two-dimensional datasets and four UCI real-world
datasets. Figure 3 displays the data distributions of the six
synthetic datasets, where the red "×" denotes outliers and the
remaining blue "•" represents normally distributed points.
Table 3 presents the characteristics of different synthetic
datasets, including the number of samples in each dataset,
the total number of outliers, and the proportion of outliers in
the total samples.

Combining the data distribution and data characteristics
from Fig. 3 and Table 3, it is evident that dataset D1 consists
of two spherical clusters of different sizes, with the sparse
cluster located in the top right corner and the dense clus-
ter in the bottom left corner. This dataset contains a total of
1043 samples, including 43 outliers. Dataset D2 exhibits a

more complex data distribution, composed of four spheri-
cal clusters of varying sizes, with the cluster in the top left
corner being the sparsest, presenting a low-density pattern
issue. There are 1000 samples in this dataset, with a total of
85 outliers, including both global and local outliers. Dataset
D3 comprises three nested rectangular clusters, with outliers
scattered around these clusters. It consists of 1256 samples,
including 43 outliers. Dataset D4 is composed of clusters of
different shapes, including one U-shaped cluster and three
spherical clusters, totaling 1372 samples. Dataset D5 con-
sists of two S-shaped clusters, with outliers dispersed around
the clusters. There are 2024 samples in this dataset, with a
total of 64 outliers. Dataset D6 consists of a spiral cluster,
with the density of the cluster gradually becoming sparse
from the center of the spiral outward. Outliers are distributed
around the cluster. It contains 2259 samples, including 159
outliers. Overall, the six synthetic datasets exhibit complex
data distributions, with variations in cluster density, sparsity,
and shape across datasets. They encompass both global and
local outliers, serving as effective benchmarks for evaluating

Table 3 The data characteristics
of the synthetic datasets utilized
in the experiments for the
SDROF algorithm and other
algorithms

Dataset Number of instances Number of outliers Outlier ratio

D1 1043 43 4.1%

D2 1000 85 8.5%

D3 1256 43 3.4%

D4 1372 72 5.2%

D5 2024 64 3.2%

D6 2259 159 7.0%
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Table 4 The data characteristics
of real datasets used in the
SDROF algorithm and other
algorithm experiments

Dataset Number of instances Number of attribute Number of outliers

Wdbc 390 30 33 (8.5%)

Ecoli 168 7 25 (14.9%)

Pendigits 1641 17 20 (1.2%)

Vowels 1456 12 50 (3.4%)

Annthyroid 7200 6 534 (7.42%)

Ionosphere 351 33 126 (36%)

Letter 1600 32 100 (6.25%)

Pima 768 8 268 (35%)

Toxicity 171 1203 56 (32.7%)

Period Changer 90 1177 27 (30%)

algorithms’ outlier detection capabilities in diverse scenar-
ios.

Additionally, this paper utilizes 10 real-world datasets
from the UCI (University of California, Irvine) Machine
LearningRepository to evaluate the SDROFalgorithm. In the
domain of outlier detection, these datasets require additional
preprocessing. Specifically, for datasets with imbalanced
classes, the majority class is labeled as normal, while the
minority class is designated as anomalous. For datasets with
reasonably balanced classes, a uniform downsampling of one
of the majority classes is employed to generate the minority
class.The Wdbc dataset consists of 390 samples of breast
cancer cases, including 33 outliers, accounting for 8.5% of
the dataset. Each sample is described by 30 attributes. The
Ecoli dataset comprises 168 samples of protein localization
sites, with 25 outliers, representing 14.9% of the dataset.
Each sample contains 7 attributes. The Pendigits dataset con-
tains 1641 handwritten digit samples, including 20 outliers,
making up 1.2% of the dataset. Each sample is characterized
by 17 attributes. The Vowels dataset includes 1456 Japanese
vowel samples, with 50 outliers, accounting for 3.4% of the
dataset. Each sample consists of 12 attributes. The attribute
range across all real datasets falls between 7 and 30, while
the outlier ratio ranges from 1.2% to 14.9%. The Annthyroid
dataset comprises 7200 thyroid disease samples, including
534 outliers accounting for 7.42% of the total. Each sample
in this dataset possesses 6 attributes. The Ionosphere dataset
consists of 351 ionosphere data samples, with 126 outliers

representing 36% of the total. Each sample in this dataset
has 33 attributes. The Letter dataset encompasses 1600 let-
ter samples, among which 100 are outliers, contributing to a
6.25% outlier ratio. Each sample in this dataset contains 32
attributes. The Pima dataset is made up of 768 diabetes sam-
ples from Native Americans, featuring 268 outliers, which
translates to a 35% outlier ratio. Each sample in this dataset
has 8 attributes. In addition, two high-dimensional datasets
(Number of attribute> 1000) are selected to assess SDROF’s
performance. The Toxicity dataset comprises 171 molecules
, including 56 outliers accounting for 32.7%of the total. Each
sample in this dataset possesses 1203 attributes. Lastly, the
Period Changer dataset consists of 90 non-toxic molecules
, with 27 outliers representing 30% of the total. Each sam-
ple in this dataset has 1177 attributes. Table 4 presents the
data characteristics of various real-world datasets, showcas-
ing a range of attribute counts from 6 to 1203 and outlier
proportions varying between 1.2% and 36%. On the whole,
these 10 real-world datasets exhibit varying sample sizes,
dimensionality, and outlier proportions, reflecting the diver-
sity of data distributionswithin them. This diversity enables a
robust evaluation of algorithms’ outlier detection capabilities
in realistic scenarios.

4.3 Synthetic dataset experiments and analysis

Table 5 illustrate the precision of the SDROF algorithm com-
pared to seven other algorithms on various synthetic datasets.

Table 5 The Precision of
SDROF algorithm and other
algorithms on synthetic datasets

Dataset LOF COF NANOD ADD RDOF MOD DOD SDROF

D1 0.930 0.953 0.325 1.000 0.302 0.884 0.884 1.000

D2 0.847 0.764 0.717 0.864 0.8 0.788 0.776 0.882

D3 0.581 0.860 0.488 0.816 0.465 0.395 0.781 1.000

D4 0.944 0.930 0.180 0.968 0.847 0.722 0.861 0.958

D5 0.750 0.781 0.281 0.840 0.625 0.578 0.516 0.843

D6 0.465 0.610 0.477 0.948 0.252 0.566 0.377 0.867

AVG 0.752 0.816 0.411 0.906 0.549 0.656 0.699 0.925

The bold entries are used to emphasize the optimal values of the experimental results
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Additionally, we selected three different types of datasets
from the artificial dataset for outlier detection visualization:
D1, D3, and D6. The detection results are shown in Figs. 4,
5 and 6.

In the synthetic datasets, D1 and D2 consist of spherical
clusters with varying degrees of sparsity, surrounded by both
local and global outliers. The distribution in D1 is simpler,
with both the SDROF and ADD algorithms achieving a pre-
cision rate of 1, indicating excellent performance. Apart from
NANOD and RDOF, which show weaker results, the other
algorithms also performwell. From Fig. 4, it can be observed
that both the LOF and COF algorithms detect almost all of
the global outliers. However, due to their heavy reliance on
local information of data objects, some intra-cluster points

are misclassified as outliers, resulting in poorer performance
compared to the SDROF and ADD algorithms. The NANOD
andRDOF algorithms exhibit similar detection patterns; they
fail to detect most of the global outliers and had a high mis-
classification rate, leading to lower detection accuracy. The
MOD and DOD algorithms produce similar results, detect-
ing nearly all of the global outliers but missing some of the
local outliers. The D2 dataset, however, is more complex
than D1, consisting of four clusters with densely distributed
local outliers, making it more challenging for algorithms to
distinguish. Nonetheless, the SDROF algorithm still demon-
strate strong detection capabilities, achieving a precision rate
of 0.882. This is attributed to the use of relative skewness in
the SDROF algorithm to characterize the degree of deviation

Fig. 4 Outliers detected by LOF, COF, NANOD, ADD, RDOF, MOD, DOD, SDROF on D1
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Fig. 5 Outliers detected by LOF, COF, NANOD, ADD, RDOF, MOD, DOD, SDROF on D3

of data objects, which effectively identifies global outliers,
while the local density ratio enhances the detection of local
outliers. Figure 5 shows that in the line-shaped cluster of the
D3 dataset, only SDROF and ADD effectively detected all
local outliers. Other algorithms either miss some outliers or
exhibit high misclassification rates, highlighting SDROF’s
effectiveness in non-spherical clusters. D3 and D4 are com-
posed of linear clusters with varying shapes. According to
Table 5, the SDROF algorithm achieves precision rates of
1 and 0.958, respectively, on D3 and D4, demonstrating its
effectiveness in identifying outliers in non-spherical clus-
ters. TheADDalgorithm slightly outperforms SDROFon the
D4 dataset in terms of precision. D5 and D6 aim to address
spiral-shaped datasets with outliers. D5 consists of two spi-

ral clusters with numerous local outliers, while D6 has a
single spiral cluster with uniformly distributed outliers. As
seen in Table 5, the ADD algorithm performs best on the D5
dataset, followed closely by SDROF, while the other algo-
rithms struggled. On the D6 dataset, SDROF achieves the
best detection performance, followedbyADD,withNANOD
andRDOF showingweaker results. Figure 6 shows that LOF,
COF, and RDOF have similar outlier detection patterns with
high misclassification rates at cluster centers, resulting in
lower accuracy. NANOD, MOD, and DOD also have sim-
ilar patterns, with high misclassification rates at the edges
or certain parts of the spiral shape, reducing their accu-
racy. In contrast, SDROF and ADD detect most outliers with
lower misclassification rates. In summary, the SDROF algo-
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Fig. 6 Outliers detected by LOF, COF, NANOD, ADD, RDOF, MOD, DOD, SDROF on D6

rithm proposed in this paper consistently outperforms the
other algorithms across the six synthetic datasets, demon-
strating high detection accuracy on datasets with various
cluster shapes and complex density distributions.

The AUC values of the SDROF algorithm and the other
seven comparative algorithms on different synthetic datasets
are shown in Table 6.

From the experimental data in Table 6, it can be observed
that the AUC values of the SDROF algorithm on six syn-
thetic datasets are superior to those of other comparative
algorithms. Specifically, on datasets D1 and D2, the AUC
values are the highest, reaching 1, indicating that the SDROF
algorithm can correctly identify each data object as an out-
lier. Although the performance of the SDROF algorithm
is slightly inferior on dataset D6, with an AUC value of

0.988, it is still effective. Among the comparative algorithms,
the ADD algorithm closely follows the SDROF algorithm,
exhibiting excellent performance on all datasets, with the
highestAUCvalue of 0.999 achieves on datasetD1. TheCOF
algorithm demonstrates stable performance, with an average
AUC value around 0.97 across all datasets. The LOF algo-
rithm has a low AUC value of only 0.78 on the D6 dataset,
but performs well on other datasets, with the best perfor-
mance on the D1 dataset, with an AUC value of 0.999. The
NANOD and RDOF algorithms exhibit the least satisfac-
tory performance among all the compared algorithms, with
low AUC values across all synthetic datasets and insufficient
stability. TheMOD and DOD algorithms also underperform,
outperformingonly theNANODandRDOFalgorithmswhen
compared to the other seven comparative algorithms. Over-
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Table 6 The AUC value of
SDROF algorithm and other
algorithms on synthetic datasets

Dataset LOF COF NANOD ADD RDOF MOD DOD SDROF

D1 0.999 0.998 0.854 0.999 0.899 0.997 0.998 1.000

D2 0.993 0.977 0.894 0.992 0.965 0.986 0.984 0.995

D3 0.935 0.998 0.862 0.998 0.870 0.780 0.825 1.000

D4 0.998 0.998 0.796 0.998 0.958 0.987 0.995 0.999

D5 0.988 0.990 0.752 0.995 0.973 0.958 0.952 0.996

D6 0.780 0.907 0.913 0.979 0.684 0.911 0.875 0.988

AVG 0.948 0.978 0.845 0.993 0.892 0.937 0.938 0.996

The bold entries are used to emphasize the optimal values of the experimental results

all, the SDROF algorithm demonstrates exceptional outlier
detection capabilities, maintaining a stable performance in
identifying outliers even when confronted with various com-
plex data distributions.

The RP values of the SDROF algorithm and the other
seven comparative algorithms on different synthetic datasets
are presented in Table 7, where the value of t is chosen as the
actual number of outliers in the dataset.

From the experimental data in Table 7, it can be observed
that the SDROF algorithm achieves the maximum RP value
of 1 on datasets D1 and D3. This implies that the SDROF
algorithm can identify all true outliers among the top t out-
liers when sorted in descending order. As the distribution of
datasets becomes more complex, such as in datasets D5 and
D6, although the RP values of the SDROF algorithm gradu-
ally decrease, its performance remains satisfactory. Among
the comparative algorithms, the ADD algorithm demon-
strates stability across all six datasets, with its outlier ranking
relatively high among the top t positions.However, on dataset
D6, the RP value of the ADD algorithm is only 0.649,
indicating poor performance. The LOF, COF, MOD, and
DOD algorithms show strong RP values on the simpler D1,
D2, and D4 datasets but perform poorly on more complex
datasets. The NANOD and RDOF algorithms exhibit sub-
optimal performance on synthetic datasets, with relatively
low RP values. Overall, the SDROF algorithm demonstrates
superior RP values across six synthetic datasets compared
to other methods, effectively identifying outliers and posi-
tioning them higher in the ranking. This underscores the

effectiveness of the SDROF algorithm on synthetic datasets
as proposed in this study.

4.4 Experimental analysis on real datasets

According to the experimental data presented in Table 8,
the SDROF algorithm achieves the highest average preci-
sion of 0.595 across 10 real-world datasets. Specifically,
The SDROF algorithm achieves the highest precision on
the Wdbc, Pendigits, Vowels, Letter and Period Changer
datasets, and it also attains the second-best results on the
Annthyroid, Ionosphere, and Pima datasets. Its performance
is average on the Ecoli dataset. In the Ecoli dataset, the
ADD algorithm demonstrates the highest precision, reaching
a value of 1. This result is due to ADD’s use of a threshold-
based method for outlier detection. There are 25 outliers in
this dataset, and ADD correctly identifies 13 of them, result-
ing in very high precision.However, despiteADD’s precision
of 1, it does not detect all outliers, identifying only about
half. Moreover, in the Period Changer dataset, the precision
of the ADD algorithm is a mere 0. This unsatisfactory result
can be attributed to its threshold-based approach, which only
enables the ADD algorithm to detect three outliers, all of
which are identified incorrectly. The SDROF algorithm per-
forms slightly better than the COF and MOD algorithms on
the Ecoli dataset. In addition, compared to other compara-
tive algorithms, SDROFdemonstrates good performance and
strong stability on the high-dimensional Toxicity and Period
Changer datasets.

Table 7 The RP value of
SDROF algorithm and other
algorithms on synthetic datasets

Dataset LOF COF NANOD ADD RDOF MOD DOD SDROF

D1 0.958 0.940 0.131 0.993 0.179 0.898 0.910 1.000

D2 0.880 0.676 0.307 0.869 0.572 0.774 0.743 0.920

D3 0.218 0.926 0.116 0.924 0.123 0.076 0.094 1.000

D4 0.944 0.959 0.121 0.954 0.402 0.684 0.852 0.985

D5 0.583 0.624 0.062 0.778 0.377 0.279 0.256 0.844

D6 0.147 0.291 0.306 0.649 0.108 0.301 0.234 0.772

AVG 0.621 0.736 0.173 0.861 0.294 0.502 0.515 0.920

The bold entries are used to emphasize the optimal values of the experimental results
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Table 8 The Precision of
SDROF Algorithm and Other
Algorithms on Real Datasets

Dataset LOF COF NANOD ADD RDOF MOD DOD SDROF

Wdbc 0.606 0.363 0.787 0.435 0.58 0.823 0.839 0.848

Ecoli 0.800 0.600 0.840 1 0.8 0.37 0.88 0.760

Pendigits 0.900 0.600 0.85 0.096 0.1 0.9 0.9 0.900

Vowels 0.340 0.500 0.52 0.230 0.28 0.44 0.38 0.660

Annthyroid 0.29 0.24 0.13 0.41 0.16 0.26 0.25 0.31

Ionosphere 0.76 0.77 0.74 1 0.58 0.68 0.71 0.84

Letter 0.46 0.43 0.18 0.46 0.22 0.33 0.25 0.58

Pima 0.37 0.37 0.45 0.5 0.38 0.47 0.45 0.47

Toxicity 0.321 0.303 0.267 0.25 0.285 0.267 0.25 0.285

Period Changer 0.222 0.259 0.185 0 0.259 0.259 0.222 0.296

AVG 0.51 0.44 0.493 0.441 0.336 0.48 0.513 0.595

The bold entries are used to emphasize the optimal values of the experimental results

From the experimental data presented in Table 9, it can
be observed that the SDROF algorithm achieves the highest
average AUC value of 0.815 across 10 real datasets. Specif-
ically, The SDROF algorithm achieves the highest AUC
values on the Wdbc, Pendigits, Vowels, Annthyroid, Let-
ter, Toxicity and Period Changer datasets, and it attains the
second-best result on the Ionosphere dataset. The SDROF
algorithm also performs well on the Ecoli and Pima datasets,
with AUC values of 0.953 and 0.609, respectively. Although
SDROF’s precision on the Ecoli dataset is only better than
that of the COF and MOD algorithms, its AUC value
ranks third among all comparison algorithms and is only
marginally lower than that of the best-performing algo-
rithm. This indicates that the SDROF algorithm’s overall
performance is stable and shows improvement. Addition-
ally, SDROF achieves the highest AUC values among the
competing algorithms on the high-dimensional Toxicity and
Period Changer datasets, further confirming its superiority in
high-dimensional contexts. Overall, the SDROF algorithm
outperforms other comparison algorithms in terms of AUC,

demonstrating excellent outlier detection capability on real
datasets, and maintains effective outlier detection even with
multidimensional and multi-feature datasets.

In Fig. 7, the x-axis represents the number of top t outliers,
while the y-axis denotes the RP values. The total number of
outliers for each dataset is divided into five segments, and
the RP value for each segment is computed. Considering the
RP values across the five sections, the SDROF algorithm
achieves optimal performance on theWdbc, Pendigits, Vow-
els, Annthyroid, Ionosphere, Letter and Toxicity datasets.
On the Ecoli dataset, when t ≤ 15, the RP value of SDROF
consistently remains at 1, indicating that the top t outliers
identified by SDROF are all correct. When t > 20, the RP
values for SDROF and the other seven comparison algo-
rithms rapidly decline, up to t = 25. At t = 25, the RP
value of SDROF is second only to LOF, MOD, and DOD
algorithms. On this dataset, the COF algorithm performs the
worst overall, while the RDOF algorithm shows the great-
est fluctuation in RP values, indicating the least stability.
The performance of other algorithms is relatively similar.

Table 9 The AUC value of
SDROF Algorithm and Other
Algorithms on Real Datasets

Dataset LOF COF NANOD ADD RDOF MOD DOD SDROF

Wdbc 0.964 0.846 0.967 0.925 0.817 0.817 0.980 0.988

Ecoli 0.959 0.900 0.942 0.943 0.918 0.918 0.969 0.953

Pendigits 0.995 0.987 0.979 0.943 0.779 0.779 0.900 0.998

Vowels 0.942 0.960 0.938 0.984 0.850 0.850 0.380 0.988

Annthyroid 0.737 0.709 0.589 0.732 0.629 0.691 0.699 0.762

Ionosphere 0.874 0.856 0.855 0.928 0.774 0.866 0.863 0.924

Letter 0.899 0.881 0.823 0.920 0.782 0.842 0.810 0.946

Pima 0.542 0.518 0.614 0.613 0.537 0.617 0.611 0.609

Toxicity 0.464 0.482 0.451 0.473 0.440 0.479 0.452 0.482

Period Changer 0.489 0.458 0.424 0.458 0.484 0.466 0.474 0.495

AVG 0.787 0.76 0.758 0.792 0.7 0.732 0.714 0.815

The bold entries are used to emphasize the optimal values of the experimental results
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Fig. 7 Comparison of the RP the value between SDROF algorithm and other algorithms on real datasets
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In the Pendigits dataset, the RP values for the ADD and
RDOF algorithms consistently decline and differ signifi-
cantly from those of other algorithms. This is because both
algorithms determine outliers based on thresholds. Specif-
ically, the ADD algorithm identifies a significantly higher
number of outliers compared to the actual number of outliers
in the original dataset, while the RDOF algorithm detects
far fewer outliers than are actually present. These discrepan-
cies lead to notably poor precision and RP values for these
two algorithms. On the Pima dataset, when t ≤ 160, the PR
values of DOD, MOD, NANOD, and ADD algorithms are
higher than that of SDROF. However, as t increases, the gap
between SDROF and these algorithms gradually narrows.
From t > 160 onwards, the RP value of SDROF begins
to converge with or even surpass other algorithms, demon-
strating its stable outlier detection capability. In the Period
Changer dataset, although the RDOF algorithm consistently
achieves the highest RP value, it performs poorly on the other
nine datasets. In contrast, the SDROF algorithm maintains a
high RP value across all datasets. Overall, the SDROF algo-
rithm shows superior outlier detection performance on real
datasets compared to other algorithms, with minimal fluctu-
ation in RP values as t changes. This experiment confirms
that the SDROF algorithm offers stable and efficient outlier
detection performance on multi-dimensional datasets.

4.5 Execution time analysis

In this study, we not only focus on the performance of
the algorithms in outlier detection but also on the execu-
tion time efficiency of the SDROF algorithm. Although the
computational complexity of the SDROF algorithm has been
discussed in detail, we also provide a comprehensive compar-
ison of the execution times of the SDROF algorithm against
other comparative algorithms, as shown in Table 10.

SDROF’s execution time is generally lower than that of
NANOD, ADD, MOD and DOD algorithms, which exhibit

higher computational costs across various datasets. Although
SDROF’s execution time is somewhat less favorable com-
pared to LOF and COF, it maintains stable performance
across different dataset sizes. Specifically, SDROF has an
average execution time of 4.14 seconds, which is more effi-
cient compared toNANOD (54.22 seconds) andADD (53.54
seconds). This indicates that SDROF performs efficiently
in handling datasets of varying scales and complexities. In
practical applications, where dataset sizes are continually
growing, the algorithm’s computational efficiency is crucial.
SDROF not only performswell but also reduces computation
time, enhancing processing capability and user experience.

4.6 Ablation study

To evaluate the contribution of each component of the
SDROF algorithm, we conducted an ablation study on 10
real-world datasets. The study involved comparing the per-
formance of the full model (baseline) with several variants
where specific components were removed (Table 11).

We performed ablation experiments by systematically
removing individual components of the SDROF algorithm.
The following variants are tested:

• Baseline Model: The complete SDROF algorithm with
all components included.

• Relative Skewness: Model with component of Relative
Skewness removed.

• Local Density Ratio: Model with component of Local
Density Ratio removed.

• FactorDifference:Modelwith component of FactorDif-
ference removed.

From the ablation study results, we observe that removing
the relative skewness component from the baseline reduces
global outlier detection ability and accuracy, while increas-
ing misclassification rates due to a greater emphasis on local

Table 10 Execution time of
SDROF compared to other
algorithms on different datasets

Dataset LOF COF NANOD ADD RDOF MOD DOD SDROF

Wdbc 0.61 0.10 4.03 5.89 0.72 6.14 5.54 0.45

Ecoli 0.01 0.03 0.22 0.24 0.10 0.36 0.40 0.12

Pendigits 0.15 1.30 49.80 44.90 1.61 7.90 7.18 3.30

Vowels 0.06 0.68 27.81 24.60 1.32 5.95 4.66 2.53

annthyroid 0.15 11.63 331.04 329.92 8.98 22.71 21.97 19.47

Ionosphere 0.01 0.09 3.62 3.93 0.64 5.56 4.76 1.21

Letter 0.06 0.74 71.32 72.07 2.35 8.96 6.74 8.72

Pima 0.01 0.24 4.86 5.06 0.72 2.27 1.72 1.08

Toxicity 0.47 1.09 40.95 39.09 5.11 2.96 2.93 3.17

Period Changer 0.01 0.07 8.5 9.65 1.86 1.31 1.4 1.3

AVG 0.152 1.60 54.22 53.54 2.35 6.41 5.73 4.14
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Table 11 Ablation Study Results on Real-word Datasets

Dataset Model Variant Pr AUC RP

Wdbc Baseline Model 0.848 0.988 0.803

Relative Skewness 0.212 0.665 0.125

Local Density Ratio 0.848 0.988 0.800

Factor Difference 0.818 0.960 0.546

Ecoli Baseline Model 0.76 0.953 0.659

Relative Skewness 0.24 0.722 0.246

Local Density Ratio 0.76 0.949 0.692

Factor Difference 0.76 0.935 0.584

Pendigits Baseline Model 0.9 0.999 0.854

Relative Skewness 0.45 0.969 0.175

Local Density Ratio 0.9 0.998 0.820

Factor Difference 0.9 0.998 0.820

Vowels Baseline Model 0.66 0.988 0.622

Relative Skewness 0.32 0.877 0.129

Local Density Ratio 0.7 0.980 0.651

Factor Difference 0.7 0.988 0.626

Annthyroid Baseline Model 0.311 0.762 0.144

Relative Skewness 0.219 0.743 0.135

Local Density Ratio 0.311 0.743 0.135

Factor Difference 0.297 0.762 0.144

Ionosphere Baseline Model 0.849 0.925 0.789

Relative Skewness 0.769 0.894 0.728

Local Density Ratio 0.849 0.924 0.786

Factor Difference 0.849 0.923 0.789

Letter Baseline Model 0.58 0.946 0.384

Relative Skewness 0.5 0.897 0.247

Local Density Ratio 0.55 0.932 0.331

Factor Difference 0.54 0.940 0.362

Pima Baseline Model 0.47 0.609 0.408

Relative Skewness 0.332 0.5 0.349

Local Density Ratio 0.467 0.603 0.406

Factor Difference 0.47 0.603 0.408

Toxicity Baseline Model 0.285 0.482 0.324

Relative Skewness 0.285 0.480 0.325

Local Density Ratio 0.285 0.480 0.324

Factor Difference 0.214 0.395 0.290

Period Changer Baseline Model 0.296 0.495 0.306

Relative Skewness 0.185 0.431 0.281

Local Density Ratio 0.296 0.484 0.318

Factor Difference 0.333 0.473 0.306

The bold entries are used to emphasize the optimal values of the exper-
imental results

outliers. This combined effect leads to significantly lower
accuracy compared to the baseline. Removing the local den-
sity ratio componentweakens the algorithm’s ability to detect
local outliers, causing a slight decrease in accuracy, but it
has minimal impact on global outlier detection, resulting
in a smaller performance decline compared to the baseline.
Removing the factor difference component has little effect
on performance since it is intended to further refine local
differentiation on top of the relative skewness density ratio,
contributing to more stable outlier detection. Overall, the
relative skewness component is crucial for algorithm per-
formance, with its removal leading to significant declines
in precision, AUC value, and RP value. In contrast, the
local density ratio and factor difference components have a
smaller impact on model performance. While these compo-
nents contribute to model effectiveness, their influence is not
as pronounced as that of the relative skewness component.
Nonetheless, they play a significant role in maintaining the
algorithm’s effectiveness and stability. These findings pro-
vide valuable insights for future algorithm optimization and
component prioritization.

5 Conclusion and future work

This paper addresses the problem of detecting outliers with
low-density patterns and low local density in proximity-
based outlier detection methods. We propose an outlier
detection algorithm based on the relative skewness density
ratio outlier factor (SDROF). Firstly, the algorithm employs
an adaptive natural neighbor search algorithm to select neigh-
bors for each data object, avoiding the uncertainty caused by
manually selecting the value of k. Then, relative skewness is
introduced along with relative distance to better characterize
the deviation of data objects in complex data distributions.
Secondly, the ratio of a data object’s density to the average
density of its natural neighbors is used as its local density ratio
to highlight variations in local density. Thirdly, the ratio of
relative skewness to local density ratio is defined as the rela-
tive skewness density ratio outlier factor,which highlights the
outlier characteristics of outlier points. Finally, the deviation
of outlier values between each data object and its neighbors
is computed to further describe the local differences between
data objects and their neighbors. The SDROF algorithm was
compared with LOF, COF, NANOD, ADD, RDOF, MOD,
and DOD algorithms in terms of Precision (Pr), AUC values,
and Rank Power (RP). The results demonstrate that the pro-
posed SDROF algorithm achieves high detection accuracy
and exhibits excellent performance across various datasets
with complex distributions.

While the proposed algorithm demonstrates promising
performance across three evaluation metrics, showing robust
outlier detection capabilities, there are still some issues to
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be addressed, such as the efficiency problem when deal-
ing with large-scale datasets. Therefore, enhancing detection
efficiency on large-scale datasets will be a crucial direction
for future research.
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