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Abstract  The phrase "anomaly detection" is often used 

to describe any technique that looks for samples that dif-

fer from expected patterns. Depending on availability of 

data labels, types of abnormalities and applications, many 

anomaly detection techniques have been developed. This 

study aims to give a well-organized and a thorough review 

of anomaly detection techniques. We think it will aid in a 

better understanding of the topic of anomaly detection. It 

also presents the different approaches introduced in the lit-

erature for anomaly detection from images as well as other 

patterns. Despite the common availability of categorical 

data in practice, anomaly detection from categorical data 

has received a relatively little attention as compared to that 

from quantitative data. We divide the anomaly detection 

research methodologies into distinct categories. We describe 

the fundamental anomaly detection techniques, as well as 

their modifications and importantance. In addition, we high-

light the merits and demerits of each category. Finally, we 

discuss the research gaps and limitations encountered, when 

using anomaly detection techniques for categorical data to 

solve real-world problems.

Keywords  Object detection · Anomaly detection · Image 

processing · Medical images

Introduction

Anomaly detection is a serious subject that has been widely 

researched across a wide range of research disciplines and 

application domains. First, this paper offers a review of 

research methodologies for anomaly detection. In addi-

tion, it introduces the analysis of the efficiency of anomaly 

detection techniques across a variety of application areas. 

Although the majority of strategies for identifying anomalies 

are similar, their importance and application areas may vary 

[1]. It is critical to consider the availability of data labels, 

while constructing an algorithm for classification or anomaly 

detection. We may separate anomaly detection techniques 

into three settings based on label availability [2], as shown 

in Fig. 1:

1)	 Unsupervised anomaly detection. We assume that only 

unlabeled data is available for training of the model in 

this context, which is perhaps the most prevalent sce-

nario in anomaly detection [1, 3].

2)	 Semi-supervised anomaly detection. We assume that the 

training dataset is partially labeled and contains both labeled 
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and unlabeled samples in this case. Semi-supervised algo-

rithms are useful in situations, when annotating the entire 

dataset is prohibitively expensive. This environment is espe-

cially common in the anomaly detection sector, since there 

is frequently both labeled and unlabeled data, yet labeling 

of data often needs specialist knowledge, and abnormalities 

can be costly in some circumstances, such as industrial and 

biomedical applications.

In supervised anomaly detection, we presume that the 

dataset is completely labeled. When abnormalities can 

be easily documented, supervised algorithms are prefer-

able [4]–[7]. It is critical to distinguish between supervised 

anomaly detection and binary classification tasks at this 

stage. If normal and abnormal data are supplied during the 

training phase, the problem can be phrased as a supervised 

binary classification problem, and the job will no longer be 

an anomaly detection task. Different classifications will be 

illustrated in the following sections (Fig. 2).

Related work

This paper is concerned with the evaluation of the wide range 

of strategies that have been presented in the field of anomaly 

detection. We would like to classify the techniques, but we 

would like also to see if the analysis reveals any potentially 

general anomaly detection frameworks [8]. An anomaly detec-

tion assignment may face a variety of challenges depending 

on the type of data, such as high false positive rate, high com-

putational cost and lack of a standard datasets for assessment.

Anomaly types

Anomalies are divided into three groups, depending on their 

nature [9, 10]:

	 i.	 Point anomalies. A point anomaly is a single anomalous 

sample that exhibits a pattern irregularity or deviation 

from the normal behavior [11], according to the authors 

Anomaly 

detec�on
Based on data labels

1. Unsupervised 

2. Semi-supervised 

3. Supervised 

Fig. 1   General types of anomaly detection techniques

Fig. 2   Different anomaly detection classifications
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of [12]. A credit card transaction with a large spend 

recorded at a Monaco restaurant, for example, seems to 

be a point anomaly as indicated in Fig. 3, since it devi-

ates greatly from the rest of transactions [13].

	 ii.	 Contextual Anomalies, also identified as conditional 

anomalies, represent a data instance that may be 

regarded unusual under certain circumstances [14]. Both 

contextual and behavioral variables are used to identify 

contextual anomalies. The most common contextual fac-

tors are time and space. A pattern of spending money, 

the incidence of system log events, and any other feature 

used to characterize typical behavior are examples of 

behavioral characteristics.

	iii.	 Collective anomalies or group anomalies. A subcate-

gory of data points that are regarded as a group aberrant 

in comparison to the total dataset are referred to as col-

lective or group anomaly. Each sample in the collective 

anomalies may or may not be an anomalous point in 

itself.

Anomaly detection techniques

Anomaly detection is an important problem that has been 

researched within diverse research areas and application 

domains. Many anomaly detection techniques have been 

specifically developed for certain application domains. This 

survey tries to provide a structured and comprehensive over-

view of the research on anomaly detection. We have grouped 

existing techniques into different categories based on the 

underlying approaches adopted by each technique. The major-

ity of the common detection techniques can be categorized 

into classification-based, nearest-neighbor-based, clustering-

based, and statistical techniques. Some techniques belong to 

research areas such as information theory, and spectral theory 

as shown in Table 1, revealing several different examples of 

anomaly detection techniques. 

Contributions:

We describe the fundamental anomaly detection tech-

niques in addition to (Fig. 4; Table 2)

•	 anomaly types

•	 common anomaly detection techniques

•	 some examples on general anomaly detection tech-

niques

•	 illustration of the anomaly detection for categorical 

data

•	 some examples and applications of anomaly detection 

for categorical data

•	 anomaly detection based on classification

Classifiers include Support Vector Machines (SVMs) and 

neural networks to recognize normal and abnormal data in a 

particular feature space [37]. Anomaly detection strategies 

based on one-class classification presume that all training 

cases have just one class label. Such strategies use a one-

class algorithm to develop a discriminative border around 

the normal examples. The available algorithms include one-

class SVMs [38], and one-class Kernel Fisher Discriminants 

(KFDs) [39]. Anomaly is indicated for any check instance 

that does not fit inside the learned boundary.

In multi-class and one-class settings, neural networks 

have been used to identify anomalies. A rudimentary neu-

ral-network-based multi-class anomaly detection algorithm 

works in two phases. To learn the normal classes, a neural 

network is first trained on the normal training data. Second, 

each test case is sent into the neural network as an input. 

It is normal if the network accepts the test input, and it is 

an anomaly if the network discards the test input [40]. The 

following are some of the benefits of classification-based 

techniques:

(A)	 Classification-based techniques, particularly multi-

class techniques, depend on sophisticated algorithms 

to discriminate between instances belonging to distinct 

classes.

(B)	 Because each test case must be checked according to a 

pre-computed model, the testing step of classification-

based techniques will be quick.

The following are some drawbacks of classification-based 

techniques:

(A)	 Techniques based on multi-class classification depend 

on the obtainability of precise labels for distinct normal 

classes, which is frequently not the case.

Anomalies
Depending on their nature

Point anomalies

Contextual Anomalies

Collec�ve Anomalies

Fig. 3   Anomaly types
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(B)	 Classification-based techniques provide a label to each 

test instance, which might be a disadvantage. Some 

strategies exist for obtaining a probabilistic classifica-

tion, such as anomaly identification using the nearest-

neighbor method.

These strategies are created on the premise that nor-

mal data examples exist in dense neighborhoods, whereas 

anomalies happen far away from their nearest neighbors. The 

distance to the kth nearest neighbor or relative density can 

be used for assessment.

The following are some of the benefits of using closest-

neighbor techniques [40]:

(A)	 One of the biggest advantages of closest-neighbor-

based algorithms is that they are unsupervised and do 

not create any expectations about the data propagative 

distribution. They are solely based on facts.

(B)	 Because the chance of an anomaly forming near a 

neighborhood in the training dataset is quite low, semi-

supervised techniques outperform unsupervised ones in 

terms of missed anomalies.

(C)	 Adaptation of closest-neighbor-based techniques to a 

different data type is simple, requiring only the defini-

tion of an acceptable space measure for the supplied 

data.

The following are the drawbacks of closest-neighbor-

based techniques:

(A)	 When using unsupervised techniques, whether the data 

contains normal examples with insufficient near neigh-

bors or anomalies with sufficient near neighbors, the 

methodology is unsuccessful to appropriately identify 

them, resulting in missing anomalies [37].

(B)	 The false positive rate for semi-supervised techniques 

is significant if the normal examples in test data do not 

contain enough alike normal instances in the training 

data.

(C)	 The testing phase computational cost is also an insignif-

icant problem, as it necessitates calculating the distance 

between every test instance and all instances belonging 

to either the test data or the training data in order to 

calculate the close neighbors.

(D)	 A distance measure created between two data instances, 

which may successfully discriminate between normal 

and abnormal instances, is crucial to the performance of 

a closest-neighbor-based technique. If the data is compli-

cated, such as graphs or arrangements, defining distance 

metrics between instances might be difficult [40].
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•	 Anomaly detection based on clustering.

Anomalies are defined as data instances that are distant 

from the centroid of their nearest cluster, whereas normal 

data instances are considered to belong to a cluster in the 

data. Clustering is a technique for grouping comparable 

data instances into clusters [41, 42]. Although semi-super-

vised clustering [43] has recently been investigated, clus-

tering is generally an unsupervised approach. Some clus-

tering-based anomaly detection techniques are advanced, 

despite the fact that clustering and anomaly detection seem 

to be basic. Anomaly detection techniques based on clus-

tering may be divided into three groups. DBSCAN [44], 

ROCK [45], and SNN clustering [46] are examples of clus-

tering algorithms that do not compel every data item to 

belong to a cluster.

The following are some of the benefits of clustering-

based techniques:

	 i.	 Techniques based on clustering can be used in an unsu-

pervised mode.

	 ii.	 Basically, a clustering-based technique that can deal 

with a particular data type may be typically extended 

to other complicated data types.

	iii.	 Because the number of clusters is constant, the testing 

step for clustering-based techniques is quick.

The following items are some drawbacks of clustering-

based techniques [37]:

i.	 The ability of clustering-based techniques to capture the 

cluster structure of normal instances is greatly depend-

ent on the efficacy of the clustering algorithm.

ii.	 Anomalies are detected as a by-product of clustering in 

many cases. Therefore, clustering-based techniques may 

not be appropriate for anomaly detection.

iii.	 Quite a lot of clustering techniques require that each 

instance be allocated to one of several clusters. This 

might lead to anomalies being allocated to a big clus-

ter, and so being misclassified as regular instances by 

techniques that assume anomalies not belonging to any 

cluster.

iv.	 Some clustering-based techniques are only useful, when 

anomalies do not form meaningful clusters.

•	 Anomaly detection based on statistical techniques.

The term “anomalies” refers to observations that are 

unlikely to have been created by the “background” stochas-

tic model. As a result, anomalies appear in the background 

model as low-probability areas. The background models 

may be [37]:

A.	 parametric models such as Gaussian, Gaussian mixture 

and regression models.

B.	 non-parametric models such as kernel models.

The following basic assumption underpins statistical anom-

aly detection techniques.

Assumption: Anomalies arise in the little-probability 

areas of a stochastic model, whereas normal data examples 

occur in the high-probability regions [40].

The following are some of the benefits of statistical 

techniques:

	 i.	 Statistical techniques give statistically-defensible solu-

tions for anomaly identification if the assumptions 

about the underlying data distribution are valid.

	 ii.	 A statistical technique anomaly score is accompanied 

with a confidence interval, which may be utilised as a 

supplementary data, when creating a conclusion about 

every test occurrence.

	iii.	 Statistical techniques can work in an unsupervised situ-

ation devoid of the necessity for labeled training data 

if the distribution approximation phase is resilient to 

data anomalies.

The following are some of the drawbacks of statistical 

techniques:

i.	 Assuming that data is derived from a certain distribu-

tion is a major drawback of statistical techniques. This 

assumption is frequently incorrect, mainly for high-

dimensional real-world datasets.

ii.	 For the statistical assumption to be reasonable, there are 

a variety of hypothesis test statistics that may be used to 

discover anomalies; selecting the optimum statistics is 

typically difficult [47].

iii.	 While histogram-based algorithms are straightforward 

to construct, they lack the ability to capture interactions 

between distinct features, which is a major drawback 

for multivariate data. An anomaly may include attribute 

values that are quite common separately, but extremely 

unusual when combined, yet an attribute-wise histo-

gram-based approach may fail in detecting such anoma-

lies [37].

•	 Anomaly detection based on spectral techniques.

Principal Component Analysis (PCA) and its extensions 

are the most important tools in this case. The basic premise 

is that an anomaly has deviant coordinates in comparison 

to typical PCA coordinates. Spectral techniques attempt to 

approximate the data using a set of qualities that represent 

the majority of the data variability. The scalability of PCA is 
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good. Nonlinear techniques can reduce temporal complexity 

to a constant sum of dimensions [40]. The dimensionality 

of techniques that conduct Singular Value Decomposition 

(SVD) on the data is often quadratic.

The following are some of the benefits of spectral anom-

aly detection techniques:

(A)	 Spectral techniques provide dimensionality reduction 

automatically, making them suited for high-dimen-

sional datasets. Moreover, they may be utilized in pre-

processing stages before applying any other anomaly 

detection technique to the modified space.

(B)	 In an unsupervised context, spectral techniques can be 

applied.

The following are some of the drawbacks of spectral 

anomaly detection techniques:

(A)	 Spectral techniques are only helpful if the normal and 

abnormal examples can be distinguished in the data 

low-dimensional embedding.

(B)	 Spectral techniques are notoriously difficult to imple-

ment.

•	 Detection of anomalies based on information theory.

Some techniques depend on information-theoretic 

measurements, such as entropy, and relative entropy 

to examine the information content of collected data. 

Entropy, relative entropy, and other terms are used to 

describe the complexity of a system. The fundamen-

tal information-theoretic anomaly detection technique 

has exponential time complexity, while approximation 

solutions with linear time complexity have been pre-

sented.

The following are some of the advantages of information-

theoretic techniques:

(A)	 They can work in an unattended environment.

(B)	 They do not make any assumptions regarding the sta-

tistical distribution of the data.

The following are some of the drawbacks of information-

theoretic techniques:

(A)	 The choice of the information-theoretic metric has a 

significant impact on the performance of such strategies.

(C)	 When it comes to arrangements and geographical data-

sets, information-theoretic techniques rely on the size 

of the substructure, which is sometimes hard to get.

(D)	 With an information-theoretic technique, it is challeng-

ing to link an anomaly score to a test case.

Classification of anomaly detection techniques

A wide range of techniques for detecting anomalies have 

been developed in recent years [58]-[64]. This paper is con-

cerned with anomaly detection techniques, which are cov-

ered in some survey publications (e.g., [65] - [69]). Some 

authors classify techniques based on application, technical 

strategy, and/or data type.

The techniques can be grouped based on application 

domain as follows:

•	 Network intrusion detection. The works of [70–73], and 

[74] surveyed the techniques used for network intrusion 

detection. The work of [75] surveyed the distance and 

similarity metrics used in intrusion detection systems.

Fig. 4   Common anomaly types with detection techniques
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•	 Wireless Sensor Network (WSN). The series of publica-

tions [76–85] focused on anomaly detection methods for 

wireless sensor network data. In [86] and [87], character-

istics of anomaly detection techniques for wireless sen-

sor networks in non-stationary and challenging situations 

were surveyed. The detection of anomalies in automated 

surveillance and smart homes has been discussed in [88] 

and [59].

•	 Data streams. The characteristics and categorization of 

anomaly detection in data streams are the subject of a few 

review publications (see, e.g., [89, 90], and [91]). The 

approaches for detecting anomalies in dynamic streaming 

data have been discussed in [92]. Focus was also given 

to anomalies in continuous-time variation data streams 

in [93].

•	 Fraud detection. There are numerous fields in which 

fraud and abuse detection techniques are effective. Tech-

niques for detecting healthcare fraud have been reviewed 

in [94] and [95]. The authors of [96] reviewed fraud pre-

vention strategies for chemical and biological data. In 

[97], fault detection techniques in industrial processes 

were examined.

•	 Financial, business, and recommender systems In [98–

101], and [102], financial and credit card fraud detection 

techniques have been examined. The authors of [103] 

studied outlier profile assaults on recommender systems.

Another set of survey articles focused on the techniques 

or the methodologies that are used to identify outliers. 

These techniques include

• Data mining technique

Numerous review articles examined anomaly detection 

techniques based on data mining (see, e.g., [64, 94, 104, 

105], and [106]). Specific data mining patterns have been 

covered in other review papers. Neural-network-based 

novelty detection techniques have been covered in [107]. 

Common pattern-based anomaly detection techniques 

have been evaluated in [108]. The methods for clustering-

based anomaly identification have been examined in [91]. 

In [106], anomaly detection techniques for distributed data 

were examined. The authors of [109] discussed common 

pattern-based anomaly detection techniques and related 

score metrics.

• Machine learning techniques

There are survey publications that discussed anomaly 

detection techniques based on machine learning (see, e.g., 

[97, 110], and [58]).

• Statistical techniques

Before data mining and machine learning, the anomaly 

detection problem has been considered with statistical tech-

niques. In contrast to complicated structures (such as cat-

egorical, graphical, and/or spatial data), statistical anomaly 

detection techniques focus on simple data types, such as 

numerical and quantitative data. Methods for detecting sta-

tistical anomalies have been discussed in [111–115].

Table 2   Examples of general anomaly detection techniques

Detection type Reference year methodology

Supervised 49 2018 Uncertainty measure based on gradient of negative log likelihood is used as a measure of confidence

Supervised 50 2018 Confidence scores based on Mahalanobis distance from different layers are combined using weighted 

averaging

Supervised 51 2018 Invariance of classifier performance under various transformations of input image is used as a measure of 

confidence

Supervised 52 2017 Binary detector trained on intermediate feature representations is proposed to detect adversarial examples

Semi-supervised 53 2019 Likelihood ratio-based method is used to differentiate between in-distribution and OOD examples

Semi-supervised 54 2019 A two-head CNN consisting of a common feature extractor and two classifiers with different decision 

boundaries is trained to detect OOD examples

Unsupervised 55 2016 Predicted softmax probability is used to detect OOD examples

Unsupervised 56 2018 Temperature scaling by adding small perturbations to the input is used to better separate the softmax score 

for OOD detection

Unsupervised 57 2019 Resampling uncertainty estimation approach is proposed as an approximation to the bootstrap

Unsupervised 58 2020 Sensitivity of adversarial examples under compression-based transformations is used as a measure of 

confidence
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A third group of review articles concentrated on the types 

of data, where anomaly detection techniques are proposed 

to identify outliers. The articles in this area can be 

classified according to data types including

• Social networks and graph data:

In certain survey studies, anomaly detection techniques 

in social media were reviewed [105, 116, 117], and [118]. 

Some studies were concerned with broader coverage and 

graph data (see, e.g., [119, 120], and [121].

• Time series and spatial data:

Several techniques for anomaly detection for time series 

and spatial data have been proposed [89, 122, 123], and [93].

• Big and complicated data:

Big and complicated data are important topics of study, 

particularly in the literature of computer science. Recently, 

a number of techniques for the detection of abnormalities 

in high-dimensional, complicated, and massive data have 

been presented [124] and [125]. In [126] and [127], anomaly 

detection for high-dimensional data was provided. Instead of 

analyzing all dimensions, other strategies concentrated on 

finding anomalies in subspaces [128].

• Experimental studies:

Experimental comparison studies of a particular class of 

anomaly detection techniques, such as various statistical and 

distance-based anomaly detection techniques, are the topic of 

some papers in empirical comparative reviews [60] and [129]. 

Additionally, empirical analysis of unsupervised anomaly 

detection techniques has been considered in [130] (Fig. 5).

Categorical data

Nominal and ordinal categorical data are the two types 

available. Gender, nationality, and network protocol type are 

examples of the first type. The latter type includes things like 

a course letter grade (such as A, B, C, D, or F), the amount 

of network traffic (such as low, medium, or high), and a Lik-

ert scale variable (such as 1 for strongly disagreeing, 2 for 

disagreeing, 3 for neutral, 4 for agreeing, and 5 for strongly 

agreeing). Because the categories in nominal variables lack 

Anomaly detec�on techniques

Based on 

applica�on

Based on 

methodology
Based on data type

Based on 

categorial data

Network intrusion

Data stream

Fraud detec�on

Financial

 Wireless sensor network

Data mining

Machine learning

Sta�s�cal

Social network

Graph data

Time series

Big and 

complicated data

Network intrusion

Moving things

Medical & health

Social network

Credit fraud

Survey responses

Earth science

Fig. 5   Types of anomaly detection techniques
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a natural ordering, finding anomalies in ordinal variables is 

easier than finding abnormalities in nominal data [131].

Applications of anomaly detection in categorical data are 

numerous. We mention here just few examples:

•	 Network intrusions. An intriguing use case for anom-

aly detection in cloud computing is the identification 

of users, who make unusual access [132]. Profiles and 

actions of users are typically coded as categorical vari-

ables in this context.

•	 Moving things. Anomaly detection can be applied to 

moving object data analysis to discover objects that 

move unexpectedly and to categorise the different sorts 

of road segments, where moving objects behave abnor-

mally [113] and [133].

•	 Medical and health data. Anomaly detection techniques 

can help decision-makers by identifying instances of 

unreasonably-high medical expenses and/or negligence. 

The management of healthcare can be improved with the 

help of this information.

•	 Social networks. Anomaly detection is used in numerous 

applications in social networks, such as identifying unu-

sual users in social groupings, who have varying inter-

ests, beliefs, and opinions [135] and [136].

•	 Credit fraud. When an unexpected activity is noticed, it 

may be possible to identify unauthorised credit card use. 

Behavioral data is frequently represented by categorical 

attributes [137].

•	 Survey responses. Survey responses are typically trans-

lated into category or ordinal properties. The authors of 

[138] emphasized the significance of anomaly detection 

in surveying data.

•	 Earth science. Finding anomalies in spatiotemporal data, 

e.g., weather patterns or climate changes in various geo-

graphical areas gives an explanation for interesting spa-

tiotemporal patterns [139]

•	 Law enforcement. Examples of anomaly detection appli-

cations for law enforcement are discovering anomalies in 

trading activities and insurance claims [140].

Challenges facing anomaly detection in categorical data

The identification of anomalies in categorical data faces 

some challenges. These challenges include:

•	 Anomaly detection techniques concentrate on deter-

mining the statistical distribution patterns (patterns 

suggested by the majority of data), and then classify 

observations that deviate from the presumed patterns as 

anomalies [141]. The literature reveals a few distance 

functions to calculate the separation between categori-

cal observations [142] and [143]. In categorical data, 

it might be challenging to detect patterns and calculate 

distances. As a result, techniques for anomaly identifi-

cation are more frequently used with quantitative data 

than with categorical data.

•	 The literature contains a number of additional but dis-

tinct definitions of anomalies in categorical data [144]. 

Depending on the definition used, anomaly detection 

techniques can classify various sets of observations as 

being anomalous.

•	 There are very few benchmark datasets that may be used 

to evaluate how well anomaly detection techniques for 

categorical data perform in terms of computation time, 

detection rate, etc. Additionally, due to the lack of tech-

niques that produce such data, it is difficult to develop 

synthetic categorical data with recognized abnormalities 

[145].

•	 Because most real applications have enormous datasets 

in terms of number of observations, number of cat-

egorical variables, and number of categories in each, 

computational complexity is a difficult problem in the 

identification of anomalies, especially in categorical 

data. As a result, temporal complexity is a major prob-

lem, when using anomaly detection techniques on cat-

egorical data.

Anomaly detection of categorical data based 

on indicator variables

The representation of categorical data by numerical values is a 

method for the detection of abnormalities in categorical data. 

Then, one can apply anomaly detection for quantitative data. 

Indicator Variables (IVs) [146] and a method based on Multi-

ple Correspondence Analysis (MCA) [146] are two examples 

of methodologies that use this approach. The IV approach 

substitutes indicator variables for each classification variable 

[146]. Due to the computation of SVD as well as the quadratic 

cost of distance estimation, the MCA-based anomaly detection 

technique is computationally expensive.

Frequency‑based techniques

Instead of using distances, frequency-based techniques employ 

frequency (i.e., the number of times a category occurs). Three 

different frequencies can be utilized to spot irregularities in 

categorical data: marginal frequency, itemset frequency, and 

diversified frequency.

Marginal frequency:  Observations with low marginal fre-

quencies are known as anomalies in categorical data. The 

Attribute Value Frequency (AVF) [147] and [148], Square of 

the Complement Frequency (SCF) [149], Weighted Attribute 

Value Frequency (WAVF) [150], Weighted Density-based 
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Outlier Detection (WDOD) [151], Cloud Model-based Out-

lier Detection (CMBOD) [152], and Bouguessa’s technique 

[153] are some techniques that use this definition.

For each observation, Xi, a frequency score is computed as 

the basis for the AVF.

where the marginal frequency of Xij within the variable Xj 

is denoted by f(Xij ). When M is a parameter selected by the 

user, the AVF identifies the M objects with the lowest AVF 

scores as outliers. Instead, the authors of [154] proposed 

estimating the number of anomalies M by assuming that the 

frequency scores exhibit a normal distribution.

For each observation, X
i
 , in the dataset, the Square of the 

Complement Frequency (SCF) gives an outlier score as

where p(Xij ) is the marginal relative frequency of Xij and cj 

is the number of categories of the variable Xj (the number of 

occurrences within Xj divided by number of observations). 

The M observations with the highest outlying scores are then 

classified as outliers. The difference between frequent and 

infrequent categories is increased by SCF using the square 

of the complement frequency. Additionally, SCF takes the 

number of categories cj into account to give variables with 

low cj greater weights in the scoring function.

The sparseness of the frequencies in categorical vari-

ables is not taken into consideration by the AVF and SCF 

techniques. As a result, by providing weight to the frequen-

cies, these techniques can better capture the sparsity of cat-

egorical data. The WAVF [150] and WDOD [151] are two 

instances of this trend.

A weighting formula is used in the WAVF to show the 

variable sparsity in calculating the outlier scores. The outlier 

score is more significantly impacted by the variable higher 

level of sparsity. As a result, observations with more sparse 

categories are more likely to be outliers. By using statistical 

functions for sparsity, such as the range or standard deviation 

of the marginal frequencies, one can determine the degree of 

sparsity of a categorical variable. The AVF can be extended 

using the WAVF as

where Rj is the jth categorical variable frequency range. 

The WDOD technique for categorical data is another way 

to weight the frequencies [151]. It is based on calculating 

the weighted density for the entire dataset after estimating 
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the density of each categorical variable. To be more precise, 

WDOD begins by calculating a weight, W ( Xj ), for each 

variable Xj as

where, 

 p(Xij ) is the category relative frequency, and cj is the num-

ber of categories in Xj . The complement entropy, Ec(Xj ), is 

used in [155] to assess the information gain or uncertainty 

to assign various weights to categorical variables in order 

to highlight significance, according to [151]. In contrary to 

the Shannon entropy logarithmic tendency, the complement 

entropy gauges both fuzziness and uncertainty. The weighted 

relative frequencies are then added to determine an object 

WDOD score, which is calculated as follows:

As a result, the uncertainty in each variable density 

is taken into account by WDOD(X
i
 ). An item is more 

likely to be a density-based outlier if its weighted den-

sity WDOD(X
i
 ) is low. Therefore, the WDOD declares an 

observation, X
i
 , as an outlier.

The time complexity of the AVF, SCF, WAVF, and 

WDOD is ≈ O(nq), which linearly increases with the num-

ber of observations and the number of categorical variables.

The AVF, SCF, WAVF, WDOD, and CMBOD are fast 

and scalable techniques. They can efficiently deal with 

large-scale categorical datasets, but they only consider the 

marginal frequency and ignore any dependency among the 

categorical variables. Moreover, they require specifying the 

number of anomalies M in advance, which is impractical 

in real applications. In addition to the difficulty of defining 

the suitable values of these parameters, the results are very 

sensitive to those values.

Itemset frequency.  The techniques in this group take into 

account the frequency of itemsets, which are combinations 

of categories with a maximum predetermined size. The 

term "anomalies" refers to observations with low itemset 

frequencies. These techniques begin by creating a collection 

of often-occurring itemsets (itemsets with a predetermined 

minimum frequency), and then classify them as outlier 

observations with fewer frequent item sets. Frequent Pat-

tern Outlier Factors (FPOFs) [156], Link-based Outlier and 

Anomaly Detection in Evolving Datasets (LOADEDs) [157] 

and [158], Outlier Detection for Mixed Attribute Datasets 
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(ODMADs) [148], and Frequent Non-Derivable Itemsets-

Outlier Detection (FNDI-OD) [148] are a few examples of 

these techniques.

Anomalies are defined by the FPOF, the categorical 

portion of LOADED, and the categorical component of 

ODMAD, as observations with uncommon patterns in 

their itemsets. These techniques depend on the minimum 

frequency of frequent itemsets and the maximum length to 

define the list of frequent itemsets (S).

A significant problem with the itemset-based techniques 

is that the number of frequent itemsets tends to be huge. 

For each observation, the set of frequent items is scanned to 

identify frequent items belonging to a certain observation. 

Thus, they take a very long time in processing. The time 

complexity of itemset frequency-based techniques can be 

attributed to two tasks; finding frequent itemsets and calcu-

lating outlying scores.

Diversified frequency  Under this category, we discuss a 

method for identifying anomalies in categorical data, that is, 

Couple Biased Random Walk (CBRW) [159]. The CBRW 

method takes into account intra-feature coupling (distribu-

tion) among categories for the same categorical variable as 

well as inter-feature coupling (interactions) among categories 

for different categorical variables. First, to begin with, let mj 

be the modal (the most frequent) category for the categorical 

variable Xj and p(mj ) be the relative frequency of this modal 

category. Then, for each category Xij in Xj , we compute an 

intra-feature coupling deviation score as

where

and 

Thus, the intra-feature coupling considers both the marginal 

frequencies of categories as well as the whole frequency dis-

tribution within each variable.

Second, a directed graph, G, is constructed to represent 

the interactions between category values in addition to inter-

feature value coupling. Each category in this network is rep-

resented by a node, and edge connecting nodes u and v allow 

inter-feature coupling to pass between them.

(7)�
(

Xij

)

=

[

dev
(

Xij

)

+ base
(

mj

)]

2

(8)dev
(

Xij

)

=

[

p
(

mj

)

− p
(

Xij

)]

p
(

mj

)

(9)base
(

mj

)

= 1 − p
(

mj

)

(10)A(u, �) = p(u|�) =
p(u, �)

p(�)

The inter-feature coupling determines if one outlying cat-

egory for a categorical variable is associated with another.  

A(u, � ) gauges how strongly u and v are coupled. Finally, using 

A(u, � ), CBRW constructs a biased random walk matrix Wb.

where V is the collection of G nodes (all categories in 

the whole dataset). The transition from node u to node v 

is represented by W
b
(u, �) , with a probability proportional 

to δ ( �)A (u, �) . To determine an outlying score for each 

category, CBRW first constructs W
b
 before generating the 

probability distribution of biased random walk column  

vector �
0
 . Then CBRW initializes �

0
 values by a uniform 

distribution. Thereafter, it computes �
t+1

 at time t + 1 on the 

basis of �
t
 as

where α is a damping factor to guarantee convergence. The 

outlying � score for a certain category is computed as

CBRW scores determine the importance of a certain cat-

egorical variable as

where Xij is the ith category in the jth variable and cj is num-

ber of categories in the jth variable. CBRW scores can iden-

tify outliers by computing an outlying score for each obser-

vation X
i
 as:

where

Accordingly, CBRW labels observations having the high-

est M CBRW-OD scores as outliers. One advantage of the 

CBRW is that it takes into consideration correlation among 

the categorical variables, since it captures frequency dis-

tribution of categorical variables as well as inter-feature 

coupling. However, it is computationally expensive as it 

has a quadratic complexity with respect to the number of 

(11)W
b(u, �) =

�(�)A(u, �)
∑

u∈V
�(v)A(u, �)

(12)�
t+1

= (1 − �)
1

|V|
1 + �W

t

b
�

t

(13)CBRW(�) = �
∗(�)

(14)Rel(Xj) =

cj
∑

i=1

CBRW
(

Xij

)

(15)CBRW− OD
(

Xi

)

=

q
∑

j=1

Wj ⋅ CBRW
(

Xij

)

(16)Wj =
Rel(Xj)

∑q

j=1
Rel(Xj)
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categories. Moreover, it requires two parameters: the number 

of outliers M and the damping factor α.

Bayesian/conditional frequency‑based techniques

These techniques define categories of anomalies, differently. 

They look for observations that have low joint frequencies 

and high marginal frequencies. In other words, they define 

anomalies as observations with uncommon category com-

binations, when the categories themselves are common. 

The abnormalities found by conditional anomaly detection 

techniques differ significantly from those found by conven-

tional anomaly detection techniques. Conditional anomaly 

detection techniques search for observations that have com-

mon categories that are infrequently observed together. 

Anomaly Pattern Detection (APD), Conditional Algorithm 

(CA) [160], Attribute Association (AA) algorithm [161], 

and the method suggested in [162] (denoted below by RHH, 

the first letters of the authors’ names) are a few examples 

of techniques approaches that use the conditional anomaly 

detection strategy.

Outliers are defined with CA as observations having 

uncommon combinations of common categories, [49]. The 

CA determines the ratio r(Xij , Xik
 ) between the categories Xij 

and X
ik

 in the categorical variables Xj and X
k
 as a measure of 

rarity. The definition of the r(Xij , Xik
 ) ratio is

where the marginal and joint relative frequencies, respec-

tively, are denoted by p(Xij) and p(Xij, Xik) . A low r-ratio 

indicates a higher likelihood of anomalous co-occurrence, 

since the marginal probabilities multiply considerably more 

frequently than their combined probabilities.

The Anomaly Pattern Detection (APD) method was 

proposed to detect anomalous patterns, groups of related 

observations having outliers percentage higher than expected 

[163]. The APD method depends on the CA algorithm [160] 

as a first step to identify individual outliers. Then, a rule-

based technique is used to study the behavior of outliers in 

each pattern. Similar to the conditional probability method, 

the RHH method [162] searches for observations with fre-

quent attribute values but infrequent joint co-occurrence. It 

can find anomalies in categorical datasets as well as mixed 

datasets. In the mixed datasets, it transforms quantitative 

variables into categorical variables by discretizing quanti-

tative variables into fixed-length intervals. In the training 

phase, it builds a Bayesian network (see, e.g., [164] and 

[165]) to capture the dependency among attributes.

The AA algorithm [161] defines conditional anomalies 

as observations that contain frequent categories, but their 

itemsets are rarely observed together. It starts with deriving 

(17)r(Xij, Xik) =
p(Xij, Xik)

p(Xij)p(Xik)

a set of association rules with high confidence from the data. 

Then, it computes an outlying score called outlier degree.

Conditional anomaly detection techniques have time com-

plexity problems, since they require a combinatorial time for 

building itemsets and a long time for searching in the high 

conditional probability space. Moreover, they require many 

parameters.

Density‑based techniques

The goal of the density-based anomaly or local anomaly 

detection strategy is to locate observations that deviate 

from the norm in their immediate surroundings [167]. 

Local anomalies differ from global anomalies, which do not 

only include observations made locally but also those made 

globally [166–168], and [169]. Global anomalies are incon-

gruous with the pattern given by the majority of all other 

observations. The Hyperedge-based Outlier Test (HOT), the 

k-Local anomalies Factor (k-LOF), and the WATCH method 

are three local anomaly identification methods for categori-

cal data. The k-LOF computes another type of similarity 

named the accumulated similarity of k-walk between two 

observations X
i
 and Xj , as

Then, the above-mentioned two similarity measures are 

combined in an outlying score for X
i
 , which is given by

The k-LOF labels an observation, X
i
 , as an outlier if k-

LOF(X
i
) > θ, where θ is a predefined parameter. The k-LOF 

takes into consideration the direct relationships between an 

observation and its direct neighbors as well as the indirect 

relationships among the neighbors and the neighbors’ neigh-

bors, where k > 1. Thus, it requires the parameters θ and the 

maximum length of indirect relationships k.

The time complexity of k-LOF is attributed to two tasks: 

building a similarity graph G and computing similarity and 

outlying scores.

Clustering‑based techniques

Categorical datasets are clustered using clustering-based 

anomaly detection techniques, which subsequently classify 

observations in sparse regions as outliers. This category 

of techniques includes Rough-ROAD [170] and [171] and 

Ranking-based Outliers Analysis and Detection (ROAD) 

[172] and [173].

(18)sk(Xi, Xj) =

k
∑

i=1

si(Xi, Xj)

(19)k − LOF(Xi) =
1

sk(Xi, Xj) × n

n
∑

j=0

sk
(

Xi, Xj

)
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Frequency-based and clustering-based outliers are the two 

categories of outliers that are defined by the ROAD. Obser-

vations with rare categories are considered frequency-based 

outliers. However, observations with uncommon combina-

tions of common categories are considered clustering-based 

outliers.

A ranking system is created by ROAD for each sort of 

outlier. The average marginal frequencies are first calculated 

for each observation as density scores, where

which is equivalent to AVF(X
i
 ) in Eq. (1). Observations 

are sorted by ROAD according to their densities. Then, 

ROAD assigns those observations with low density scores  

higher likelihoods of being frequency-based outliers. Sec-

ond, ROAD partitions the given categorical dataset into k 

clusters using the k − mode algorithm [174]. Then, it defines 

the set of big clusters, BC, as the clusters that contain at least 

α% of observations, where α is the big cluster threshold.

The time complexity of ROAD is attributed to three 

tasks. Firstly, building the frequency-based ranking scheme 

requires O(nqcmax) , where c
max

 is maximum number of cat-

egories per categorical variable. Secondly, the the cluster-

based ranking scheme needs O
(

nqk2
+ nqkt

)

 computations, 

where k is the number of clusters and t is the number of 

iterations required for convergence in the k − mode algo-

rithm. Thirdly, the complexity of ranking observation is 

O(nlogn) . Therefore, the overall complexity of ROAD is 

O(nqcmax + nqk2 + nqkt + nlogn) . The RoughROAD is as 

complex as that of ROAD. Therefore, the clustering-based 

techniques are computationally expensive.

Distance‑based techniques

The concept of distance-based anomalies for quantitative 

data is expanded by the distance-based anomaly detec-

tion techniques for categorical data ([175–177] and [178]). 

Anomalies have numerous definitions in distance-based 

techniques. These consist of

o	 Anomalies are the M observations whose average dis-

tances to the k nearest neighbors are the greatest [178] 

and [179].

o	 Anomalies are the M observations whose distances to 

the k-th nearest neighbor are the greatest [177].

o	 Anomalies are the observations that have fewer than p 

observations within a certain distance d [175] and [176].

o	 Anomalies are observations that have the highest 

z-scores of the average distances to the k-nearest neigh-

(20)den(Xi) =
1

q

q
∑

j=1

f
(

Xij

)

bors. That is, first we compute the average distance of 

each observation to its k-nearest neighbors. Then, we 

standardize these average distances and obtain their 

z-scores. The observations with z-scores greater than 

a threshold θ (e.g., 3) are declared as outliers. This 

method does not require the parameter M in advance, 

but assumes that the z-scores follow a standard normal 

distribution to help in choosing the value of θ.

	   Examples of distance-based techniques for categorical 

data are (a) Orca (name of software) [180], (b) a method 

called iOrca [181], (c) the Common Neighbor Based dis-

tance (CNB) [182], and (d) the Recursive Binning and 

Re-Projection (RBRP) [183]. Distance-based anomaly 

detection techniques are very sensitive to the number of 

nearest neighbors.

Compression‑based techniques

Compression algorithms are usually used in the fields 

of communication and storage rather than in data min-

ing. Recently, few compression-based anomaly detection 

techniques have been proposed based on the fact that 

anomalies do not comply with the model suggested by the 

other points in the data. Accordingly, observations that 

could not compress well are considered as outliers. These 

techniques look for the best compression model that suits 

the non-outlying data points. Objects that deviate (have 

bad compression measures) are highlighted as anomalies 

[184]. Examples of compression-based anomaly detection 

techniques for categorical data are (a) KRIMP [185] and 

(b) Comprex [186].

KRIMP is based on the idea of code tables. A code 

table consists of two columns. The first column contains 

the itemsets and the second column contains their codes. 

Itemsets are sorted in descending order according to their 

lengths then their frequencies. Higher order (that is, longer 

and more frequent) itemsets take shorter codes. Each 

observation is represented by a set of non-overlapping 

itemsets that completely cover all values of that observa-

tion. An anomaly can be seen as an observation, which 

contains infrequent itemsets, and hence, its code is longer 

than those of other observations.

Although compression-based anomaly detection tech-

niques for categorical data outperform other relevant 

techniques in terms of error and detection rates, they are 

computationally very expensive, especially for datasets 

that contain large numbers of variables. Similar to other 

anomaly detection techniques for categorical data, com-

pression-based techniques require decision parameters to 

decide whether an observation is or is not an outlier
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Finally, existing anomaly detection techniques for cat-

egorical data face many problems. Important problems are 

discussed below:

•	 Computational complexity

•	 Human intervention:

Human intervention (input parameters) is a problem for 

anomaly detection techniques for categorical data. Exist-

ing techniques require one or more input parameters. In 

real applications, defining the suitable values of these 

parameters is a hard and critical task. In addition, the 

results are sensitive to these input parameters.

Existing anomaly detection techniques for categorical 

data compute a score for each observation. To identify 

whether an observation is an outlier, they require one of 

the following parameters:

(1) M: The number of assumed anomalies in the dataset. 

Most of existing methods (AVF, SCF, CMBOD, FPOF, 

FNDI-OD, CBRW-OD, WATCH, ROAD, Rough-ROAD, 

CNB, Orca, CNB, LSA, GA, ITB-SP, EEB-SP, ITB-SS, 

EEB-SS and CompreX) require M in advance.

(2) Itemset-based parameters: The minimum frequency 

and the maximum length are used in defining frequent 

itemsets. They are required by FPOF, LOADED, ODMAD, 

FNDI-OD, HOT, AA, CA and KRIMP. 

(3) k: The number of nearest neighbors in distance-based 

anomaly detection techniques for categorical data is required,  

especially for Bouguessa’s method, Orca, CNB, and k-LOF.

Conclusions

In this review article, we have covered a variety of research 

techniques for anomaly detection and their use in a number 

of different fields as discussed previously in [187]. Anomaly 

detection techniques can be classified based on application, 

methodology, data type and finally categorical data. We dis-

cussed various techniques for detecting anomalies, which 

are very important and beneficial in many actual applica-

tions, such as identifying computer network intrusions and 

fraud detection. We discussed the strengths and weaknesses 

of most of these techniques, and discussed various applica-

tion domains. Finally, this paper surveyed some available 

techniques for the identification of anomalies from categori-

cal data in the statistics as well as machine learning and 

computer science literatures. There is no overall agreement 

on a distinct definition of an anomaly in categorical data. 

We reviewed several techniques for anomaly detection from 

categorical data. We identified the strengthes and weak-

nesses of each technique. In addition, we have discussed 

the common challenges in the detection of anomalies from 

categorical data. There are several directions for further 

research in anomaly detection from categorical data. 

Extending categorical data anomaly detection to novel 

fields of study, such recommender systems [188], categori-

cal data streams [189], moving objects [190], and informa-

tion network may be studied in future research. Another 

area for future research is to define automatic critical values 

rather than predetermining the number of abnormalities.
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