
Vol.:(0123456789)

International Journal of Precision Engineering and Manufacturing (2024) 25:2583–2598 

https://doi.org/10.1007/s12541-024-01069-6

1 3

REGULAR PAPER

Online ISSN 2005-4602

Print ISSN 2234-7593

Encoding Time Series as Images for Anomaly Detection 
in Manufacturing Processes Using Convolutional Neural Networks 
and Grad‑CAM

Young‑Joo Hyun1,2 · Youngjun Yoo1   · Yoonseok Kim1,2 · Taeheon Lee1,2 · Wooju Kim2

Received: 15 February 2024 / Revised: 13 June 2024 / Accepted: 13 June 2024 / Published online: 28 June 2024 

© The Author(s), under exclusive licence to Korean Society for Precision Engineering 2024

Abstract

This study aims to develop an artificial intelligence-based model for analyzing the condition and detecting anomalies by 

encoding time-series data from manufacturing processes as images. Deep learning has demonstrated the significance of 

data analysis and anomaly detection in the vision field, and Convolutional Neural Networks (CNN) models have shown 

exceptional performance and high applicability in image analysis. Based on this, our study intends to utilize image encoding 

techniques to perform anomaly detection on time-series data. Data such as force, vibration, and sound from equipment during 

the manufacturing process are collected and transformed into images using various methods, including Gramian Difference 

Angular Field, Gramian Summation Angular Field, Markov Transition Field, and Recurrence Plot (RP). The transformed 

image data is then trained and classified for equipment conditions using various CNN models. Finally, we adopt the RP 

image encoding method and ResNet50 model, which demonstrated the highest accuracy of 99.6%, and compare them to the 

top 5 models. Based on the high accuracy demonstrated by the top five models, our proposed approach has proven to have 

significant performance, exhibiting a high success rate of over 90% even when applied to actual data for CNC-machining 

process. Through this, we propose a process that utilizes the explainable AI Grad-CAM system to identify the feature layer 

area of the image and confirm the presence of anomalies. With the proposed process, workers can identify abnormal areas 

or segments of abnormal conditions in the transformed image graph. By providing evidence for state judgment, even inex-

perienced workers can easily check the condition of manufacturing equipment.

Keywords  Anomaly detection · Encoding image · Grad-CAM · Transfer learning · Deep learning

1  Introduction

Equipment maintenance is crucial for maintaining produc-

tivity and quality in manufacturing processes. However, 

equipment failures or abnormal conditions can occur due 

to various factors in the manufacturing process, making it 

challenging for on-site workers to determine the equipment’s 

condition accurately while carrying out the manufacturing 

process. Furthermore, replacing equipment too quickly can 

result in financial losses, while delaying replacements can 

cause complete equipment damage, leading to decreased 

productivity and increased costs. Therefore, anomaly 

detection, which can quickly and accurately prevent equip-

ment abnormalities, significantly contributes to improving 

productivity and efficiency in manufacturing processes. 

Through anomaly detection, abnormal machine conditions 

can be promptly identified, and fault prevention and repair 

plans can be developed to minimize downtime and opera-

tional disruptions [1, 2].

In many industrial environments, equipment gener-

ally operates with vibrations and noise. Therefore, exist-

ing anomaly detection techniques for predictive mainte-

nance analyze periodic time-series data generated during 

the operation of manufacturing equipment to distinguish 

between normal and abnormal states [3, 4]. Commonly used 
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techniques include time-series analysis, complex statistical 

models, and deep learning models based on time-series data. 

Literature [5] summarizes Various time series modeling 

analyses, such as the ARMA model, for Vibration-Based 

Structural Health Monitoring (SHM). Blázquez-García, 

Ane, et al. [6] is give a structured and comprehensive state-

of-the-art on outlier detection techniques in time series data. 

Manufacturing equipment has a specific bathtub curve that 

depends on the factors affecting their condition. Such time-

series data has a trend that continues with an increasing or 

constant pattern. Time-series data analysis models, such as 

LSTM (Long Short-Term Memory) [7] or RNN (Recurrent 

Neural Network) [8], are used in machine learning to predict 

future changes in data based on these temporal and sectional 

characteristics [9]. Machine learning research and technol-

ogy development are actively taking place in various fields. 

Among these, Convolutional Neural Networks (CNNs), 

which analyze and classify image-based data, have shown 

exceptional performance in vision tasks such as image rec-

ognition and video processing. With the proven significance 

of deep learning technology for image analysis, researchers 

are exploring various methods to apply time-series data to 

image analysis models, in addition to images and videos. 

Consequently, a technique of transforming time-series data, 

which is based on temporal order, into images has been 

developed [10–12].

In manufacturing processes, data is commonly collected 

from numerous sensors. However, simultaneously analyzing 

all sensor data for time-series data analysis presents chal-

lenges. Conversely, image analysis overcomes this challenge 

by amalgamating multiple sensor data into a single image for 

analysis.The main advantage of detecting anomalies in a 2D 

map, as opposed to 1D time-series data, lies in its enhanced 

interpretability. This intuitive visualization empowers 

domain experts to easily comprehend and track patterns, 

resulting in a clearer explanation of anomalies. In essence, 

it facilitates a more effective representation of characteristic 

features. Moreover, these images contain rich and diverse 

information, enabling a comprehensive understanding of 

the system’s condition [13]. Consequently, the analysis of 

images that integrate multiple sensor data proves valuable 

for detecting anomalies in intricate systems like manufactur-

ing processes [14].

This study transforms time-series data from manufactur-

ing equipment into images using four different methods: 

Gramian Difference Angular Field (GADF), Gramian Sum-

mation Angular Field (GASF), Markov Transition Field 

(MTF), and Recurrence Plot (RP). By comparing and ana-

lyzing the suitability of different backbones based on the 

characteristics of each image transformation method, dis-

crimination is improved. This verifies the effectiveness of 

using image encoding for anomaly detection technology and 

applying deep learning models widely used in the computer 

vision field, as well as the usefulness of processing data 

[11, 12].

In manufacturing processes, detecting anomalies and 

understanding the state of equipment beforehand are cru-

cial for on-site workers. However, most analysis models 

only provide accuracy or classification results without a 

clear explanation of how individual algorithms are learned 

or why they produce specific outcomes. [15, 16] Therefore, 

even if the performance of anomaly detection and classifi-

cation/analysis is excellent, it is difficult to understand the 

scope and extent of actual problems that may arise [17]. In 

summary, while machine learning algorithms can provide 

accurate predictions, it is often challenging to interpret the 

results, which can lead to a lack of trust and reliance on 

these methods. To address this issue, researchers are explor-

ing explainable AI techniques that can provide transparent 

insights into the decision-making process of machine learn-

ing algorithms. By providing interpretable results, these 

methods can facilitate better decision-making by domain 

experts and increase trust in machine learning models for 

actual data applications [18].

As a result, on-site workers only receive information 

about equipment issues, without additional interpretation, 

making it difficult to trust the model. To address these issues, 

this study proposes an anomaly detection model that utilizes 

Grad-CAM (Gradient-weighted Class Activation Mapping), 

a promising approach that visually explains the classification 

results of CNN models in object detection and recognition, 

in addition to the CNN model. Through this approach, we 

aim to provide on-site workers with spatial and temporal 

information on the location and size of detected anomaly 

patterns, contributing to identifying and tracking the causes 

of anomaly patterns during the manufacturing process.

The paper is structured as follows. Section 2 presents the 

process of frequency analysis and interpretation of time-

series data. Section 3 verifies the proposed methodology, 

while Sect. 3.1 explains the dataset and the backbone model 

used in this study. Section 4 presents the quantitative results 

of the proposed method. Finally, the conclusion is presented 

in Sect. 5.

2 � Background

2.1 � Conversion of Time Series Signals from the Time 
Domain to the Frequency Domain

In this study, we transformed the raw time-series data using 

FFT (Fast Fourier Transform) and a low-pass filter, as 

depicted in Fig. 1. By transforming the raw time-series data 

into frequency signals, we analyzed the equipment-generated 

vibrations’ frequencies during the manufacturing process 

and detected anomalies or defects. After transforming the 
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continuous time-series data into frequency signals, we elimi-

nated the unnecessary high-frequency components through a 

low-pass filter to reduce noise in the data and capture more 

detailed information. This process resulted in more mean-

ingful analysis results for encoding image.

2.1.1 � Fast Fourier Transform

FFT is a method for transforming signals that represent 

amplitude and vibration intervals in the time domain into 

the frequency domain. This allows for the analysis of the 

periodicity of the frequency domain, which can be utilized 

for various signal analysis purposes, such as detecting or 

removing abnormal values like noise [19]. FFT is an effi-

cient algorithm that quickly performs the DFT (Discrete 

Fourier Transform) and its inverse transformation on dis-

crete input signals. It is widely used in many fields, rang-

ing from algorithms for finding roots of partial differential 

equations in digital signal processing to other applications. 

DFT is a method of transforming a discrete-time signal 

measured in the time domain into the frequency domain 

[20]. Given a signal X with a series of consecutive values 

X = x1, x2,⋯ , x
n−1 , the DFT is expressed as the Eq. (1).

where the variable x
n
 represents the discrete values of the 

given signal, and there are N consecutive samples of the 

signal. DFT calculates N complex values in the frequency 

domain from N sample signals measured in the time domain 

(1)X
k
=

N−1
∑

n=0

x
n
e
−

2�i

N
kn

, k = 0,⋯ , N − 1

using the equation mentioned above. It is mainly used for 

frequency analysis and can be inversely transformed to the 

original signal. DFT is widely used in digital signal process-

ing, as well as various fields such as voice and video pro-

cessing, data compression, and communication systems [21].

2.1.2 � Pass Filter

The FFT plot (Fig. 1) shows a graph that was transformed by 

applying the DFT Eq. (1). to the data in this study. By trans-

forming the time-domain data into the frequency-domain, 

it becomes possible to observe the periodicity of each fea-

ture. However, the vibration signal is relatively less clear 

compared to the force and acoustic emission (AE) signals. 

Therefore, this section proposes a method of applying an 

additional pass filter to improve the clarity of the vibration 

signal.

A pass filter is a type of filter that permits a specific fre-

quency range to pass through in the frequency domain. Pass 

filters are categorized into three types: Band Pass Filters, 

Low Pass Filters, and High Pass Filters. Low Pass Filters 

enable signals with frequencies lower than the specified 

frequency to pass through, while High Pass Filters allow 

signals with frequencies higher than the specified frequency. 

Band Pass Filters allow only signals between two specific 

frequencies to pass through. By controlling these frequency 

components, pass filters are used for a variety of signal pro-

cessing purposes as [22, 23]. For example, in voice signal 

processing, filtering can be applied to extract the desired 

frequency range of voice or music or to remove noise. 

High-pass filters are used in image processing to improve 

Fig. 1   Conversion of the time-series data to frequency domain through FFT (Fast Fourier transform) and Low-pass filter
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the clarity of images since high-frequency components are 

typically noise [24].

Figure 2 shows the data of this study after applying a 

low-pass filter. Although Band Pass Filters and High Pass 

Filters showed decreased periodicity and discrimination, the 

data became clearer than before when a Low Pass Filter was 

applied. This improvement was observed not only in Force 

and AE but also in Vib, which previously had issues with 

periodicity. As a result, this study adopts frequency data 

analysis using Low-pass filters. Nevertheless, as signals can 

take various forms depending on the data and domain char-

acteristics, it is necessary to apply an appropriate Pass filter 

based on the data and domain.

2.2 � CNN-Based Image Classification Model

Convolutional Neural Networks (CNNs) are composed 

of convolution and pooling layers that help preserve local 

information in the input data during learning. In the con-

volution layer, a filter (kernel) is convolved with the input 

image to create a new feature map. The filter, made up of 

small parameters, is optimized during the learning process 

to extract features from the input image. In the pooling layer, 

the feature map is partitioned into smaller areas, and the 

maximum or average value is extracted from each area to 

create a new feature map. Through these processes, the CNN 

model can extract features that are robust to variations in 

location or size in the input image. The CNN repeatedly 

applies these convolution and pooling layers and finally adds 

a fully connected (FC) layer to perform classification tasks. 

The FC layer utilizes the features extracted from the previous 

layers to perform tasks such as classification or prediction 

of the input data. As a result, CNN demonstrates high per-

formance in recognition and classification tasks for various 

data types such as images [25].

2.3 � Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) is a technique that 

aims to provide users with an explanation of how artificial 

intelligence (AI) models operate and make decisions in an 

understandable way. Unlike traditional models, XAI can clar-

ify how a model functions, allowing users to understand and 

verify its results. This helps to build trust in the output of the 

Fig. 2   Pass filter results of the vibration signals
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model. XAI is primarily utilized in the field of deep learning, 

which employs large datasets and complex models. Due to the 

vast number of parameters in deep learning models, explaining 

how the model works can be a challenging task. To address 

this issue, XAI analyzes the internal decision-making pro-

cesses of the model and provides visualizations. XAI is used 

in various fields to enhance the reliability and transparency of 

AI models, enabling users to interpret and improve the model’s 

results by understanding its decision-making processes [26].

2.3.1 � Gradient‑Weighted Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) 

is a method of visualizing the features of an image that influ-

ence the results of a CNN model. It explains which parts 

of the image the CNN is focusing on to classify it into a 

particular class. The output of a CNN image classification 

model, which consists of several layers of convolutional and 

pooling layers, is explained using the feature maps inside the 

neural network. While these maps provide numerical results, 

Grad-CAM uses gradients of the model’s output to visual-

ize which parts of the input image had the most significant 

impact on the classification decision [17].

Grad-CAM visualizes the areas of the feature map that 

contribute to activating a particular class based on the over-

all image classification. To achieve this, Grad-CAM calcu-

lates the gradients of the feature map output from the last 

convolutional layer of the CNN and multiplies them with 

the class-specific gradients at that layer to calculate the 

importance of each location. The resulting important infor-

mation is visualized as a heatmap of the same size as the 

input image. This heatmap provides a direct understanding 

of which parts of the input image the deep learning model 

is referencing when making classification decisions. Thus, 

Grad-CAM is used to interpret the results of image classifi-

cation models and visualize the decision-making process of 

the model in an explainable format.

The following equation is utilized to generate the Grad-

CAM map,

The Eq. (2) represents the importance of each location in an 

input image to the classification of a specific class. In this 

equation, Lc
gradCAM

 represents the Grad-CAM map for a par-

ticular class c, where �
c,k

 refers to the weight of the gradient 

of the feature map outputted from the last convolutional 

layer concerning class c. Additionally, Ak(i, j) denotes the 

value of the i − throw and j − th column in the feature map 

outputted from the last convolutional layer. Through the 

multiplication of �
c,k

 and Ak(i, j) , using the gradient for class 

c, the value for each pixel (i, j) is calculated, indicating the 

(2)Lc
gradCAM

= ReLU

( K
∑

k=1

H
∑

i=1

W
∑

j=1

�c,k(i, j)Ak(i, j)

)

.

pixel’s contribution to the classification of class c. By com-

puting this value for all pixels, Grad-CAM generates a map 

that visually shows the regions of the CNN that contribute 

most to the activation of a specific class. This method 

improves the understanding of the CNN’s operation and can 

help to optimize the model.

2.4 � Encoding as Images from Time Series Data

GADF, GASF, MTF, and RP are all image encoding meth-

ods that convert time series data into images. GADF and 

GASF construct a correlation matrix of the Gramian angular 

field (x, y) to visualize frequency information and transform 

the data. GAF has achieved significant results in applications 

such as lightweight rolling bearing fault diagnosis [27] and 

monitoring workers’ safety compliance [28]. MTF discre-

tizes the time series data by partitioning it into bins, while 

RP uses a method to represent time series data as points in a 

2D space to analyze its dynamic characteristics. In the field 

of exoplanet identification, MTF has proposed to analyze 

unevenly-sampled time series [29]. Additionally, MTF, in 

conjunction with deep learning techniques, has been applied 

to monitor workers’ safety compliance [30]. In the shipbuild-

ing industry, multisensor signals collected during the manu-

facture of anchor chains were analyzed through RP [31]. In 

the study of Earth’s past climates, recurrence analysis was 

utilized to compare climate change patterns [32].

Each of these image encoding methods has unique fea-

tures, and the proposed method aims to use them to develop 

an anomaly detection and classification model. In this sec-

tion, we will explain the four image encoding methods that 

we used in this study: GADF, GASF, MTF, and RP. By fus-

ing these encoded images, the resulting data provides a more 

comprehensive, multi-dimensional input for pattern recogni-

tion and machine learning algorithms, thereby enhancing our 

ability to conduct intricate data analyses. Furthermore, by 

employing image and data fusion techniques, damage detec-

tion challenges can be effectively transformed into pattern 

recognition tasks [33]. This approach is particularly valuable 

for processing multi-sensor data and detecting anomalies in 

complex systems, thus significantly aiding in assessing their 

health and operational status.

2.4.1 � Gramian Angular Field (GAF)

The GAF method, proposed by Z. Wang in 2015, encodes 

time-series signals to images [34] as Fig. 3. In the indus-

trial sector, there are repetitive manufacturing and produc-

tion processes, and the data collected from them exhibit 

periodicity. GAF preserves the temporal relationships of 

the signal and separates the characteristic signal from the 

interference signal, encoding the time-domain signal as 

an image [27, 28]. GAF represents time-series in a 2D 
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polar coordinate system that uses angles and distances 

between coordinates, instead of the vertical-based Carte-

sian coordinate system such as X-axis and Y-axis, thereby 

minimizing information loss of 1D time-series data. The 

resulting GAF images show temporal dependence as they 

move from the upper left to the lower right, and the main 

diagonal contains both the original data value and the 

angle information, allowing the original data to be recon-

structed as follows:

Given a time-series X with real-valued observations x
n
 , 

X = x1, x2, x3, ..., x
n
 represents the observation values of the 

time-series. Encoding a GAF image, X is normalized and 

rescaled to [−1, 1] using the min-max scaler in equation (3).

The angle � is the arccos of x
i
 , and the diameter r is a 

constant represented by ℕ to normalize the range of val-

ues in the polar coordinates based on the time index t
i
 as 

follows:

This transforms the time series X into polar coordinates, 

which can be used to identify the frequency of spectral data. 

When � âˆˆ [0,�] , cos(�) is a bijective function, which cre-

ates a one-to-one correspondence in the polar coordinate 

system and has an inverse function when given any arbitrary 

time series [34].

GASF and GADF are determined by the sum and dif-

ference of trigonometric angles between each point in a 

time series. GASF uses cosine to calculate the sum, while 

GADF uses sine to calculate the difference as following 

equations,

(3)X̃
i
=

(X
i
− max(X)) + (X

i
− min(X))

max(X) − min(X)
.

(4)

{

� = arccos(x̃
i
), − 1 ≤ x̃

i
≤ 1, x̃

i
∈ X̃

r =
t
i

N
, t

i
∈ ℕ,

2.4.2 � Markov Transition Field (MTF)

MTF is a method of encoding time series data as images 

by connecting Markov chains with time series data [34] 

as Fig. 4. MTF calculates the transition probability of the 

Markov chain based on discretized time series data and con-

verts it into the pixel values of an image. Encoding Images 

using MTF simplifies patterns in time series and can be 

applied to various fields such as image classification and 

pattern recognition [29] as

To apply MTF to time-series data X, it is divided into Q 

quantiles, and the value of time index t
i
 is represented by x

i
 . 

x
i
 is assigned to quantile qj (jâˆˆ [1, Q]). A weighted adja-

cency matrix W of size Q × Q is constructed based on the 

first-order Markov chain method along the time axis. wi,j 

represents the transition probability from quantile qi to qj 

where the data value belongs. The difference between two 

times |i − j| represents the transition probability between 

quantiles and if the width of a quantile is large, it is aggre-

gated to the quantile closest to the mean value. If the width 

of a quantile is small, the value is aggregated at the extreme 

(5)
GASF = [cos(�i + �j)]

= X̃�
⋅ X̃ −

√

I − X̃2

�

⋅

√

I − X̃2

(6)
GADF = [sin(�i − �j)]

=

√

I − X̃2

�

⋅ X̃ − X̃�
⋅

√

I − X̃2

(7)

M =

⎡
⎢
⎢
⎢
⎣

wij� x1 ∈ qi, x1 ∈ qj ⋯ wij� x1 ∈ qi, xn ∈ qj

wij� x2 ∈ qi, x1 ∈ qj ⋯ wij� x2 ∈ qi, xn ∈ qj

⋮ ⋱ ⋮

wij� xn ∈ qi, x1 ∈ qj ⋯ wij� xn ∈ qi, xn ∈ qj

⎤
⎥
⎥
⎥
⎦

.

Fig. 3   Encoding results of 

gramian angular field
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quantile. By normalizing the sum of each column of W to 1, 

a Markov transition matrix is constructed and W removes 

the time dependence on X’s distribution and time index t
i
 . 

To construct MTF, each value is assigned to a quantile qj (j 

âˆˆ [1, Q]) that corresponds to the time index t
i
 of the time 

series data value x
i
 . A weighted adjacency matrix W of size 

Q × Q is constructed based on the first-order Markov chain 

method along the time axis.

2.4.3 � Recurrence Plot (RP)

RP is a method proposed by Eckmann et al. for encoding time 

series data to images as Fig. 5. It is a nonlinear analysis tech-

nique that explains the interactions of dynamic systems and 

measures time invariance [35]. RP converts sections in time 

series data where the same patterns are repeated into pixel 

values of an image and calculates the distance between the 

extracted sections. Based on this, a Recurrence Plot matrix is 

generated, which is transformed into an image using Eqs. (8) 

and (9), providing a visualization of the time-series data as 

following equations:

where R(i, j) represents the value of the i-th row and j-th col-

umn in the RP matrix, and ||xi − xj|| represents the distance 

between time series data x
i
 and xj , where � is the distance 

threshold. As shown in Eq. (8), Θ is a threshold function 

(8)Ri,j(x) =
{

1 if ||�� − ��|| ≤ � 0 otherwise,

(9)R(i, j) = Θ(� − ||xi − xj||),

that returns 1 if the distance is below the threshold and 0 

otherwise.

RP is generated based on the distance matrix of time 

series data, allowing for the identification of interactions 

between closely located points in the data. The RP matrix 

is symmetrical along the diagonal, with the upper trian-

gular area representing the interactions in the time series 

data. RP allows for the visualization of interactions in time 

series data, enabling the analysis of patterns in the data. This 

makes it possible to identify periodic patterns in the data and 

easily visualize the regularity of the time series data [31].

3 � Proposed Methodology

The proposed method, as shown in Fig. 6, consists of several 

stages to detect anomalies in time series data. Firstly, the 

time-series data is transformed into the frequency domain 

using the process illustrated in Fig. 1. Subsequently, the 

frequency domain data is divided into specific wavelength 

intervals, and time-series images are generated using four 

different image generation algorithms. This methodology 

enables the integration of frequency data, including power, 

vibration, and noise, into a unified image format. By con-

solidating these data types, comprehensive analysis becomes 

feasible using information gathered from diverse perspec-

tives. This integrated approach not only enhances the accu-

racy of anomaly detection but also substantiates the validity 

of defect detection processes [36]. These time-series images 

Fig. 4   Encoding results of Markov transition field
Fig. 5   Encoding results of gramian angular field
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are used to train a CNN-based anomaly detection model that 

distinguishes between normal and abnormal data. 

To evaluate the performance of the proposed method, we 

conducted two procedures. In the first procedure, we train 

the CNN model using time series images. In the second pro-

cedure, we explain the anomaly detection criteria by using 

the Grad CAM visualization results to provide model inter-

pretation for the proposed method. The experimental results 

demonstrate that the proposed method achieves superior per-

formance in detecting anomalies in time series data, and 

the model interpretation function using Grad CAM provides 

useful insights into the detection process.

Overall, our proposed method effectively detects anoma-

lies in time series data through a well-defined process that 

includes transforming the data into the frequency domain, 

generating time-series images using various algorithms, and 

training a CNN model. The model interpretation function 

using Grad CAM enhances the transparency and interpret-

ability of the proposed method, which could be useful in 

various practical applications.

3.1 � Backbone Model

Table 1 presents the hyperparameters used in the proposed 

model. The learning rate was set to 1e-05, the batch size was 

set to 32, and we trained the model for 20 epochs using the 

Adam optimization algorithm.

We trained the model on each cutter’s train, test, and vali-

dation datasets, using 10 different CNN network models, 

including VGG, ResNet, DenseNet, etc., for each image 

encoding method. To be specific, we used 75% of the train-

ing dataset for training and the remaining 25% for validation.

4 � Numerical Results and Discussion

4.1 � Demonstration case 1: 2010 PHM Data 
Challenge dataset

The proposed methodology uses PHM dataset, which is a 

set of time-series sensor data generated in various industrial 

processes, measured from CNC machines [37] to analyze 

Fig. 6   Proposed process of the anomaly detection using encoding images and visualization of the activation heat-map

Table 1   Hyperparameters used 

in training
Patameter values

Learning rate 0.00001

Batch size 32

Epoch 20

Optimization function Adam
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images for anomaly detection and prediction of devices in 

the manufacturing process. The PHM dataset is commonly 

used in the field of Prognostics and Health Management 

(PHM) and is applied in various fields such as health con-

dition monitoring, predictive maintenance, fault diagnosis, 

reconstruction, design, and optimization [38–40].

This study used the IEEE PHM 2010 dataset for model 

training and validation. The CNC machine was operated 

with a cutter spindle speed of 10,400 RPM and a feed rate 

of 1555 mm/min. The experiment involved using six distinct 

cutters (defined as C1, C2, C3, C4, C5, C6). The data were 

collected at a sampling rate of 50 KHz/channel while milling 

the material to a depth of 0.125 mm along the Y-axis and 0.2 

mm along the Z-axis [37].

Features X, Y, Z(N) and X, Y, Z(g) denote the forces 

and vibration values applied to each X, Y, Z axis. They are 

converted into Force and Vib, respectively, by normalizing 

the vectors by dividing their size. Converting them into unit 

vector data reduces the scale difference between features, 

enhances the model’s convergence speed, and improves its 

performance. The resulting multivariate time-series data is 

then transformed into frequency data using the Fast Fourier 

Transform (FFT) and low-pass filters as shown in Fig. 1.

The parameters of the low-pass filter are outlined in 

Table 2. fc denotes the cutoff frequency as a fraction of the 

sampling rate, while b represents the transition bandwidth, 

which is also based on the sampling rate. The length of the 

filter, N, is determined by the transition bandwidth and is 

calculated using the formula [4/b]. This calculation indicates 

that the filter length is inversely proportional to the transi-

tion bandwidth. Additionally, our calculations require that 

the filter length be an odd number. In this experiment, with 

fc set at 0.1, the cutoff frequency is 10% of the frequency 

range. Using these parameters, the low-pass filter effectively 

removes higher frequencies from the data signal. The design 

ensures minimal signal distortion within the passband while 

effectively attenuating unwanted frequencies in the stopband. 

This characteristic is crucial for preserving the integrity of 

the original signal’s low-frequency components.

The proposed methodology utilizes the PHM dataset, a 

collection of time-series sensor data obtained from vari-

ous industrial processes, specifically measured from CNC 

machines, for the purpose of analyzing images to detect 

anomalies and predict device behavior in the manufactur-

ing process.For this study, an image dataset was compiled 

based on the PHM dataset in Table 3 for each cutter (C1, C2, 

C3, C4, C5, C6) of the CNC machine, resulting in a total of 

approximately 6,000 images per cutter and a combined data-

set of 36,000 images. Among these, around 27,000 images 

were labeled as normal, while about 9000 images were 

labeled as abnormal. The sampling rate was set to 50kHz.

For anomaly classification, we divided the normal range 

and the wear (anomaly) range of the cutter and labeled the 

time series data as normal if it stayed within the normal 

range for a certain period and labeled it as abnormal if 

it went beyond the range. Figure 7 shows the time series 

graphs of the labeled normal and abnormal data and the 

transformed image data using four methods: GASF, GADF, 

MFT, and RP. (a) shows the graphs and transformed image 

data of the normal range, and (b) shows those of the abnor-

mal range. Unlike Fig. 7a and b shows a decreasing trend 

for each feature.

Using the main diagonal from the top left to the bottom 

right as a reference, normal images exhibit intersecting lines 

corresponding to increasing patterns in GAF and RP images, 

while abnormal images, which show relatively consistent 

decreases, do not have intersecting lines. In the case of MTF, 

bright color mappings can be observed in the increasing por-

tions of normal images, whereas specific intervals lack map-

ping values in abnormal images. These observations indicate 

that the characteristics of time-series data can be identified 

through different features such as color, dots, and lines in 

the corresponding positions of 2D images. Through these 

images, the aim is to detect anomalies in a commercialized 

6 mm ball-nose tungsten carbide cutter using the PHM 2010 

dataset. Through this, we detect anomalies in the 6 mm ball-

nose tungsten carbide cutter that was commercially used for 

the PHM 2010 data measurement.

4.1.1 � Case 1: Training Result

Table 4 shows the validation accuracies of each network 

model for GADF, GASF, MTF, and RP image representa-

tions, obtained from training the proposed model in this 

paper. The numbers have been rounded to six decimal 

places. Although each image representation method showed 

Table 2   Parameters of low-pass filters

Feature Representation Value

fc Cutoff frequency 0.1

b Transition band 0.08

N Filter length 50

Table 3   Data description for the IEEE PHM 2010 dataset

Feature Representation Physical quantity

X(N) Force (N) in X dimension Force

Y(N) Force (N) in Y dimension Force

Z(N) Force (N) in Z dimension Force

X(g) Vibration (g) in X dimension Vib

Y(g) Vibration (g) in Y dimension Vib

Z(g) Vibration (g) in Z dimension Vib

AE(V) AE-RMS (V) AE
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different performances depending on the network model 

used, most of the accuracies converged to a value close to 

1.0, indicating relatively high accuracy in anomaly detec-

tion. The top 5 methods were RP using ResNet50 with an 

accuracy of approximately 99.6%, GASF using VGG16, 

GADF using MobileNet, GASF using ResNet50, and GADF 

using VGG19. 

Figure 8 presents a visualization of the accuracy and loss 

rates for the top 5 models trained using the GADF image 

representation method. The loss rate indicates whether there 

are problems with underfitting or overfitting during training, 

where the loss rate does not decrease below a certain value 

or increases during training. As shown in Fig. 8, the loss 

rates of the trained models converged to zero, indicating 

effective learning. The validation accuracies and loss rates 

also suggest that overfitting was prevented, and the models 

achieved appropriate training.

4.2 � Demonstration Case 2: Actual Data 
from CNC-Machining Process

Through Sect. 4.1.1. Training result, it was possible to con-

firm that the proposed approach in this study yielded sig-

nificant results in the PHM 2010 dataset, as demonstrated 

above. Consequently, the applicability and significance of 

this methodology, utilizing real-data (Table 5) instead of the 

PHM 2010 dataset, can be expected. Therefore, additional 

data sets collected from actual field operations were obtained 

to further train the top five models.

The collected data consists of information obtained dur-

ing milling and cutting processes in real manufacturing site. 

As shown in Fig. 9, it includes force and noise data, specifi-

cally recording the magnitude of forces applied along the 

XYZ axes. While these data exhibit similar characteristics 

to the PHM dataset, the data has lack of the vibration data 

in real manufacturing site.

4.2.1 � Case 2: Training Result

Table 6 shows the comparison of accuracy among the top 5 

models for Case 1: 2010 PHM Data Challenge dataset and 

Case 2: Actual data from CNC-machining process manu-

facturing field dataset. Case 1 demonstrates an accuracy 

close to 99%, while Case 2 exhibits a relatively lower over-

all accuracy of approximately 91%. This difference can be 

attributed to the actual data having only two time-series fea-

tures, forces and noise, in comparison to the PHM dataset, 

which includes three features: forces, vibrations, and noise. 

Consequently, the limited characteristics of the actual data 

from CNC-machining process result in the lower accuracy. 

Nonetheless, the GASF image encoding method and 

VGG16 model in Case 2 still achieve a significant accuracy 

of 91.8%. This high accuracy demonstrates the meaning-

ful findings of this study, overcoming limitations posed 

by restricted experimental conditions and potential biases 

associated with manual label assignment. It signifies the rel-

evance of the proposed methodology for real manufacturing 

site datasets and other domains involving time-series data.

4.3 � Grad-CAM Result

The layer to which Grad-CAM is applied is selected after 

training the CNN model. The visualization of the activated 

regions differs depending on the feature map. This enables 

an understanding of which parts the model focuses on to 

recognize a particular class, and Grad-CAM’s visualized 

Fig. 7   Graph of normal and abnormal ranges
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activation map only provides useful information when the 

model accurately recognizes a specific class. Conversely, 

if the accuracy of the CNN model is not guaranteed, Grad-

CAM’s results visualizing the parts that are mainly activated 

for recognizing a particular class cannot be trusted. There-

fore, efforts to improve the accuracy of the CNN model are 

necessary to ensure its reliability, and the model’s perfor-

mance is crucial in interpreting Grad-CAM results.

The selection criteria for the activation map in Grad-

CAM are as follows: Grad-CAM generates an activation 

map using the back-propagated weights starting from the last 

convolution layer, which has a significant result. Therefore, 

in Grad-CAM, the last convolution layer is selected and an 

activation map that visualizes the most influential feature 

points for recognizing a particular class is chosen based on 

the score of the specific class.

Figure 10 visualizes the main areas for predicting image 

classes by each model based on their features through Grad-

CAM. Figure 10a1 shows MobileNet of GADF, Fig. 10(b.1) 

shows VGG19, Fig. 10a2 shows ResNet of GASF, Fig. 10b2 

shows VGG16, and finally, Fig. 10a3 shows ResNet of 

RP. These are the top five image transformation methods 

and classification models with high accuracy, as shown in 

Table 4.

For GADF, even for the same image, MobileNet and 

VGG19 show significant differences in the activation maps 

they visualize. The activation map of RP’s ResNet50 with 

the highest accuracy is activated in relatively distinctive 

parts, indicating that it can correctly identify the image class. 

Therefore, Resnet50 can more clearly explain the image 

classes than other models.

5 � Conclusion

In this study, we proposed an anomaly detection and classifi-

cation process in manufacturing processes using Grad-CAM, 

one of the interpretable AI methodologies. Due to the recent 

Fourth Industrial Revolution and advances in hardware, 

there is an increasing demand for artificial intelligence and 

big data processing in the industry. The concept of predictive 

maintenance is receiving more attention, especially in the 

smart factory industry, where many processes are of interest 

and in progress.

5.1 � Future Work and Potential Applications

This study aims to establish a foundation for DSS(Decision 

Support Systems) that significantly enhance predictive main-

tenance and operational efficiency of machinery in manu-

facturing environments through the use of artificial intel-

ligence models. Literature [41] proposes a new DSS based 

on IoT and machine learning for predictive maintenance in Ta
b

le
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Fig. 8   GADF accuracy and loss

Fig. 9   Case2: CNC- machining process and IoT device of the manufacturing field data

Table 5   Data description from the actual data for CNC-machining 

process

Feature Representation Physical quantity

X(N) Force (N) in X dimension Force

Y(N) Force (N) in Y dimension Force

Z(N) Force (N) in Z dimension Force

AE(V) AE-RMS (V) AE

Table 6   Comparison of the accuracy for the case 1 and 2

2010 PHM Data 

Challenge dataset

Actual data from 

CNC-machining 

process

RP ResNet50 0.996622 0.915207

GASF VGG16 0.994088 0.918238

ResNet50 0.990709 0.915235

GADF MobileNet 0.991554 0.915743

VGG19 0.989865 0.915545
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an Industry 4.0 environment. This system combines real-

time data collected from IoT devices with machine learning 

algorithms, enabling maintenance personnel and operators 

to optimize processing quality and predict potential equip-

ment failures, thereby effectively planning maintenance. As 

a result, manufacturers can reduce costs, enhance produc-

tivity, and minimize equipment downtime. Moreover, this 

technology plays a crucial role in Industry 4.0 by optimizing 

maintenance schedules and providing real-time alerts about 

operational risks.

Future research will further develop these AI standard 

models to explore their applicability in industrial fields. 

The integration of more sophisticated sensor technologies 

will improve the accuracy and speed of data collection and 

monitoring. Additionally, advancements in machine learning 

and deep learning technologies are expected to enhance the 

predictive capabilities of the models and more accurately 

identify potential issues. Additionally, the application of 

interpretable AI in this study enhances the model’s reliabil-

ity and understanding by providing workers with additional 

Fig. 10   Visualizing the activation map of a model using Grad-CAM
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visual information that increases interpretability. By utiliz-

ing this to support decision-making in manufacturing, this 

research contributes to the paradigm of ZDM (Zero Defect 

Manufacturing) [42]. As a result, the decision support pro-

vided by explainable AI in this study will play a crucial 

role in achieving zero-defect manufacturing in the industry. 

Therefore, our research is expected to contribute to solving 

real-world problems and bringing innovation to the indus-

trial sector.

5.2 � Limitations of the Proposed Method

In this paper, we utilized the PHM 2010 Dataset and actual 

data from CNC-machining process for predictive mainte-

nance and conducted anomaly detection through image-

based time series data analysis using a convolutional neural 

network (CNN), which showed a high accuracy rate of 90% 

for most cases, surpassing previous time-series data analy-

sis. We selected the top five models and image visualization 

methods among the trained CNN models and performed 

a comparison and analysis of the activation regions using 

Grad-CAM .[43] Our research presents promising advance-

ments for predictive maintenance in the manufacturing sec-

tor, however, there are several limitations that require further 

discussion.

Firstly, we acknowledge that the proposed approach 

demands a substantial amount of labeled data for the effec-

tive training of the CNN models. The requirement for exten-

sive data collection and labeling, which is often time-con-

suming and costly, poses a significant challenge, particularly 

in diverse manufacturing settings. Additionally, a notable 

limitation of our study is that the dataset used was confined 

to a single type of machine. This restriction diminishes the 

broader applicability of our findings, as the model trained on 

this dataset may not perform adequately with data from other 

types of machinery or equipment, thus limiting its usability 

across various industrial domains. These issues underscore 

the imperative for ongoing research to address these chal-

lenges and to enhance the scalability and adaptability of our 

approach in varied manufacturing environments as [44].
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