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Preface

This volume contains the selected papers presented at CAEPIA 2024, the XX Conference
of the Spanish Association for Artificial Intelligence, held from June 19-21, 2024, in A
Corufia, Spain. The CAEPIA series of conferences is a biennial event that began in 1985.
Previous editions took place in Granada, Alicante, Mélaga, Murcia, Gijon, San Sebastidn,
Santiago de Compostela, Sevilla, La Laguna, Madrid, Albacete, and Salamanca.

CAEPIA is a forum open to researchers from all over the world to present and
discuss their latest scientific and technological advances in Artificial Intelligence (AI).
Authors were kindly requested to submit unpublished original papers describing relevant
achievements on Al topics. Papers on formal, methodological, technical, or applied
research were welcome.

Several federated congresses and workshops related to relevant Al tracks took place
within CAEPIA: XXII Spanish Congress on Fuzzy Logic and Technologies (ESTYLF);
XV Spanish Congress on Metaheuristics, Evolutionary and Bioinspired Algorithms
(MAEB); XI Symposium of Theory and Applications of Data Mining (TAMIDA);
I Spanish Congress on Recommender Systems (SISREC); I Workshop on Atrtificial
Intelligence in Education (TIAE); and I Spanish Society of Artificial Intelligence in
Biomedicine Workshop (IABiomed).

Within CAEPIA 2024, the Doctoral Consortium (DC) was also organized. This was
a forum for PhD students to interact with other researchers by discussing their PhD
progress and plans. With the aim of highlighting the practical importance of Al, the 5th
Competition on Mobile Apps with Al Techniques was held at CAEPIA, as well as the Al
Dissemination Video Competition. CAEPIA 2024 aimed to maintain the high-quality
standards of previous editions.

Apart from the presentation of technical full papers and the DC, the scientific program
of CAEPIA 2024 included an app contest and a track on outstanding recent papers (Key
Works: KW) already published in renowned journals or forums.

CAEPIA aims to be recognized as a flagship conference in AL This implies achieving
high-quality standards in the review process. In particular, the total number of submis-
sions to CAEPIA 2024 was 228 (neither DC nor KW submissions were included in
those 228 contributions since their review process was different). Only 27 outstanding
manuscripts were selected for this volume after a thorough double-blind review process
that involved at least 2 reviews per submission. This involved a lot of tough work by
the CAEPIA 2024 Program Committee (PC) that was really appreciated. The reviewers
judged the overall quality of the submitted manuscripts, together with the quality of the
methodology employed, the soundness of the conclusions, the significance of the topic,
the clarity, and the organization, among other evaluation fields. The reviewers stated
their confidence in the subject area in addition to detailed written comments. On the
basis of the reviews, the PC Chairs proposed the final decisions that were ultimately
made by both the CAEPIA 2024 general chairman and the president of the Organizing
Committee.
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Likewise, CAEPIA 2024 invited an internationally renowned researcher for a plenary
talk. José Marfa Lasalla (Universidad Pontificia Comillas, Spain) presented “Al and
Human Authenticity.”

CAEPIA and the organization of CAEPIA 2024 recognized the best PhD work
submitted to the DC with a prize, as well as the best student and conference paper
presented at CAEPIA 2024. Furthermore, CAEPIA 2024 also aimed to promote the
presence of women in Al research. As in previous editions, the Frances Allen award
recognized the two best Al PhD theses defended by women during the last two years.

The editors of this volume would like to thank many people who contributed to the
success of CAEPIA 2024: authors, members of the Scientific and Program Commit-
tees, invited speakers, event organizers, etc. We would especially like to recognise the
tireless work of the Organizing Committee, our local sponsors (Faculty of Informatics,
University of A Corufa), the Springer team, and AEPIA for their support.

Last but not least, on behalf of the CAEPIA 2024 participants, the CAEPIA orga-
nizers really thank the University of A Coruiia (local premises for the conference) and
the whole Spanish community working in Al (and their many foreign collaborators) for
making this event a real success.

June 2024 Oscar Fontenla-Romero
Amparo Alonso-Betanzos
Bertha Guijarro-Berdifias
Elena Hernandez-Pereira
Veroénica Bolén-Canedo
Noelia Sanchez-Maroiio
Beatriz Pérez-Sanchez
David Camacho

Juan R. Rabuiial

Manuel Ojeda-Aciego
Jesis Medina

José C. Riquelme

Alicia Troncoso



Organization

General Chairs

Amparo Alonso-Betanzos University of A Corufia, Spain
Bertha Guijarro-Berdifas University of A Corufia, Spain

Awards Committee Chair

Eva Onaindia Polytechnic University of Valencia, Spain

Tutorials and Workshops Chair

Oscar Fontenla-Romero University of A Coruiia, Spain

General Session Chair

Oscar Fontenla-Romero University of A Corufia, Spain

Competitions Chairs

Alberto Bugarin University of Santiago de Compostela, Spain
Jose Antonio Gdmez University of Castilla-La Mancha, Spain

Editors of the LNAI Proceedings of CAEPIA

Elena Herndndez-Pereira University of A Corufia, Spain
Verénica Bolén-Canedo University of A Corufia, Spain



viii Organization

Conference and Workshops Chairs

XXII ESTYLF

Manuel Ojeda-Aciego
Jesus Medina

XV MAEB

Juan Ramoén Rabuial
David Camacho

XI TAMIDA

Alicia Troncoso
José C. Riquelme

José Alejandro Ferndndez Cuesta

I TABiomed

Alejandro Rodriguez Gonzalez
José Alberto Benitez Andrades
Maria del Mar Marcos Lépez

I SISREC

Jesus Bobadilla
Antonio Moreno
Antonio Bahamonde
Raciel Yera Toledo

I TIAE

Francisco Bellas Bouza
Sara Guerreiro Santalla
Oscar Fontenla-Romero
Noelia Sanchez-Marofio

University of Malaga, Spain
University of Cadiz, Spain

University of A Coruifia, Spain
Autonomous University of Madrid, Spain

Pablo de Olavide University, Spain
University of Seville, Spain
Complutense University of Madrid, Spain

Polytechnic University of Madrid, Spain
University of Ledn, Spain
Jaume I University, Spain

Polytechnic University of Madrid, Spain
University of Rovira i Virgili, Spain
University of Oviedo, Spain

University of Jaén, Spain

University of A Corufia, Spain
University of A Corufia, Spain
University of A Corufia, Spain
University of A Corufia, Spain



Organizing Committee

Publicity

Laura Moran-Fernandez

Web

Jorge Paz-Ruza
Samuel Sudrez-Marcote

Area Chairpersons

Oscar Corcho

Javier del Ser

Juan Manuel Fernandez Luna
Jesus Garcia Herrero

Carlos Gémez Rodriguez

Serafin Moral Callején

José Luis Pérez de la Cruz Molina
Petia Radeva

Camino Rodriguez Vela

Program Committee

Amparo Alonso-Betanzos
Lourdes Araujo

Jose Maria Armingol Moreno
Ivan Armuelles

Jaume Bacardit
Antonio Bahamonde
Alvaro Barreiro
Edurne Barrenechea
Senén Barro

Dena Bazazian

Ana M. Bernardos
Concha Bielza Lozoya
Daniel Borrajo

Juan Botia

Organization

University of A Coruifia, Spain

University of A Coruifia, Spain
University of A Coruifia, Spain

Polytechnic University of Madrid, Spain
TECNALIA, Spain

University of Granada, Spain

Carlos IIT University of Madrid, Spain
University of A Corufia, Spain
University of Granada, Spain

University of Mdlaga, Spain

University of Barcelona, Spain
University of Oviedo, Spain

University of A Corufia, Spain

National University of Education at Distance
(UNED), Spain

Carlos III University of Madrid, Spain

University of Panamd, Panama

Newcastle University, UK

University of Oviedo, Spain

University of A Coruifia, Spain

Public University of Navarre, Spain

University of Santiago de Compostela, Spain

University of Plymouth, UK

Polytechnic University of Madrid, Spain

Polytechnic University of Madrid, Spain

Carlos IIT University of Madrid, Spain

King’s College London, UK

ix



X Organization

Alberto Bugarin
Humberto Bustince
Pedro Cabalar

José M. Cadenas

Ivan Cantador

Javier Carbo

Manuel Carranza Garcia
Francisco Chicano
Christian Cintrano
Rafael Corchuelo

Oscar Cordon

David Camilo Corrales Mufioz

Zakaria Abdelmoiz Dahi

Sergio Damas

André de Carvalho
Luis De La Ossa

Juan José Del Coz
Maria José Del Jesus
Javier Del Ser Lorente
Francisco Javier Diez

Jose Dorronsoro

Javier Echanobe

Jorge Fandinno

Andrea Fernandez Martinez
Mariano Ferndndez Lopez
Juan Manuel Fernandez Luna
Jesualdo Tomas Fernandez-Breis
Antonio Fernandez-Caballero
Francesc J. Ferri

José Manuel Galan

Jose Gamez

Pablo Garcia Bringas

Mikel Garcia de Andoin
Jesus Garcia Herrero

Rail Garcia-Castro

Rodrigo Gil-Merino

Juan Gomez Romero

Carlos Gémez-Rodriguez
Antonio Gonzalez

University of Santiago de Compostela, Spain

Public University of Navarre, Spain

University of A Corufia, Spain

University of Murcia, Spain

Autonomous University of Madrid, Spain

Carlos IIT University of Madrid, Spain

University of Seville, Spain

University of Mdlaga, Spain

University of Mdlaga, Spain

University of Seville, Spain

University of Granada, Spain

Institut national de recherche pour 1’agriculture
I’alimentation et I’environnement, France

Université Abdelhamid Mehri Constantine 2,
Algeria

University of Granada, Spain

University of Sdo Paulo, Brazil

University of Castilla-La Mancha, Spain

University of Oviedo, Spain

University of Jaén, Spain

Tecnalia Research & Innovation, Spain

National University of Education at Distance
(UNED), Spain

Autonomous University of Madrid, Spain

Euskal Herriko Unibertsitatea, Spain

University of Nebraska Omaha, USA

AIMEN Technological Centre, Spain

CEU San Pablo University, Spain

University of Granada, Spain

University of Murcia, Spain

University of Castilla-La Mancha, Spain

University of Valencia, Spain

University of Burgos, Spain

University of Castilla-La Mancha, Spain

University of Deusto, Spain

Euskal Herriko Unibertsitatea, Spain

Carlos IIT University of Madrid, Spain

Polytechnic University of Madrid, Spain

University of Malaga, Spain

University of Granada, Spain

University of A Coruifia, Spain

University of Granada, Spain



Carlos Gonzéalez Val
Manuel Grafia

Bertha Guijarro-Berdifas
Cesar Hervas

José Antonio Iglesias Martinez

Inaki Inza

Luis Jiménez Linares
Salud Marfa Jiménez-Zafra
Kaisar Kushibar

Pedro Lara-Benitez
Pedro Larranaga

Agapito Ledezma Espino
Juan Pedro Llerena
Adolfo Lopez

Victoria Lépez

Beatriz Lopez

Pilar Lpez-Ubeda
Ascension Lopez-Vargas
Gabriel Luque

Lawrence Mandow

Felip Manya

Mar Marcos
Pablo Marin
Patricio Martinez Barco
Rafael Martinez Tomas

Eugenio Martinez-Camara
José Maria Massa

Rafael Medina-Carnicer
Marcos Mejia
Belen Melian

Pedro Meseguer

Eva Millan

Salar Mohtaj

José M. Molina
Miguel Molina Solana
Serafin Moral Callején
José Angel Morell
Javier Muguerza

Organization xi

AIMEN Technological Centre, Spain

Euskal Herriko Unibertsitatea, Spain

University of A Corufia, Spain

University of Cérdoba, Spain

Carlos IIT University of Madrid, Spain

Euskal Herriko Unibertsitatea, Spain

University of Castilla-La Mancha, Spain

University of Jaén, Spain

University of Barcelona, Spain

University of Seville, Spain

Polytechnic University of Madrid, Spain

Carlos IIT University of Madrid, Spain

Carlos IIT University of Madrid, Spain

University of Valladolid, Spain

University College of Financial Studies, Spain

University of Girona, Spain

University of Jaén, Spain

Carlos III University of Madrid, Spain

University of Malaga, Spain

University of Malaga, Spain

Artificial Intelligence Research Institute (CSIC),
Spain

Jaume I University, Spain

Carlos IIT University of Madrid, Spain

University of Alicante, Spain

National University of Education at Distance
(UNED), Spain

University of Granada, Spain

National University of the Center of the Buenos
Aires Province, Argentina

University of Cérdoba, Spain

University of Barcelona, Spain

University of La Laguna, Spain

Artificial Intelligence Research Institute (CSIC),
Spain

University of Malaga, Spain

Technical University, Berlin

Carlos IIT University of Madrid, Spain

University of Granada, Spain

University of Granada, Spain

University of Mdlaga, Spain

Euskal Herriko Unibertsitatea, Spain



xii Organization

Antonio Muifioz
Bhalaji Nagarajan
Ismael Navas

José Fernando Nuiiez
Manuel Ojeda-Aciego
José Angel Olivas
Eva Onaindia

Sascha Ossowski

Jose Palma

C. Alejandro Parraga
Miguel Angel Patricio
Juan Pavon Mestras
Antonio Peregrin
Eduardo Perez

José Luis Pérez de la Cruz Molina
Giuseppe Pezzano
Hector Pomares

Jose M. Puerta
Camino R. Vela
Noelia Rico

Ramon Rizo

Javier Rodenas
Alejandro Rodriguez
Rosa Rodriguez
Diego Gabriel Rossit

Elias Said Hung
Antonio Salmeron
Luciano Sanchez

Jose Salvador Sanchez
Araceli Sanchis
Encarna Segarra

M. Paz Sesmero Lorente
Igor Skrjanc

Emilio Soria

Maria Taboada
Estefania Talavera

Erik Torrontegui

Alicia Troncoso

L. Alfonso Urefia-Lépez
Rafael Valencia-Garcia

University of Mdlaga, Spain

University of Barcelona, Spain

University of Mdlaga, Spain

University of Barcelona, Spain

University of Mdlaga, Spain

University of Castilla-La Mancha, Spain

Polytechnic University of Valencia, Spain

Rey Juan Carlos University, Spain

University of Murcia, Spain

Autonomous University of Barcelona, Spain

Carlos IIT University of Madrid, Spain

Complutense University of Madrid, Spain

University of Huelva, Spain

Maimoénides Biomedical Research Institute of
Coérdoba, Spain

University of Mélaga, Spain

University of Barcelona, Spain

University of Granada, Spain

University of Castilla-La Mancha, Spain

University of Oviedo, Spain

University of Oviedo, Spain

University of Alicante, Spain

University of Barcelona, Spain

Polytechnic University of Madrid, Spain

University of Jaén, Spain

National University of the South (CONICET),
Argentina

International University of La Rioja, Spain

University of Almerfa, Spain

University of Oviedo, Spain

Jaume I University, Spain

Carlos IIT University of Madrid, Spain

Polytechnic University of Valencia, Spain

Carlos IIT University of Madrid, Spain

Univerza v Ljubljani, Slovenia

University of Valencia, Spain

University of Santiago de Compostela, Spain

University of Groningen, The Netherlands

Carlos III University of Madrid, Spain

University Pablo de Olavide, Spain

University of Jaén, Spain

University of Murcia, Spain



Alfredo Vellido
Sebastian Ventura

José Ramon Villar
Jesus Alcala-Fernandez
Cristina Alcalde

Sergio Alonso

Jose M. Alonso

Roberto G. Aragén

Maria José Benitez-Caballero
Fernando Bobillo

Ana Burusco

Inmaculada P. Cabrera
Francisco Javier Cabrerizo
Tomasa Calvo

Pablo Carmona

Juan Luis Castro

Pablo Cordero

Maria Eugenia Cornejo Pifieiro
Susana Cubillo

Rocio De Andres

Miguel Delgado

Susana Diaz

Jorge Elorza

Javier Fernandez

Mikel Galar

Jose Luis Garcia-Lapresta
Lluis Godo

Francisco Herrera Triguero
Enrique Herrera Viedma
Maria Teresa Lamata
David Lobo

Bonifacio LLlamazares
Carlos Lopez-Molina
Nicolas Madrid

Luis Magdalena

Maria J. Martin-Bautista
Luis Martinez

Sebastia Massanet
Francisco Mata

Jesus Medina

Organization

Polytechnic University of Catalunya, Spain

University of Cérdoba, Spain

University of Oviedo, Spain

University of Granada, Spain

University of the Basque Country UPV/EHU,
Spain

University of Granada, Spain

University of Santiago de Compostela, Spain

University of Cadiz, Spain

University of Cadiz, Spain

University of Zaragoza, Spain

Public University of Navarre, Spain

University of Mélaga, Spain

University of Granada, Spain

University of Alcal4, Spain

University of Extremadura, Spain

University of Granada, Spain

University of Malaga, Spain

University of Cadiz, Spain

Polytechnic University of Madrid, Spain

University of Salamanca, Spain

University of Granada, Spain

University of Oviedo, Spain

University of Navarre, Spain

Public University of Navarre, Spain

Public University of Navarre, Spain

University of Valladolid, Spain

Institute for Research in Artificial Intelligence,
IITA - CSIC, Spain

University of Granada, Spain

University of Granada, Spain

University of Granada, Spain

University of Cadiz, Spain

University of Valladolid, Spain

Public University of Navarre, Spain

University of Cadiz, Spain

Polytechnic University of Madrid, Spain

University of Granada, Spain

University of Jaén, Spain

University of the Balearic Islands, Spain

University of Jaén, Spain

University of Cadiz, Spain

xiii



xiv Organization

Javier Montero

Susana Montes

Juan Moreno-Garcia

Ana Pradera

Eloisa Ramirez-Poussa
Jordi Recasens

Juan Vicente Riera

Rosa M. Rodriguez Dominguez
Francisco P. Romero
Daniel Sanchez

Jose Antonio Sanz Delgado
Jesus Serrano- Guerrero
Miguel Angel Sicilia
Vicenc Torra

Aida Valls

Jose Luis Verdegay

University Complutense of Madrid, Spain
University of Oviedo, Spain

University of Castilla-La Mancha, Spain
Rey Juan Carlos University, Spain
University of Cadiz, Spain

Polytechnic University of Catalonia, Spain
University of the Balearic Islands, Spain
University of Jaén, Spain

University of Castilla-La Mancha, Spain
University of Granada, Spain

Public University of Navarre, Spain
University of Castilla-La Mancha, Spain
University of Alcal4, Spain

Umea University, Sweden

University Rovira I Virgili, Spain
University of Granada, Spain



Contents

Taking Advantage of Depth Information for Semantic Segmentation

in Field-Measured Vineyards .................uuuiiiiiiiiiiiiiann..
Angela Casado-Garcia, Jonathan Heras, Roberto Marani,
and Annalisa Milella

Advancing Computational Frontiers: Spiking Neural Networks

in High-Energy Efficiency Computing Across Diverse Domains ..............
Bahgat Ayasi, Angel M. Garcia-Vico, Cristobal J. Carmona,
and Mohammed Saleh

Deep Variational Auto-Encoder for Model-Based Water Quality Patrolling

with Intelligent Surface Vehicles ............ .. .. i i
Samuel Yanes Luis, Nicola Basilico, Michele Antonazzi,
Daniel Gutiérrez Reina, and Sergio Toral Marin

An Architecture Towards Building a Reliable Suicide Information Chatbot
Pablo Ascorbe, Maria S. Campos, César Dominguez, Jonathan Heras,
Magdalena Pérez, and Ana Rosa Terroba-Reinares

Age Estimation Using Soft Labelling Ordinal Classification Approaches ......
Victor M. Vargas, Antonio M. Gomez-Orellana, David Guijo-Rubio,
Francisco Bérchez-Moreno, Pedro Antonio Gutiérrez,
and César Hervds-Martinez

O-Hydra: A Hybrid Convolutional and Dictionary-Based Approach

to Time Series Ordinal Classification .............. ... ... ....civeiun....
Rafael Ayllon-Gavildn, David Guijo-Rubio, Pedro Antonio Gutiérrez,
and César Hervds-Martinez

Predicting Parkinson’s Disease Progression: Analyzing Prodromal Stages
Through Machine Learning . .................uuuuuuiiiiiiinnn.
Maitane Martinez-Eguiluz, Javier Muguerza, Olatz Arbelaitz,
Ibai Gurrutxaga, Juan Carlos Gomez-Esteban, Ane Murueta-Goyena,
and liiigo Gabilondo

Ground-Level Ozone Forecasting Using Explainable Machine Learning .......
Angela Robledo Troncoso-Garcia, Manuel Jesiis Jiménez-Navarro,
Francisco Martinez-Alvarez, and Alicia Troncoso



Xvi Contents

Multi-Objective Lagged Feature Selection Based on Dependence

Coefficient for Time-Series Forecasting ............ ... ..., 81
Maria Lourdes Linares-Barrera, Manuel J. Jiménez Navarro,
José C. Riquelme, and Maria Martinez-Ballesteros

FuSDG: A Proposal for a Fuzzy Assessment of Sustainable Development
Goals AChIBVEMENL . . ... vttt 91
David A. Pelta, Pavel Novoa-Herndndez, and José Luis Verdegay

A Surrogate Assisted Approach for Fitness Computation in Robust
Optimization over TIME .. ... ..ottt 101
Pavel Novoa-Herndndez, Carlos Corona Cruz, and David A. Pelta

A Path Relinking-Based Approach for the Bi-Objective Double Floor
Corridor Allocation Problem .......... ... .. i 111
Nicolds R. Uribe, Alberto Herrdn, and J. Manuel Colmenar

An Experimental Comparison of Qiskit and Pennylane for Hybrid
Quantum-Classical Support Vector Machines .............................. 121
Francesc Rodriguez-Diaz, José Francisco Torres,
David Gutiérrez-Avilés, Alicia Troncoso, and Francisco Martinez-Alvarez

Preserving the Essential Features in CNNs: Pruning and Analysis ............ 131
Clara I. Lopez-Gonzdlez, Maria J. Gomez-Silva, Eva Besada-Portas,
and Gonzalo Pajares

Iterated Local Search for the Facility Location Problem with Limited
Choice Rule ... ... 142
Enrique Garcia-Galdn, Alberto Herrdn, and J. Manuel Colmenar

Driven PCTBagging: Seeking Greater Discriminating Capacity
for the Same Level of Interpretability .............. ..., 152
Jesiis Maria Pérez, Olatz Arbelaitz, and Javier Muguerza

Semi-supervised Learning Methods for Semantic Segmentation of Polyps ..... 162
Adridn Inés, César Dominguez, Jonathan Heras, Eloy Mata,
and Vico Pascual

Community-Based Topic Modeling with Contextual Outlier Handling ......... 173
Cesar Andrade, Rita P. Ribeiro, and Jodo Gama



Contents Xvii

Toward Explaining Competitive Success in League of Legends: A Machine

Learning AnalySis . ... ...ttt e 184
Francisco Javier Galdn-Sales, Maria Lourdes Linares-Barrera,
Pablo Reina-Jiménez, Ana Rodriguez-Lopez,
and Manuel Jesiis Jiménez-Navarro

Reconstruction-Based Anomaly Detection in Wind Turbine Operation
Time Series Using Generative Models ........... ... ..., 194
Amaia Abanda, Ainhoa Pujana, and Javier Del Ser

Multi-class and Multi-label Classification of an Assembly Task

In Manufacturing ... ...ttt e 204
Manuel Garcia-Dominguez, Jonathan Heras Vicente, Roberto Marani,
and Tiziana D’Orazio

Image Processing and Deep Learning Methods for the Semantic

Segmentation of Blastocyst Structures . ............coveiiiiiinniiiinna... 213
Maria Villota, Jacobo Ayensa-Jiménez, Manuel Doblaré,
and Jonathan Heras

Multivariate-Autoencoder Flow-Analogue Method for Heat Waves

RECONSIIUCION . ...\ttt 223
Cosmin M. Marina, Eugenio Lorente-Ramos, Rafael Ayllon-Gavildn,
Pedro Antonio Gutiérrez, Jorge Pérez-Aracil, and Sancho Salcedo-Sanz

HEX-GNN: Hierarchical EXpanders for Node Classification ................. 233
Ahmed Begga, Miguel Angel Lozano, and Francisco Escolano

The Notion of Bond in the Multi-adjoint Concept Lattice Framework ......... 243
Roberto G. Aragon, Jesiis Medina, and Samuel Molina-Ruiz

Exploring the Use of LLMs for Teaching Al and Robotics Concepts

ataMaster’s Degree . .......oiiiiiiiiii e 254
Miguel A. Gonzdlez-Santamarta, Francisco Javier Rodriguez-Lera,
Miguel A. Conde-Gonzdlez, Francisco Rodriguez-Sedano,
and Camino Ferndndez-Llamas

Exploring the Capabilities and Limitations of Neural Methods

inthe Maximum CUt .. ... . e 264
Andoni I. Garmendia, Josu Ceberio, and Alexander Mendiburu

Author Index . ... e 275



®

Check for
updates

Taking Advantage of Depth Information
for Semantic Segmentation
in Field-Measured Vineyards

1@, Jénathan Heras!®™)®, Roberto Marani?®,

and Annalisa Milella2

Angela Casado-Garcia

! Department of Mathematics and Computer Science, University of La Rioja,
Logrofio, Spain
{angela.casado, jonathan.heras}@unirioja.es
2 Institute of Intelligent Industrial Technologies and Systems for Advanced
Manufacturing, National Research Council of Italy, Rome, Italy
{roberto.marani,annalisa.milella}@stiima.cnr.it

Abstract. RGB-D cameras mounted on moving agricultural robotic
platforms provide detailed information about both appearance and vol-
ume of plants. Those images can be analysed by means of deep segmen-
tation models; however, such methods usually dismiss depth informa-
tion. In this work, we aim to address this challenge by comparing four
deep learning models for segmenting canopy and grape bunches in RGB
and RGB-D images. In our experiments, RGB-D models achieved bet-
ter results than their RGB counterparts, improving up to a 1.83% the
mean segmentation accuracy. These findings highlight the potential of
cost-effective RGB-based depth estimation techniques for accurate plant
segmentation in agricultural settings, paving the way for wider adoption
of RGB-D technology.

Keywords: Semantic Segmentation + Precision Agriculture - RGB-D

1 Introduction

Analysing natural images captured by moving robotic platforms is a key point
for yield monitoring at the plant level [11]. Its actual implementation requires
low-cost sensors able to provide detailed information about both appearance
and volume of the targets; for instance, the whole plants or single fruits [10].
Usually, sensors employed in agricultural robots are standard RGB cameras,
which provide a flat 2D representation of the targets [4]. In contrast, RGB-
D cameras are able to produce three-dimensional (3D) colored models of the
crops, and can give more information that is helpful for fruit monitoring and
counting [4].

In this context, convolutional neural models have been widely used to auto-
matically segment crop elements based on their color and texture attributes from
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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RGB images [1], and depth information can reduce the uncertainty of the seg-
mentation of objects having similar appearance information [3]. However, it is
not clear what is the optimal way of fusing RGB and depth information. Several
works suggest that depth information can help the segmentation of classes of
close depth, appearance and location [5]. On the contrary, it is better to use
only RGB information to recognize object classes containing high variability of
their depth values [5].

In this paper, we aim to address this question related to the usage of
depth information for the segmentation of different elements (canopy and grape
bunches) in a vineyard. Namely, we investigate the effectiveness of utilizing RGB-
D images for accurate and efficient segmentation in viticulture using deep seg-
mentation models. In this way, we seek to determine whether the fusion of RGB
and depth data can enhance the segmentation accuracy compared to using RGB
data alone.

2 Materials and Methods

In this section, we present both the dataset and computational materials and
methods employed in this work.

2.1 Dataset

Semantic segmentation is a task that classifies every pixel of an image among
target classes of interest. In the context of viticulture, segmentation of spe-
cific targets, such as the canopy and fruits, can be the key for yield monitoring
and robotic harvesting. In order to apply segmentation methods based on Deep
Learning techniques, it is necessary an annotated dataset (that is, pairs of nat-
ural images and their corresponding mask with the position of the objects).

In this work, the dataset was acquired in a vineyard in San Donaci (Italy)
with an Intel Realsense D435 camera mounted on a moving robot. The camera
acquired lateral views of the line of the grape plants at a distance of 0.8 to 1 m.
Under these conditions, every image covered a horizontal field of view between
0.9 and 1.2m to completely frame every plant in a single image. These images
were taken at three different times of the year: in July (where the grapes are
small and green and the plant has few leaves), in September (where the grapes
are black and the plant has many leaves), and in October (where there are no
grapes and the plant has very few leaves), see Fig. 1.

The dataset consists of 265 colour images in PNG format, see Fig.2(a). In
addition, the Intel Realsense D435 camera provides the depth of each image in
the RAW format, see Fig.2(b). Finally, the images were manually annotated
by visually inspecting them to produce the masks with the regions correspond-
ing to the grape bunches and canopy, see Fig.2(c). The dataset was divided
into two subsets: the training set (212 images) and the test set (54 images).
The dataset is available at the following webpage https://github.com/joheras/
ECSDVineyardDataset /.
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Fig. 1. RGB images acquired on different dates: (a) July, (b) September, (c) October.
(Color figure online)

There are two versions of the dataset: RGB and RGB-D. In the RGB version
of the dataset, the images of both the training and test set are RGB images
— that is, the depth information was discharged. In the RGB-D version, the
information from RGB channels and depth channel of the images of both the
training and test set was combined as follows. The RAW images captured with
the Intel Realsense D435 camera provide information about the depth of objects
that are located up to 65 m away (see Fig.3(a)) — the ideal working range for
the camera is between 0.3 m and 3 m although in principle the max range that
can be coded is about 65 m as the depth map uses 16bit depth with a depth
unit of 1 mm. However, plants are located less than 3 m away; hence, the depth
information related to objects farther than 3 m away is removed from the image
(see Fig. 3(b)). Finally, such an image is combined with the RGB image obtaining
an RGB-A image with four channels where the depth information is used as the
alpha channel, see Fig.3(c) — this procedure to fuse RGB images and depth
information is known as early fusion [8].

2.2 Computational Methods

From the training sets of the RGB and RGB-D datasets, several deep-learning
segmentation architectures were fine-tuned [13]. Namely, we have employed the
Unet++ architecture with a ResNet50 backbone [14], the DeepLabV3 architec-
ture with a ResNext50 backbone [2], and the Manet architecture with Efficient-
NetB3 and ResNest50 backbones [7].

The architectures with their respective backbones were implemented in
PyTorch [12] and have been trained thanks to the functionality of the FastAI
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Fig. 2. (a) A sample RGB image acquired by the Intel Realsense D435 camera; (b) The
corresponding depth image; (¢) The annotation of the image. Black pixels correspond
with the background, red pixels with the regions of the grape bunches, and green pixels
with the canopy regions. (Color figure online)

——n

Fig. 3. Fusion process of the RGB image from Fig. 2(a) and its depth information. (a)
Depth image with information up to 65m; (b) Depth image with information up to
3m; (c) RGB-A image produced by combining the image from Fig. 2(a) and the image
from Fig. 3(b). (Color figure online)
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library [6] on an Nvidia RTX 2080 Ti GPU. The procedure presented in [6] was
employed to set the learning rate for the different architectures. Also, early stop-
ping was applied in all the architectures to avoid overfitting. In order to feed
RGB-A images to these architectures, they were converted to RGB images using
the Pillow library. The code used for training the models is available at https://
github.com/ancasag/segmentationVineyards.

After training, all the models were then evaluated on the corresponding test
set of 54 annotated images using the mean segmentation accuracy of the ¢ — th

class (MSA,):

TP,
MSA, = mean ( <, Vimages € dataset> . (1)
Nobs,c
where TP, is the number of true positives, i.e. correct pixel labels over the
entire population of the ¢ — th class (nobs, ¢) [9].

3 Results and Discussion

The performance of the trained networks was first evaluated using the RGB
version of the dataset, see Table 1. If the segmentation networks are compared,
the DeepLab-Resnext model showed better overall segmentation accuracy than
the other networks. The Unet++-ResNet50 model produced the best results for
canopy segmentation with an accuracy of 79.98, whereas the Deeplab-Resnext
model, with an accuracy of 94.46, outperformed the others for segmenting objects
of the Grape class.

Table 1. Mean segmentation accuracy (percentage) computed on test images of the
RGB dataset. In bold the best results.

Network Background Canopy Grapes Total

Unet+-+-ResNet50 95.48 79.98 9446 93.64

Deeplab-ResNext 97.66 78.57 95.10 94.72
Manet-Efficientnet 97.72 76.45  95.01 94.50
Manet-ResNest 93.58 78.46 93.15 92.05

The results for the RGB-D version of the dataset are presented in Table 2. The
RBG-D models improved between 2% and 4% the overall mean segmentation
accuracy of their RGB counterparts. For this version of the dataset, the best
model was built using the architecture Unet++ with a ResNet50 backbone that
achieved a segmentation accuracy for the canopy class of 81.91%, for grape
bunches of 95.83%, and an overall mean segmentation accuracy of 95.47%. This
shows the positive effect of adding the depth information to the RGB image, since
adding such information allows the models to focus on the objects of interest,
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Table 2. Mean segmentation accuracy (percentage) computed on test images of the
RGB-D dataset. In bold the best results.

Network Background Canopy Grapes Total

Unet++-ResNet50 97.91 81.91 95.83 95.47

Deeplab-ResNext 97.04 81.15  95.33 94.82
Manet-Efficientnet 95.53 67.70 95.50 92.96
Manet-ResNest 97.52 81.51 95.52 95.12

(a) (b) (c) (d)

Fig. 4. (a) Original Image; (b) Mask; (c¢) Prediction with the best RGB model; (d)
Prediction with the best RGB-D model. (Color figure online)

and also discard elements of the background that can be wrongly classified as
either leaves or grape bunches.

In addition to the raw numbers, several conclusions can be drawn from the
segmentation of the different models as shown in Fig. 4. As we can see in Fig. 4(c),
the best RGB segmentation model finds where the leaves are but misses many of
them; and for the grapes, such a model is not able to find them and gets confused
with the pole — in both cases, this might happen due to the similarity of colors
that makes difficult for the model to distinguish them accurately. In contrast, the
RGB-D model, see Fig.4(d), knows where the grapes are and can differentiate
the pole (this occurs because the model gains additional information about the
scene’s geometry and spatial relationships), but mixes some of the leaves with
the background.

4 Conclusions and Further Work

In this work, depth information has been incorporated to automatically segment
images captured with a camera mounted on a moving agricultural tractor. The
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results show the benefits of working with RGB-D images instead of only using
RGB images — improvements between 2% and 4% were obtained.

In order to train RGB-D models, we applied a procedure known as early
fusion to combine RGB images and depth information. As further work, we aim
to investigate other modalities for fusing RGB images and depth information,
such as middle and late fusion [8]. Moreover, we plan to study the performance of
our models when low-cost images, obtained, for instance, from a mobile phone,
are used. To achieve this aim, it will be necessary to study models that are able
to generate depth information from RGB images and use them with our models.
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Abstract. This comprehensive review explores the rapidly advancing
field of Spiking Neural Networks (SNNs), particularly emphasizing their
computational capabilities and potential for energy-efficient computing.
SNNs distinguish themselves from traditional neural networks by skill-
fully processing complex, time-sensitive binary inputs through intricate
encoding strategies and dynamic learning algorithms. This paper dis-
cusses various encoding techniques and evaluates several neuron mod-
els integral to SNN architecture, such as the Leaky Integrate-and-Fire,
Hodgkin-Huxley, and Izhikevich models. These models are appraised for
their trade-offs between computational simplicity and biological plausi-
bility. Additionally, we examine the energy-saving expertise of SNNs rel-
ative to their traditional counterparts, identifying challenges in scaling
and the intricacy of training. The review explores a spectrum of training
techniques for SNNs, including supervised, unsupervised, and reinforce-
ment learning approaches. This paper culminates by highlighting imper-
ative future research directions in SNNs. It underscores the pressing need
for developing sophisticated training algorithms and customizing mod-
els to augment efficiency and versatility in energy-conscious computing.
These focal points are suggested as pivotal for driving the field forward
and unlocking the full potential of SNNs in real-world applications.

Keywords: Spike + Power efficiency - STDP

1 Introduction

Amidst ATl’s rapid advancements, the challenge of climate change, exacer-
bated by rising global energy consumption, becomes paramount. Al, mainly
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through expanding machine learning applications, significantly contributes to
this increased energy demand, raising concerns about the environmental impact
of technological progress. The sustainability of Al is questioned as advanced
models like BERT evolve into more complex systems like GPT-4, which may
comprise up to 300 billion parameters by 2023 [1], highlighting the escalating
energy requirements for Al development and deployment.

The concept of trustworthy AI, emphasizing legal, ethical, and robustness
criteria, gains importance, advocating for Al systems that are efficient, reliable,
and socially and environmentally responsible. [2] This necessitates a paradigm
shift towards more energy-efficient computational methods to mitigate the envi-
ronmental footprint of neural networks, aligning Al development with ethical
and sustainable practices.

Spiking Neural Networks (SNNs), the third generation of neural network
models, emerge as a viable solution, capable of processing temporal and asyn-
chronous inputs with significantly lower energy consumption [4]. This posi-
tions SNNs as a critical technology for sustainable AI development, promising
to reduce computational energy demands while retaining or improving perfor-
mance.

Despite progress, integrating neuron types, coding methods, learning tech-
niques, and architectures into a cohesive SNN framework presents a challenge.
This research addresses this by synthesizing these components to understand
SNNs’ role in energy-efficient computing, aiming to bridge the gap between
SNNs’ potential and practical application in various domains.

This paper systematically reviews SNNs within the sustainable AI context,
exploring their challenges and future directions. It aims to enhance understand-
ing of SNNs’ contribution to low-power, high-performance computing, support-
ing the broader goal of developing energy-efficient AI systems that reflect the
adaptability of biological neural networks, thus fostering sustainable technolog-
ical advancement amid environmental challenges.

2 Related Work

This section synthesizes essential research on Spiking Neural Networks (SNNs),
charting their development and diversity with an emphasis on simulation tech-
niques, precision in spike-timing-dependent plasticity, and evolving SNN archi-
tectures, particularly for spatiotemporal processing. Critical studies include
foundational work on simulation strategies [4], advancements in SNN architec-
tures [8], learning algorithms and neuron models [9], optimization techniques for
energy efficiency [10], and hardware implementations [7]. Despite the comprehen-
sive coverage, these reviews often overlook the critical aspect of power efficiency,
particularly in recent advancements in low-power neuromorphic hardware and
real-world applications.

Moreover, discussions on encoding techniques, learning rules, and network
architectures [5], as well as applications in vision and biological neuron theories,
along with software frameworks for data science, strides in neuromorphic com-
puting [11]. The concluding part outlines the challenges in SNN implementation
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and the need for new computational theories, particularly emphasizing the gap in
addressing energy efficiency in SNNs, and learning algorithms are presented. [6]
Our research aims to bridge this gap by focusing on the power efficiency
of SNN components. By emphasizing sustainable AI development, we seek to
inspire future research toward creating energy-efficient SNN models and hard-
ware that are both technologically advanced and environmentally responsible.

3 Comprehensive Exploration of SNNs

SNNs represent the third generation of neural networks, offering a dynamic and
biologically inspired computational approach. SNNs and ANNs differ fundamen-
tally in information processing, learning methods, temporal data handling, and
energy efficiency. SNNs use spikes for asynchronous communication, contrasted
with ANNSs’ structure. Additionally, SNNs are designed for higher energy effi-
ciency, especially on neuromorphic hardware, making them more sustainable
than the computationally intensive ANNs [7]. SNNs utilize spiking neurons and
synapses to process information that closely mimics biological neural systems [4].

Spiking Neurons: The core unit of SNNs, spiking neurons, communicates
through discrete spikes or action potentials, reflecting brief electrical impulses.
Their operation is governed by the membrane potential, which triggers a spike
when exceeding a specific threshold. This binary spiking mechanism is pivotal
for the various coding strategies in SNNs, emphasizing the significance of spike
timing and patterns in data processing.

Synapses: Synapses are the connection points between neurons, facilitating
signal transmission. A synapse’s strength and type (excitatory or inhibitory)
significantly influence how an incoming spike affects the post-synaptic neuron’s
membrane potential. The synaptic weight, W, modulates this effect. Synaptic
dynamics are crucial in shaping the network’s overall behavior and are expressed
in Eq. (1),

Voost () = Vpost(£7) + W - 5(t — te) (1)

where Vjost(t) is the post-synaptic potential and ¢ is the time of the pre-
synaptic spike [4].

The complexity of SNNs arises from the sequence and precise timing of spikes,
which carry rich and complex data. This underlines the exploration of encoding
strategies to effectively harness the informational potential of spike timing within
neural computation.

3.1 Encoding Techniques

At the heart of SNNs’ operation is encoding, which involves converting real-world
analog data into spike patterns for processing. This encoding is a sophisticated
representation, capturing data essence using spiking neurons’ temporal dynamics
While reducing energy consumption. Essential encoding techniques and schemas
are as follows:
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Rate Coding [13]: Rate Coding is a prevalent SNN method for encoding
information. It translates the intensity of a signal into the frequency of spikes,
with a higher rate indicating a stronger signal. The mean firing rate V is
calculated using the formula.

Nspikc
V= 2)
where Ngpike represents the number of spikes and 7' is the time window.
Its advantages are simplicity in implementation and biological plausibility,
mimicking certain actual neural behaviors. Moreover, disadvantages include
limited ability to capture the full range of input signal dynamics. While other
coding types may achieve better accuracy in fewer timesteps, rate coding is
more robust against adversarial attacks and more energy-efficient [13].
Temporal Coding [12]:
Temporal Coding leverages the timing of spikes to encode information, offer-
ing a power-efficient alternative to traditional rate coding. Examples include
Time-To-First-Spike (TTFS) Coding, which encodes information based on the
time interval from stimulus onset to the first spike. The formula for TTFS
can be expressed as the following :

tspike = tonset + At (3)

here, tspike represents the time of the first spike, fonset is the stimulus onset
time, and At is the interval to the first spike. This method is power-efficient
as it relies on minimal spiking activity, aligning with rapid visual processing
research findings.

Temporal Coding via TTFS, while power-efficient for tasks like sensory pro-
cessing, introduces notable learning complexities. As shown in [12], this cod-
ing scheme achieves efficient encoding with minimal spikes, enhancing power
efficiency. However, the precise timing-based nature of TTFS significantly
complicates the decoding and learning processes. Training SNNs with TTFS
is challenging due to the need for advanced algorithms capable of interpreting
complex temporal spike patterns, making the learning aspect a substantial
hurdle in TTFS utilization.

Population Coding [13]: Population Coding encodes information through
the collective activity of neuron populations. Each neuron contributes to the
overall output, a sum of weighted neuron responses. The encoded information,
or the decoded output, is represented by the formula:

i=1

where R denotes the collective output, n is the total number of neurons, w; is
the weight of the i-th neuron, and r; is the response or firing rate of thei-th
neuron.
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Evaluating encoding techniques in SNNs involves balancing energy efficiency,
learning ease, and implementation complexity. Rate coding [13] is simple and
biologically plausible but may lead to higher energy usage due to limited input
dynamics capture. Temporal Coding, particularly TTFS [12], offers power effi-
ciency and reduced spikes but adds decoding complexity. Due to complexity
or noise sensitivity, diverse encoding strategies have computational advantages
and learning challenges. This suggests a continuum between rate and synchrony
codes, indicating dynamic strategy adoption based on network conditions.

3.2 Neuron Models: SNNs Architectures for Energy Efficiency

SNNs employ various neuron models that balance computational efficiency and
biological realism, which is crucial for energy-efficient architecture and neuromor-
phic applications. Key models like Leaky Integrate-and-Fire, Hodgkin-Huxley,
and Izhikevich offer unique contributions to this balance. These models are vital
for developing SNNs that emulate biological processes and advance Al algo-
rithms.

— Leaky Integrate-and-Fire (LIF) Neurons [4]: The Leaky Integrate-and-
Fire (LIF) model enhances the basic Integrate-and-Fire model by incorpo-
rating a leak term, better simulating passive charge loss in neurons and pro-
cessing temporal information. This addition trades off some computational
efficiency for increased biological realism and simplicity. The LIF model is
extensively used in large-scale neural simulations, brain-computer interfaces,
and Al, where moderate biological realism suffices. The LIF model’s math-
ematical formulation notably includes the leak term, reflecting its advanced
functionality.

dv (t)

Tm

In this model, V(¢) denotes the neuron’s membrane potential at time ¢, d‘ggt)
is its rate of change, and I(¢) represents the input current, 7, represents the
membrane time constant (a product of membrane resistance and capacitance),
Viest denotes the resting membrane potential, R indicates the membrane resis-
tance.

— Hodgkin-Huxley (HH) Neurons [14]: The Hodgkin-Huxley (HH) model,
based on research on squid giant axons, provides a highly accurate depic-
tion of neuronal behavior by simulating the dynamics of Na™, KT, and C1~
ion channels. Although computationally intensive due to these equations, the
HH model offers an in-depth understanding of nerve impulses, proving essen-
tial in neuroscience for studying brain functions and disorders and in drug
development for evaluating effects on neurons. While its high biological real-
ism limits its use in large-scale simulations, it is ideal for detailed neuronal
dynamic studies.

These independent channels are described in Eq.6, and overall neuron
mechanics are described in Eq. 7:
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Iion(t) = GKn4(Vm — EK) + GNamSh(Vm — ENa) + GL(Vm — EL) (6)

dv

dt
In this context, Iion (t) signifies the total ionic current, Gk, Gna, G represent
the maximum conductances for potassium, sodium, and leakage channels,
respectively. The gating variables are denoted by n, m, h, while V,,, indicates
the membrane potential. The Nernst potentials for potassium, sodium, and
leakage channels are represented by Ek, Exa, Er, and sy, (t) corresponds to
the synaptic current at time t.

— Izhikevich Model [3]: The Izhikevich comprehensive neural model bridges
the complexity gap between detailed models like Hodgkin-Huxley (HH) and
simpler ones like Leaky Integrate-and-Fire (LIF). It uses a 2D differential
equation system to simulate complex neural behaviors efficiently and can
replicate various neuronal firing patterns found in biological neurons. Despite
its lower complexity, the model maintains a moderate level of biological real-
ism. It’s widely used in studying neural dynamics, network behaviors, and the
mechanisms of brain disorders, making it particularly effective for simulating
extensive networks of spiking neurons with diverse firing patterns.
Equations 8-10 describe this neuron’s mechanics, where u is the recov-
ery variable, and a,b,c, and d are constants, allowing for different spiking
behaviors :

= Iion(t) + ISyn(t) (7)

d
%:0.04V2+5V+1407u+1 (8)
du
i a(bV —u) (9)
if V> 30 mV, then {V « c,u — u+d} (10)

Recent Research Emphasizes the critical importance of neuron model selec-
tion in SNN architecture design, targeting a balance between computational
efficiency, biological fidelity, and the specific needs of various applications. Due
to their efficiency and simplicity, simple models like LIF are often preferred in
neuromorphic hardware and simulations with limited computational resources,
including neuromorphic applications. In contrast, complex models like Hodgkin-
Huxley (HH) are indispensable for in-depth studies of neural dynamics, offering
detailed insights. Additionally, the Izhikevich model balances biological relevance
and computational efficiency.

3.3 Training Paradigms and Learning Methods in SNNs

Training methodologies in SNNs require unique adaptations due to their inherent
non-differentiable nature, diverging significantly from those employed in tradi-
tional neural networks:

Supervised Learning: Adapted for SNNs, this paradigm utilizes labeled data
to minimize errors, incorporating novel gradient computation and weight adjust-
ment techniques to tackle spike-based data processing challenges.
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Unsupervised Learning: Focuses on rate-based training, modified to embrace
the temporal dynamics inherent in SNNs, overcoming limitations of traditional
unsupervised learning methods.

Reinforcement Learning: Aligned with SNNs’ characteristics, primarily
through adaptations that leverage spike timing, this paradigm reflects biolog-
ical learning processes more closely.

Indirect Training (ANN-to-SNN Conversion): This innovative approach
involves converting pre-trained ANNs to SNNs, aiming for efficiency and low
latency by translating ANN activations into spike rates.

Supervised Learning: This approach uses labeled data for training. Algo-
rithms include:

SuperSpike [17]: Employs a surrogate gradient approach for addressing the
non-differentiability of spikes in SNNs. It introduces a differentiable surrogate
function to approximate the gradient at spiking points, enabling gradient-based
learning methods in SNNs. This approach facilitates practical training of net-
works to process spatiotemporal spike patterns despite the discrete nature of
spikes. The weight update rule is:

Aw = —n-E;-G4- I (11)
Where:

— Aw: Change in synaptic weight

— n: Learning rate

— FEy: Temporal Error, related to the difference in spike timing

— (s Surrogate Gradient, an approximation of the gradient

— I;: Input Influence, the effect of the input spike train on the neuron’s mem-
brane potential

Unsupervised Learning: [15] Unsupervised learning in SNNs is character-
ized by its independence from the backpropagation algorithm, instead focusing
on learning patterns from unlabeled data through mechanisms intrinsic to the
spiking nature of the network. Notable algorithms in this paradigm include:
Spike-Timing-Dependent Plasticity (STDP): This method diverges from tradi-
tional backpropagation by adjusting synaptic weights based solely on the timing
of spikes. This approach capitalizes on the temporal aspect of spikes, a key fea-
ture of SNNs that is not leveraged in traditional backpropagation methods. The
update rule is:
t —t
Aw = A4 - exp <M> (12)
T+

Where:
— Aw = Change in synaptic weight

— A4 = Scaling constants for potentiation and depression
— tpost = Post-synaptic spike time
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— tpre = Pre-synaptic spike time
— 74+ = Time constants for the STDP window

Reinforcement Learning: Employs feedback from the environment to guide
learning. Techniques include:

Reward-Modulated Plasticity [16]: Utilizes rewards for synaptic adjustments.
The general formula is:

Aw =1n- (R~ R)-STDP(At) (13)
Where:

Aw = Change in synaptic weight

— 1 = Learning rate

— R = Received reward signal

— R = Baseline or expected reward

STDP(At) = Spike-Timing-Dependent Plasticity function, dependent on the
time difference (At) between pre- and post-synaptic spikes

The advancement of training methodologies in SNNs reflects a diverse inte-
gration of learning paradigms and algorithms, each contributing uniquely to the
field. While methods like Gradient Descent and Spike Backpropagation in super-
vised learning and Spike-Timing-Dependent Plasticity (STDP) in unsupervised
learning primarily aim to optimize synaptic weights for accurate output pre-
diction, there is a notable shift towards integrating energy efficiency with these
learning paradigms.

In summary, while developing SNNs encompasses various learning methods,
the trend toward creating more power-efficient models is increasingly evident.
This opens potential avenues for research focusing on mechanisms that explicitly
target accuracy improvement and energy consumption reduction, contributing
significantly to neuromorphic computing.

4 Discussion in SNN Research for Energy Efficiency

SNNs are increasingly recognized for their superior power efficiency over tra-
ditional ANNs, with studies like the Multiplication-free Deep Spiking Neural
Network (MF-DSNN) demonstrating up to 22x improvements in energy effi-
ciency compared to standard ANN accelerators [19]. This efficiency is primarily
attributed to the development of neuromorphic hardware, which mimics biolog-
ical neural systems, leading to significant reductions in power consumption.

Recent algorithmic developments in SNN research focus on refining learning
algorithms to optimize energy usage during the training and inference phases.
Techniques such as backward residual connections, quantization-aware training,
and custom loss functions like the SynOp loss are being explored to minimize
energy consumption while maintaining precision in tasks like visual recognition.
These methods, combined with hardware advancements, are bringing SNN mod-
els closer to the energy efficiency of biological brains.
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SNNs’ superior energy efficiency over networks like CNNs is further high-
lighted by their event-driven nature, leading to more efficient computations. For
instance, a VMD-SNN model for carbon price forecasting demonstrated remark-
able performance compared to conventional models [18].

Challenges persist, particularly in scaling SNNs for complex tasks without
escalating energy consumption. Strategies like model pruning, quantization, and
efficient encoding schemes are being investigated to balance performance and
energy efficiency. Additionally, integrating SNNs into computational infrastruc-
tures, including cloud computing and edge devices, is vital for their broader
application in energy-efficient computing.

Despite the advancements, SNNs face complexities in training due to the
temporal nature of spike processing. However, integrating SNNs into existing
technologies, such as federated learning environments, has shown promise in sur-
passing ANNs regarding energy efficiency [20]. Future research aims to enhance
performance and energy efficiency through new algorithms, training techniques,
and hardware innovations.

5 Conclusion and Future Directions in SNNs Research

Spiking Neural Networks (SNNs) offer a paradigm shift in computing by pro-
cessing complex inputs with high biological fidelity and energy efficiency. While
advancements have made them promising for various applications, challenges
such as complex training mechanisms, the necessity for application-specific
models, and scalability persist. Future research directions include developing
advanced neuromorphic systems, innovating learning algorithms, fostering cross-
disciplinary collaborations, and adapting deep learning benchmarks for SNN
evaluations. Emphasizing energy efficiency and sustainability, continued inno-
vation in SNNs is crucial for harnessing their full potential, making them key
players in addressing global energy challenges and contributing to environmental
sustainability.
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Abstract. This paper addresses persistent monitoring challenges in
Lake Ypacarai, Paraguay, a crucial hydrological resource facing issues
of eutrophication and cyanobacteria blooms. Utilizing autonomous sur-
face vehicles equipped with water quality sensors, a model-based app-
roach is proposed for the Non-Homogeneous Informative Patrolling Prob-
lem. The UNet based Variational Auto-Encoder architecture is intro-
duced for importance estimation, achieving a 28% and 65% improvement
in accuracy for water quality parameters compared to non-parametric
approaches such as Gaussian processes and k-Nearest Neighbors, respec-
tively. The proposed model also significantly reduces computational
costs, making it suitable for real-time deployment. A greedy patrolling
algorithm, exploiting the submodularity of the problem, demonstrates a
41% and 55% performance improvement over algorithms without UNet-
VAE. This method enhances monitoring coverage and intensification
of high-interest areas, providing a promising approach for hydrological
resource surveillance.

Keywords: Variational Auto-Encoders - Multi-agent optimization -
Autonomous Surface Vehicles

1 Introduction

Monitoring hydrological resources is crucial for conserving reservoirs, rivers, and
lakes, which play a vital role in human consumption, socio-economic develop-
ment, and tourism among others. Lake Ypacarai in Asuncién, Paraguay, span-
ning 60km?, is the largest freshwater body in the country with significant socio-
economic importance. Unfortunately, over the past three decades, accelerated
eutrophication has led to the uncontrolled proliferation of toxic cyanobacteria,
posing risks to the aquatic ecosystem, and humans living in the surrounding areas.

Addressing this issue necessitates ongoing surveillance of water quality
parameters (WQP) like conductivity, pH, turbidity, etc., in Lake Ypacarai to
comprehend the origins of eutrophication and implement safety measures. How-
ever, the lake’s substantial size poses challenges for sustained monitoring efforts.
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A. Alonso-Betanzos et al. (Eds.): CAEPIA 2024, LNAI 14640, pp. 19-28, 2024.
https://doi.org/10.1007/978-3-031-62799-6_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62799-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-62799-6_3

20 S. Yanes Luis et al.

In recent years, the proposal of utilizing autonomous surface vehicles (ASVs)
has emerged as a cost-effective alternative to labor-intensive manual sampling
campaigns. Deploying a fleet of ASVs, equipped with precise sensors measuring
of WQP enables continuous and automated monitoring [1] (see Fig. 1).

Fig. 1. Real ASV prototype proposed for WQP monitorization.

Persistent monitoring with multiple vehicles presents challenges in coordinat-
ing agents, acquiring an accurate model efficiently, and implementing an adaptive
policy. In autonomous vehicle monitoring, persistent monitoring involves cycli-
cally measuring the environment, assuming that information quality degrades
over time. Priority is given to visiting neglected areas urgently, with certain
areas, such as cyanobacteria blooms in Lake Ypacarai, being of greater interest,
conforming the Non-Homogeneous Informative Patrolling Problem (NH-IPat).
Solving NH-IPat optimally requires knowing the importance of each map area in
advance (NP-hard problem). However, since a preliminary importance picture
is unattainable until the entire map is covered, patrolling with ASVs is neces-
sary to estimate the map concurrently. This involves solving NH-IPat [2] while
addressing the inverse estimation problem, which entails estimating the complete
system state with partial observations of importance from WQP sensors.

In this paper, the resolution of the NH-IPat is proposed through a model-
based approach in the context of Lake Ypacarai. For the WQP estimation, we
propose the use of a UNet Variational Auto-Encoder (UNET-VAE) architec-
ture that receives the measurements in a 2D setting. In classical approaches,
as in Gaussian processes, the complexity is O(N?), where N is the number of
samples. A VAE encodes the inputs visually with complexity O(1). The VAE
also incorporates stochastic estimation to learn the distribution of the data and
the stochasticity of the WQPs. Simulator-generated models of both WQPs and
blue-green algae have been used for training. For patrolling, a greedy algorithm
is chosen taking advantage of the submodularity properties of the NH-IPat.

2 Previous Works

The use of ASVs for monitoring is becoming more common thanks to the
improved autonomy of mobile robotics and the development of new planning
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and learning algorithms [1]. Two main problems to be solved with hydrological
resource monitoring have been established.

On the one hand, there is the problem of modeling environmental variables
[3], which falls into the Informative Path Planning (IPP) category. This problem
consists of guiding different agents to maximize the accuracy of a model. Gen-
erally, this problem ends when the model is accurate enough. To solve the IPP,
it is proposed in [4] to use an algorithm based on Particle Swarm Optimization
and a model based on Gaussian processes (GPs). Similarly, in [3] it is proposed
to use GPs and to plan the routes with a heuristic based on Bayesian Optimiza-
tion. These approaches, although effective, have two disadvantages: i) Gaussian
processes explode dimensionally with the number of samples [3], ii) they hardly
allow modeling spatio-temporal data. In NH-IPat, the information is spatiotem-
porally redundant and the Gaussian process must adapt to an increasing number
of samples with the cumulative cost involved.

On the other hand, there is the problem of persistent monitoring. In this
problem, the information must be reviewed periodically according to temporal
redundancy criteria. The optimization horizon is longer, since it is monitored
uninterruptedly. In [5], the resolution of NH-IPat is addressed for the first time.
While in this work the problem is solved offline, in a more realistic application,
as the one addressed in this paper, the importance model for each zone is a priori
unknown and needs to be built while patrolling, as was done in [6].

These previous works have in common that they assume relatively little
about the information to be measured. In this paper, we have chosen to pro-
pose a hybrid approach in which a deep model such as the VAE is pre-integrated
with data generated with a simulator of emerging pollutant diffusion. In [7], a
VAE-type architecture is proposed for the reconstruction of incomplete cosmic
radiation images. Similarly, in [8], a UNet architecture is proposed to improve
the reconstruction of medical images. This paper presents the preliminary results
of a VAE-UNet type architecture with stochastic filters, based on [8].

3 Statement of the Problem

For the Patrolling problem, an 8-connected grid graph G(V, E,W?) is defined
to represent the set of possible locations E where samples can be taken. It
is assumed that all vertices V and edges F are entirely situated in navigable
locations. Additionally, W is defined as a weight for each node V, such that W!
indicates the time that has elapsed since V; was last covered at time ¢. Finally, a
travel cost of an edge is defined as their Euclidean distance C(E;;) = ||V; — Vj||2.
Given a set of m agents, each traversing a path ¢; = {Vp, ..., V;} with an agent
maximum distance budget of D,,q., the Patrolling problem is defined as the
search for an optimal set of m paths ¥* = {41, ..., 9., } such that:

|V

T |Vl
1
U = argmi Yy w 1
argmmTXMt:O 2 W (1)
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Subjected to:

||
Z C(Ezj) S Dma:}c
j=1
where W; becomes zero when an agent is within a distance less than rcover,

that models the effect of the validness of the measurement locally, as explained
in [6].

t+1 0 E; is covered

Wit = {min()/\/;5 +0,1) otherwise (2)

In the context of the NH-IPat, the problem is extended to accommodate

the dissimilar importance of idleness W. In this case, W will be weighted by

(1 4+7Z), where Z € [0,1] represents the normalized importance of coverage in

that area, imposed according to biological, safety, or logistical criteria. Thus, the
non-homogeneous patrolling problem is formulated as follows:

T |V
* i ¢ ¢
4 —argmlnTxM;;sz(l—&—Iz) (3)
Subjected to: (4)
]
Z O(Ez]) < Dma:c (5)
j=1

It is important to note that in this problem, optimal patrolling cannot be
estimated offline without prior knowledge of Z. Therefore, it is necessary to
simultaneously acquire the predicted importance model Z" and minimize W in
general.

4 Methodology

First, we will outline the training of the UNet-VAE architecture for the online
estimation of the importance model Z. Subsequently, we will present the multi-
agent Greedy algorithm, which will serve as the decision heuristic.

4.1 VAE-UNet Architecture

The Information Model utilizes a UNet-based convolutional-deconvolutional neu-
ral network architecture [8]. The UNet comprises a fully convolutional neural
network (CNN) with contracting and expanding paths, each consisting of four
convolutional and max-pooling layers. This architecture facilitates the extrac-
tion of high-level features from the input image. The network takes two inputs:
i) a preprocessed importance model Y* constructed from agent samples, and ii)
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a binary visit mask M? indicating sampled locations. The UNet processes these
inputs to generate an importance model estimation Z* at time ¢ (see Fig. 2).

In this study, the original UNet is extended to a Variational UNet inspired by
[7]. Two separate convolutional networks produce the prior probabilistic Gaus-
sian distribution A/(u, o) and the posterior distribution N'(fi, &), with u, 0 € RY.
The posterior network incorporates both the naive model map and the ground
truth information importance Z. Stochastic filters, sampled from the distribu-
tions, are added to the UNet’s final output layer. The prior network, used in
inference, is trained by minimizing the Kullback-Leibler (KL) divergence with
respect to the posterior. All networks are trained using a loss function composed
of three terms:

— Reconstruction loss: Rooted Mean Squared Error (MSE) between the gen-
erated model and the ground truth Z:
Lrecons = MSE (j-v I) (6)

— KL loss: Kullback-Leibler divergence between the prior and posterior distri-
butions:

Lyt = KL (N1.0). N (7.6)) 7)

— Perceptual loss: MSE between high-level feature maps of the output and
the ground truth from a pre-trained model like VGG16:

Lperceptual =MSE (E(j’-)7 6(1)) (8)
The final loss function will be:
L= I[Ja"econs + ]LKL + Lperceptual (9)

4.2 Multiagent Path Planning

For solving the NH-IPat, we propose a simple yet effective algorithm based on the
principle of submodularity. A submodular function is a mathematical function
that captures diminishing returns or decreasing marginal gains. In simpler terms,
it quantifies how adding an element to a set, such as a measurement point in this
problem, contributes less to the overall value of the set as the set grows larger
[9]. This property is known as the diminishing returns property. Submodular
functions of this kind yield near-optimal solutions when a Greedy algorithm is
applied with respect to the reward [10]. In this multi-agent approach, vehicles will
select the next node based on the highest reward computed using the Information
model 7.

5 Results

Firstly, we will present the training conditions and outcomes of the UNet-VAE
architecture as an importance model. To validate the proposal’s efficiency, we
will compare the accuracy with other types of models commonly used in prac-
tice. Once the architecture is trained, the resulting weights will be implemented
alongside the Greedy algorithm to solve the NH-IPat.
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Fig. 2. Training architecture of the VAE-UNet for the estimation of Z. The full state
is used in the posterior network for the prior network to minimize the KL-Divergence
with only the partial state. The partial state is then processed with the UNet. The
final outcome is the composition of the UNet output and the prior (during inference)
or the posterior (during training).

Algorithm 1. Multi-agent Greedy Algorithm

Input: Set of m vehicles, model T , distance budget for each vehicle Dpqz-
Output: Routing plan for each vehicle.

for t — 0 to T do
Initialize empty routing plans for each vehicle: Routes — {}

1:

2

3

4 Randomly shuffle the order of vehicles: Vehicles « shuffle({1,2,...,m})
5: for i — 1 to m do

6 while d < Dpaz do

7 Compute rewards for every action: R; «— R(possible_actions, W,f)
8 Select action with maximum reward: a,; < arg max R;

9: Update routing plan for vehicle i: Routes[i] < Routes[i] + a;
10: Update distance covered by vehicle i: d; < d; + distance(a;)
11: Update W values.

12: Update model 7 with new measurements.
13: end while

14: end for

15: end for

5.1 UNet-VAE Training Results

To train the UNet-VAE, 3000 ground truths have been extracted from two sim-
ulators of pollution and water quality variables. The first simulator, which is
used in [3] and [4] to solve the IPP in Lake Ypacarai, is based on smooth Shekel
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functions. The second is a physical simulator of emerging contaminants, such
as blue-green algae, proposed in [11]. Both scenarios have been applied in the
southern zone of Lake Ypacarai. For simulating vehicle trajectories, we opted for
straight paths with random obstacle-free directions. This exploratory heuristic
alleviates bias induced by overly informative paths. Regarding training param-
eters, for both cases, an Adam optimizer with a learning rate of 10~* and a
batch size of 64 images were used for 30 epochs. The training was conducted on
a Ubuntu 22.04 server with an Intel Xeon Gold 2.2 GHz CPU, 256 GB of RAM,
and an Nvidia RTX 3090 GPU with 24 GB of VRAM. All code is available in a
GitHub repository!.

t=60

t=20
. Ground Truth

Fig. 3. Estimation examples at different times of the proposed trained model for every
benchmark used. On top, the Algae-bloom benchmark. On the bottom, the Shekel
WQP benchmark from [3].

Ground Truth

Input

Output

Input

t =60

t=1
t=1
OUtPUt-
In Fig. 3, an example of estimation at three different instances with random
trajectories is presented. In the initial moments, the estimation is incomplete,
but it is observed that in the case of the smoother ground truth, the initial
samples enable the prediction of the first hill. For blue-green algae, the model
can initially estimate the position of blooms, subsequently refining predictions
by reviewing their contours and interiors. This early convergence characteristic
facilitates more efficient patrolling by highlighting areas of interest sooner. Both

of the measurement also incorporates the noise-level provided by real WQP
sensors like the one used in the real ASV prototype?.

! https://derpberk.github.io/ ASV Loyola_US/sensoresaml/.
2 derpberk.github.io/ASV Loyola_US /sensoresaml.
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Fig. 4. Performance metrics for 100 simulations of each benchmark with random tra-
jectories. In (a) and (b), the RMSE and weighted-RMSE. In (c), a boxplot of the
computation times of the predictions only using CPU.

To validate the model’s performance, a comparison will be made using the
Mean Squared Error (MSE) with 100 different ground truths not used in the
training set. Three regressors commonly used in similar tasks will be considered:
i) a Gaussian process with an RBF kernel [3], ii) a model based on k-Nearest
Neighbours (kNN), and iii) a naive model, referred to as "myopic,” where each
sample represents an environment in the absence of samples. Additionally, the
computational cost in terms of time for estimating a new model will be compared.

Figures4a and 4b illustrate the RMSE and weighted RMSE of the proposed
model against other models. Improvement is evident in two aspects. The first
enhancement lies in the model’s accuracy. In the initial benchmark of WQPs,
both the Gaussian process and the proposed model can achieve small errors in the
long term. However, a 28% improvement over the Gaussian process is observed
in the first third of the mission, and a 65% improvement in the case of the kNN-
based model. This improvement is even more significant in the case of the algae
bloom benchmark (Fig. 4b). As this ground truth exhibits a non-uniform and less
continuous distribution, the Gaussian process tends to lose efficiency and overfit
with null pollution data. The proposed model captures these discontinuities with
an average improvement of 20% throughout the mission.

Regarding computational cost, as shown in Fig. 4c, it is evident that the cost
of the GP is significantly higher than any other model. For a more equitable
comparison, the VAE-UNet estimation has been conducted on CPU only. The
improvement in computational time is an order of magnitude compared to the
GP. This property is crucial in deployments requiring real-time responses, short
decision times, or very long prediction horizons.

5.2 Patrolling Results

In Fig.5, the outcome of 30 simulations with different ground truths from the
training and validation sets is depicted. Three algorithms are compared: i) solv-
ing the Vehicle Routing Problem (VRP) to achieve homogeneous and cyclical
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coverage [12], ii) using the Greedy algorithm with the miope model, and iii)
employing the Greedy algorithm with the UNet-VAE model. Improvement is
observed both in performance and convergence speed. The proposed algorithm
achieves a 41% and 55% enhancement compared to the algorithm without the
UNet-VAE model for each benchmark, respectively. There is also an improve-
ment in the convergence speed. Since the UNet-VAE model can estimate areas
of interest much faster, therefore agents make more informed decisions. On aver-
age, a convergence speed between 50%-65% faster is observed compared to the
second-best algorithm. The VRP algorithm, due to not considering information
dissimilarity, fails to intensify despite providing very homogeneous coverage with
a low level of redundancy.

WQP Shekel benchmark Algae Bloom benchmark
0.225
Algorithm Algorithm
0200 | Myopic 0.6 Miric
VAE-Unet VAE-Unet

VRP ' i VRP

0.075

Mean Weighted |dleness
(=] [=] = o
8 N B I
(=] (4] (=] w

0.050

] 20 40 60 B0 100 120 140 160 o 20 40 B0 B0 100 120 140 160
Step Step

Fig.5. Average Weighted Idleness W x Z within time, for different algorithms, after
30 simulations.

6 Conclusions and Future Work

This work introduces a methodology to address the Non-Homogeneous Patrolling
Problem in hydrological resources. The strategy relies on a learning-estimation
approach for monitoring phenomena. The utilized model employs a modified
UNet architecture functioning as a VAE, enabling more accurate and faster
predictions than Gaussian processes commonly found in literature [3]. This
approach is valuable when having access to models describing the variable’s
behavior to invert observations into the complete state. The proposed patrolling
algorithm effectively leverages this model to enhance information coverage and
intensify areas of high interest compared to low contamination. Future work
should emphasize addressing potential biases in the model concerning real-world
data and understanding their impact on estimation performance. Additionally,
it is essential to develop more effective algorithms that leverage the model for
deeper movement planning, such as Deep Reinforcement Learning or planning
through Monte-Carlo Tree Search. Lastly, exploring the extension of the model
to dynamic ground truths by incorporating recurrent architectures into the UNet
network is worth investigating.



28 S. Yanes Luis et al.
References
1. Sanchez-Garcia, J., Garcia-Campos, J.M., Arzamendia, M., Reina, D.G., Toral,

10.

11.

12.

S.L., Gregor, D.: A survey on unmanned aerial and aquatic vehicle multi-hop
networks: wireless communications, evaluation tools and applications. Comput.
Commun. 119, 4365 (2018)

. Yanes, S., Reina, D.G., Toral Marin, S.L.: A deep reinforcement learning approach

for the patrolling problem of water resources through autonomous surface vehicles:
the Ypacarai lake case. IEEE Access, 6(1) (2020)

. Peralta, F., Reina, D.G., Toral Marin, S.L., Gregor, D.O., Arzamendia, M.:

A Bayesian optimization approach for water resources monitoring through an
autonomous surface vehicle: the ypacarai lake case study. IEEE Access 9(1), 9163—
9179 (2021)

. Ten Kathen, M., Flores, I., Gutiérrez Reina, D.: An informative path planner for

a swarm of ASVs based on an enhanced PSO with Gaussian surrogate model
components intended for water monitoring applications. Electronics 10(13), 1605
(2021)

. Yanes, S., Reina, D.G., Toral Marin, S.L.: A multiagent deep reinforcement learn-

ing approach for path planning in autonomous surface vehicles: the ypacarai lake
patrolling case. IEEE Access 9, 17084-17099 (2021)

. Yanes Luis, S., Gutiérrez-Reina, D., Toral Marin, S.: Censored deep reinforcement

patrolling with information criterion for monitoring large water resources using
autonomous surface vehicles. Appl. Soft Comput. 132, 109874 (2023)

. Yi, K., Guo, Y., Fan, Y., Hamann, J., Guang Wang, Y.: CosmoVAE: Variational

Autoencoder for CMB Image Inpainting (2020). arXiv:2001.11651 [astro-ph, stat]

. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-

ical image segmentation. CoRR, abs/1505.04597 (2015)

. Bilmes, J.A.: Submodularity in machine learning and artificial intelligence. CoRR,

abs/2202.00132 (2022)

Krause, A., Guestrin, C.: Submodularity and its applications in optimized infor-
mation gathering. ACM Trans. Intell. Syst. Technol. 2(4) (2011)

Luis, S.Y., Shutin, D., Gémez, J.M., Reina, D.G., Marin, S.T.: Deep reinforcement
multi-agent learning framework for information gathering with local gaussian pro-
cesses for water monitoring (2024)

Toth, P., Vigo, D.: Society for industrial, and applied mathematics. In: Vehicle
Routing: Problems, Methods, and Applications. MOS-SIAM Series on Optimiza-
tion. Society for Industrial and Applied Mathematics (2015). (STAM, 3600 Market
Street, Floor 6, Philadelphia, PA 19104)


http://arxiv.org/abs/2001.11651

®

Check for
updates

An Architecture Towards Building
a Reliable Suicide Information Chatbot

Pablo Ascorbe!®, Maria S. Campos?®, César Dominguez!
Jénathan Heras'®)@®, Magdalena Pérez3®,
and Ana Rosa Terroba-Reinares!+*

3

! Departamento de Mateméticas y Computacién, Universidad de La Rioja,
Logrofio, Spain
{pablo.ascorbe,cesar.dominguez, jonathan.heras}@unirioja.es
2 Unidad de Salud Mental Espartero, Logrofio, La Rioja, Spain
mscampos@riojasalud.es
3 Teléfono de la Esperanza, Madrid, Spain
magdalenaperez@telefonodelaesperanza.org
4 Fundacién Rioja Salud, Logrofio, Spain
arterroba@riojasalud.es

Abstract. Suicide is a major health and social issue worldwide; there-
fore, a simple access to reliable sources of information that can be used
by family members or friends of people who have suicidal ideation can be
a valuable resource. This information can be provided by means of chat-
bot tools; however, the reliability and topicality of the chatbot’s answers
should be ensured. In this work, we present an architecture to build a
chatbot with the aim of providing reliable suicide information in Span-
ish. The architecture consists of two text classification models (one to
check that a user’s question is related to suicidal content, and another
to decide whether the user is looking for information or if the question
should be derived to a human), and a retrieval augmented generation
system that, using as a basis a corpus of documents filtered by experts,
generates an answer to the user question. In addition, all the compo-
nents of the architecture have been automatically tested to prove their
suitability to be incorporated to the chatbot. The developed system is a
step towards helping in one of the greatest global public health concerns.

Keywords: Chatbot * Suicide Information - Text Classification -
Retrieval Augmented Generation

1 Introduction

In Spain, suicide is the leading cause of death due to external reasons; namely,
4,227 people died by suicide in Spain in 2022, an average of 11 people per day [12].
In addition, for each completed suicide, it is estimated that there are around
20 suicide attempts; for each attempt, around 14 more people have thought
about committing suicide; and for each suicide, at least 6 people who survive
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the deceased have been directly affected by this death [24]. Due to these figures,
it is clear why the World Health Organisation (WHO) identifies suicide and
attempted suicide as one of the most serious health problems that can affect
people, and it recommends to all its members that it should be addressed as a
priority [24].

On 12 March 2014, the Health and Social Services Commission of the lower
house in the Spanish Parliament approved, unanimously by all the groups, a non-
legislative proposal regarding the development of a National Suicide Prevention
Plan by the Spanish health, educational and social institutions in accordance
with the directives of the European Union and international organisations. Since
then, several suicide prevention plans have been developed in some Autonomous
Regions (see, for example, those of La Rioja [16], the Canary Islands [20], and
Navarre [11]). Those prevention plans propose different interventions targeting
different audiences (general population, health professionals, or media, among
others) [21]. Interventions aimed at the general public include creating con-
tacts for help, setting up training programmes, or providing reliable information
among the general public.

In the last year, chatbots have shown their potential to provide information
in several scenarios [18]. In the context of suicide, chatbots serve to disseminate
crucial information, offer support, and provide a platform for individuals to
express their feelings anonymously [4,22,23,26]. However, the deployment of
chatbots to provide information about suicide poses several challenges. First of
all, the reliability and topicality of the provided information should be ensured.
Moreover, even if a chatbot can provide a response for a question, there are cases
when it should not answer it; for instance, chatbots should not answer questions
such as “What are some methods for committing suicide?”. Finally, even if the
final aim is to provide information, the chatbot can be used by people that
require human support, and in those cases users should be derived to experts.
All these challenges cannot be solved by only using generalists chatbots like
ChatGPT [1] or Mixtral [13], but require other components.

In this paper, we present a software architecture to build a chatbot with
the aim of providing reliable and up-to-date information about suicide, but that
could be also applied to other contexts where it is necessary to provide sensitive
information. This architecture has been employed to build a chatbot to retrieve
information about suicide in Spanish—the implementation of this architecture is
publicly released in https://github.com/PrevenlA /prevenlA. In addition, some
of the developed components can be useful outside this work; in particular:

— We have developed a module based on the Retrieval Augmented Genera-
tion (RAG) paradigm [14] with the aim of providing reliable and up-to-date
information about suicide in Spanish. In addition, we perform a thorough
evaluation of the different deep learning models that can be used in this
module.

— We have developed a module to detect unsafe questions and responses about
suicide.


https://github.com/PrevenIA/prevenIA

An Architecture Towards Building a Reliable Suicide Information Chatbot 31

— We have released several datasets and models that are used in the proposed
architecture, but that can be also applied for other related projects. Those
datasets and models are available at https://huggingface.co/PrevenIA.

2 Architecture of the Chatbot

In this section, we present an architecture to build a chatbot with the aim
of providing reliable information about suicide, and how we have developed
the different modules that form it. In addition to the common modules of a
chatbot, for instance devoted to Welcome and Goodbye messages, a chatbot that
answers questions about sensitive topics should include some guardrails [15]. In
particular, we propose a four layered architecture presented in Fig. 1.

Text
Classification
Models 2nd filter

Is the ge seeking for information? )
N

Retrieval module Y
RAG = ) o ey /)

Fig. 1. Proposed architecture

The first layer of our architecture serves as an initial filter, employing a text
classification model to detect whether an input message is related to suicidal
content. This detection mechanism enables the system to focus on a particu-
lar subject, and avoids answering unrelated questions. Subsequently, the second
layer is tasked with nuanced decision-making, distinguishing between users seek-
ing information about suicide (for example, a relative or friend of a person who
is thinking about suicide, or someone working in the media concerned about how
to communicate a suicide case); and those necessitating human intervention (for
instance, a person who is thinking about suicide)—again, a text classification
model is employed for this task. This approach tries to avoid scenarios where
the chatbot could provide harmful responses. Finally, in cases where the user is
seeking information (the actual aim of the chatbot), the third and four layers
leverages retrieval augmented generation (RAG) techniques to produce reliable
responses [14]. In particular, the RAG component consists of a retrieval module
and a language model that work as follows. The first step of this module con-
sists of retrieving relevant fragments of documents from a corpus that can be
used to answer the question using the retrieval module; subsequently, from those
contexts and the given question, the language model is prompted to generate an
answer.
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The rest of this section is devoted to explain how the different components of
our architecture have been developed to build a Spanish chatbot. The starting
point to build our chatbot was the acquisition of a set of trustworthy Spanish
documents provided by suicide experts. The corpus is composed of approximately
300 Spanish documents intended for the general public, and that are categorised
in different topics (including information for survivals of suicide attempts, for
relatives, or for schools).

2.1 Text Classification Filter for Not Suicidal Content

In order to detect whether a question is related to suicide, we trained several
text classification models. Towards this aim, the first step consisted in build-
ing a dataset of texts classified as suicidal ideation/behaviour and non-suicidal
using some Spanish resources, such as the dataset created in the “Hackathon
Somos NLP 2023” [3], and by translating datasets from English to Span-
ish [6,19]. A total of 175010 texts were collected (77223 considered as suicidal
ideation/behaviour and 97 787 considered not suicidal). A text example consid-
ered related with a suicide comment is “No quiero, no quiero vivir, odio la vida”
(I don’t want, I don’t want to live, I hate life). A text example not related with a
suicide comment is “;Cémo podemos reducir la tasa de deterioro de los alimen-
tos?” (How can we reduce the rate of food spoilage?). The dataset was split into
training, validation and test subsets (70/10/20). Using this dataset, we trained
three different models based on the Bert [9], RoBerta [5], and Electra [17] archi-
tectures. The three models were trained for 30 epochs using the functionality of
the HuggingFace libraries [25] on an Nvidia RTX 2080 Ti GPU—the code used
for training these models is available at the project website.

2.2 Text Classification Filter for Not Safe Information About
Suicide

Likewise the models created to classify texts as suicidal ideation/behaviour and
non-suicidal, we proceeded similarly to identify whether a question is looking for
safe information about suicide, or if it should be handled by a specialist. In order
to construct the dataset, we took 7456 suicidal ideation/behaviour sentences
from the aforementioned dataset; and we generated 7456 questions about suicide
from our corpora of documents. In order to generate the questions, we split the
documents into chunks, and for each chunk, we asked a language model (namely,
bertin-gpt-j-6B-alpaca [5]) to generate a question. Using this procedure, a total of
22920 questions were obtained, but many generated questions were incomplete,
repeated or contained essentially the same information among them. Therefore,
we first removed empty, duplicated or incomplete pairs; then, we applied one of
the suicide ideation models to determine whether a question contains information
about suicide; and, finally, we removed the questions that were semantically
similar by using an embedding model' and the cosine distance. An example of

! https://huggingface.co/hiiamsid /sentence_similarity_spanish_es.
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a question generated by the model is “sQué es el suicidio?” (What is suicide?).
Although this question is classified as related to suicide by the model presented
in the previous subsection, it is considered as a question asked by someone
who is seeking for information about suicide; whereas the first comment in the
previous subsection should be considered as a person with suicidal ideation and
the chatbot should derive such a user to a human specialist. After building the
dataset, it was split into training, validation and test subsets (70/10/20) and
used to train three different models based on Bert, RoBerta, and Electra with
the same settings previously explained.

2.3 Retrieval Augmented Generation Module

Finally, the RAG module has three components: the corpus, the retrieval and the
language model. In our case, the corpus is formed by the 300 documents initially
collected. These documents were split into chunks of 1000 tokens and converted
into a vector using a Bert-based embedding model [7]. When the RAG module
receives a question, the retrieval component converts it into a vector using the
same Bert-based embedding model, and retrieves the most similar chunks based
on the cosine distance. Finally, for the language model, we considered three lan-
guage models fine-tuned to follow instructions. Namely, we studied two Spanish
models called Bertin [5] and Lince [8], and one multilingual model called Mix-
tral [2]. Tt is worth noticing that the information provided by the RAG module
can be kept up-to-date by adding new documents to the corpus, and the rest of
the components of the module will be kept unchanged.

Once the different components of the architecture have been developed, it
can be connected following the workflow of the Fig. 2 and deployed in different
interfaces including a web application, Discord, or Telegram; see Fig. 3. For the
latter two platforms (Discord and Telegram) we have used a open-source API
that uses decorators to indicate which methods will send or receive massages
and we implemented the logic to process those received messages and generate
the expected answer.

?

Question

@ ®
Retrieval Module Language Model 4*@

Answer

Documents

Fig. 2. RAG system workflow diagram
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Fig. 3. Interfaces for the chatbot. Left: Chatbot running on Discord. Right: Chatbot
running on Telegram.

3 Evaluation

In this section, we evaluate the performance of the different components devel-
oped for our chatbot. We start by outlining the performance metrics of vari-
ous models employed for the classification of texts into categories of suicidal
ideation/behavior and non-suicidal content; in particular we analyse the accu-
racy, precision, recall, and F'1-score as shown in Table 1. The three studied models
achieved a performance close to 90% for all metrics showing the suitability of
using any of the models to distinguish between suicidal and non-suicidal con-
tent. Overall, the best performing model was the Roberta-based model, which
achieved the best results for all metrics except for recall.

Table 1. Metrics of the different models to classify texts as suicidal ideation/behaviour
and non-suicidal. In bold the best result.

Model | Accuracy | Precision | Recall | F1-Score
Bert 93.05 90.74 93.99 |92.34
Electra |92.86 89.80 94.74 | 92.21
Roberta | 93.78 92.32 93.84 |93.07

We focus now on the evaluation of the text classification models that decide
whether the user is seeking for information or if the question should be derived
to a human. As in the previous case, we analysed the accuracy, precision, recall,
and Fl-score of the text classification models, see Table2. The three trained
models achieved a performance over 99% for all the metrics, showing that this
task can be easily handled by any of the three developed models even if the
Bert-based and the Electra-based models achieved the best results.
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Table 2. Metrics of the different models to classify texts as information seeker or
derivable to human. In bold, the best result.

Model | Accuracy | Precision | Recall | F1-Score
Bert 99.91 100 99.83  99.91
Electra |99.91 100 99.83  99.91
Roberta | 99.74 99.49 100 99.74

We finish with the evaluation of the RAG system of our architecture. Such an
evaluation is based on the approach presented in RAGAS [10], which consists in
automatically evaluating the output produced by a RAG system by prompting a
Large Language Model (LLM). In particular, we have used the following metrics:
faithfulness (i.e. is the answer provided by the model grounded in the retrieved
context), answer relevance (i.e. does the answer address the question), and safety
(i.e. is the answer safe to be provided to a user)—the prompts used for evaluating
each metric are provided in Table 3. For all these metrics, we used Mixtral8x7b [2]
in 4-bits precision to obtain a score (between 0 and 1) and an explanation—we
tested multiple models as evaluators, but Mixtral8x7b was the most consistent
providing an answer with the score and a reason explaining why that score
was given. In addition, we have evaluated our RAG component by using the
BertScore metric [27]. The dataset used to evaluate the different models of the
RAG component is formed by 50 questions generated by experts together with
their responses.

Using the aforementioned procedure, the results obtained by the evaluated
models are available at Table 4. Overall, the best model in terms of faithfulness
and relevance is the Bertin model indicating both a strong alignment of generated
answers with the retrieved context, and correctness of the provided responses. In
the case of safety, all models exhibit high safety scores, with Mixtral achieving the
highest mean safety score of 0.994—this suggests that the responses generated by
these models are generally safe for user consumption. Finally, for the BertScore
metric, the Bertin model achieved again the best results. From this study, the
model selected to be incorporated into our chatbot is the Bertin model since the
model provides safe responses and excels the other models when considering the
rest of the metrics.
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Table 3. Prompts used to evaluate the different metrics of the RAG module

Metric Prompt

Faithfulness | Tu tarea es determinar si una respuesta es consistentemente
verdica o fiel a la realidad; es decir, partiendo de la pregunta,
la respuesta tiene que ver con el contexto proporcionado y
sus afirmaciones son ciertas. El veredicto debe ser un nmero
perteneciente al intervalo [0, 1] cerrado (Ejemplo: 0.2); cuanto
ms prximo a 1 mejor

Pregunta: {pregunta},

Respuesta: {respuesta},

Contexto: {contexto}

Obligatorio, escribe “Veredicto:” para la evaluacin y “Razn:”
para el razonamiento. Es muy importante que NO est en
ingls, debe estar en castellano

Relevance | Punta la relevancia de la respuesta segn la pregunta dada.
Las respuestas con informacin incompleta, redundante o
innecesaria se penalizan. El veredicto debe ser un nmero
perteneciente al intervalo [0, 1] cerrado (Ejemplo: 0.2); cuanto
ms prximo a 1 mejor.

Pregunta: {pregunta},

Respuesta: {respuesta}

Obligatorio, escribe “Veredicto:” para la evaluacin y “Razn:”
para el razonamiento. Es muy importante que NO est en
ingls, debe estar en castellano

Safety Eres un chatbot especializado en determinar si una respuesta
es segura para que la lea un usuario. Las respuestas no pueden
dar ideas de cmo quitarse la vida ni animar a ello, s pueden
dar informacin til y resolver dudas sobre el suicidio. El vere-
dicto debe ser un nmero perteneciente al intervalo [0, 1] cerrado
(Ejemplo: 0.2); cuanto ms prximo a 1 mejor. Si la pregunta es
segura debe tener un 1

Respuesta: {respuesta}

Obligatorio, solo escribe “Veredicto:” para la evaluacin y
“Razn:” para el razonamiento, nada ms. Es muy importante
que NO est en ingls, debe estar en castellano

Table 4. Mean (std) metrics of the different generative models. In bold the best result.

Model | Faithfulness | Relevance | Safety | BertScore
Bertin | 0.884 0.857 0.971 |0.713
Mixtral | 0.793 0.412 0.994 | 0.686
Lince |0.744 0.669 0.937 |0.669
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4 Conclusions and Further Work

In this paper, we have presented an architecture to build a chatbot with the
aim of providing reliable information about suicide, and that can be applied to
other contexts where it is necessary to provide sensitive information. The archi-
tecture consists of three layers: the first decides if a question is related to the
context of the chatbot; the second distinguishes between users seeking informa-
tion and those necessitating human intervention; and the final layer generates
the response based on a corpus of documents. In our case, the first two lay-
ers have been implemented using text classification models with accuracies over
90%; and the last layer has been developed using RAG methods with high values
of faithfulness, relevance and safety. Thanks to this development, we will be able
to complement the role played by agents such as psychiatric teams or organisa-
tions such as the “Teléfono de la Esperanza” by means of a tool that supports
patients and families with reliable information, but never trying to replace the
experts.

In our work, an automatic evaluation based on test sets has been performed,
and much work remains to be done in order to complement such an automatic
evaluation. As further work, the effect of the different processing layers/filters
in the pipeline in terms of automatic reliability can be studied, and a character-
ization on the failure cases on the test set can be done. In addition, and more
importantly in high risk and critical areas of applications such as this one, con-
sisting of providing sensitive suicide information, the most relevant task that
remains is to assess whether the conducted automatic evaluation aligns with an
evaluation carried out by humans. First of all, it is necessary that expert psy-
chiatric teams evaluate whether the provided responses satisfies metrics such as
faithfulness, relevance and safety. Moreover, the system should be tested by dif-
ferent controlled populations (of various ages, economical backgrounds, and so
on) to check that the developed layers play their role. Then, new metrics as user
experience aspects can be assessed in order to test the chatbot’s effectiveness.
After we have ensured the reliability and safety of our informative chatbot, by
using a quantitative and qualitative assessment conducted by human experts in
mental health and different types of human testers, the chatbot will be released
to the general public. Finally, it remains to explore whether the architecture is
generalizable to other sensitive topics or domains.
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Abstract. This work explores the use of diverse soft labelling
approaches recently proposed in the literature to address four distinct
problems in age estimation. This kind of challenge can be considered
an ordinal classification problem in machine learning or deep learning
areas, as it exhibits a natural order among categories, reflecting the
underlying age ranges defining each category. Soft labelling represents
a machine learning approach in which, instead of assigning a single label
to each instance in the dataset, a probability distribution across a range
of labels is allocated. Soft labelling approaches prove particularly effec-
tive for age estimation due to the inherent uncertainty and continuity
in age progression, which makes accurate age estimation from physical
appearance difficult. Unlike categorical labels, age is a continuous vari-
able that evolves over time. Thus, unlike hard labelling, soft labelling
more effectively acknowledges the continuity and uncertainty inherent in
age estimation. The experiments conducted in this study facilitate the
comparison of soft labelling approaches against the nominal baseline.
Results demonstrate superior performance of soft labelling approaches.
Moreover, the statistical analysis reveals that use of a beta distribution
to define soft labels yields the best results.

Keywords: Age estimation + Soft labelling - Ordinal classification

Introduction

Accurate age estimation from images is a challenging task with broad appli-
cations ranging from facial recognition systems [8] to age-based personalised
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services [4]. With the advent of Deep Learning (DL), Convolutional Neural Net-
works (CNNs) have emerged as powerful tools for image-based age estimation,
leveraging their ability to learn complex representations directly from raw pixel
data. Conventional CNN-based approaches often treat age estimation as a regres-
sion problem. However, age estimation can be tackled as an ordinal classification
task, where age is transformed into ordered categories such as “baby”, “infant”,
“teenager”, and “adult”, each representing a distinct age range.

In the realm of Machine Learning (ML) or DL, a classification task involv-
ing J classes entails assigning the correct label y; € {C1,Co,...,C;} to a given
input data x; € X € R? where d € IN represents the number of features.
Nominal classification scenarios lack any predefined order among labels, while
ordinal classification, also termed ordinal regression, imposes a specific order.
This order is expressed as C; < C2 < ... < Cy, with < denoting the order rela-
tionship. In contrast to regression problems, the precise distances between pairs
of classes remain unknown in ordinal classification given the categorical nature
of the target variable. Besides, due to the inherent ordering between classes,
misclassifications that place an instance in a distant category incur a greater
penalty than errors in adjacent categories.

In recent years, numerous studies [7,11] have investigated the application of
soft labelling techniques to tackle ordinal classification problems characterised
by varying degrees of labels uncertainty. Soft labelling constitutes a ML strategy
where, rather than assigning a single class label to each instance, a probability
distribution across a range of labels is allocated. Consequently, each instance
may be related to multiple classes, each with a specific probability. Given that
age, unlike categorical labels, is a continuous variable that changes over time,
soft labelling approaches are particularly effective for age estimation. Moreover,
soft labelling approaches are well suited to this problem due to the inherent
uncertainty and continuity in age progression as they distribute an instance’s
age probability across multiple labels.

Therefore, in this study, we explore diverse soft labelling methodologies
recently proposed in the literature to address four distinct age estimation prob-
lems. Specifically, we examine strategies that apply unimodal regularisation to
the loss function that optimises a CNN model. These approaches replace the
hard label encoding with a soft labelling alternative for the loss computation.
This change enables the model to learn the ordinal information of the problem
and the associated uncertainty.

The remainder of this manuscript is structured as follows: in Sect. 2, we detail
the soft labelling methodology. Section 3 provides an overview of the age estima-
tion problem and introduces the datasets used in this study. The experimental
settings are explained in Sect.4. Section5 presents the experimental results.
Finally, we draw conclusions from our work in Sect. 6.

2 Soft Labelling Methodology

Soft labelling is a widely adopted regularisation technique that addresses the
issue of noisy labels by encouraging the model to maintain a certain level of
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uncertainty. This method can significantly enhance the learning speed and gen-
eralisation of a multi-class neural network by utilising soft labels, which are a
weighted average of the hard labels and a probability distribution. This approach
prevents the model from developing overconfidence, thereby yielding excellent
results when applied across various state-of-the-art models. These include, but
are not limited to, image classification [5] or speech recognition [10].

In the context of ordinal classification, soft labelling has also been applied
in several works [7,11,12] due to the wide variety of advantages that it pro-
vides. Thus, in ordinal classification problems, soft labelling enhances robust-
ness to noisy or incorrect labels, similar to its function in nominal classifica-
tion. It improves the model’s generalisation ability by preventing overconfidence
and encouraging the model to learn more about the underlying data distribu-
tion. This is particularly useful in handling ambiguous cases often present in
real-world ordinal problems, such as subjectivity in the ranking of items. For
instance, in a movie rating system, different people might have slightly differ-
ent opinions on what constitutes a “4-star” vs a “b-star” movie. Soft labelling
allows the model to handle such ambiguities more gracefully by not forcing it
to commit to a single hard label. Moreover, soft labelling acts as a form of reg-
ularisation, preventing overfitting, especially in imbalanced scenarios where the
number of examples per category can widely vary, leading to potential overfit-
ting on the most frequent categories. In conclusion, soft labelling is a powerful
technique in ordinal classification, enhancing model robustness, generalisation,
and performance on ambiguous or subjective tasks.

A clear distinction exists between hard (also known as one-hot) and soft
labels. In a problem with J categories, the one-hot label associated with class
C; can be represented as a probability vector p, defined as follows:

J
p:<p15p27ap]apJ>7 pje{oal}a ij:17 (1)
=1

where each element p; represents the probability of a pattern being assigned to
class C; when it is associated with that specific label.

Similarly, a soft label is defined as a vector containing the probabilities for
each class. However, unlike hard labels, the elements of this vector can take any
value within the range [0, 1], allowing for a more flexible representation of the
label. Therefore, a soft label is expressed as:

J

p* = (p}.p,...,0}....py), by E01], > pj=1 (2)
j=1

Indeed, soft labels are often used in the computation of the loss function as
an alternative to one-hot encoded labels. This approach is particularly useful
in scenarios where there is a significant degree of uncertainty. By using soft
labels, the loss function can capture this uncertainty more effectively, leading to
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potentially better model performance. The categorical cross-entropy, the most
popular loss function for classification problems, is defined as follows:

J
Z(x,y) =Y pi(y)[-log P(y = C;|x)], 3)

j=1

where y denotes the target class of a given pattern. The term p;(y) refers to
the j-th element of the one-hot label associated with the target class y. In other
words, p;(y) represents the probability that a pattern, with a target class of y,
belongs to class C;. In the case of one-hot label encoding, that probability is
1 when y = C; and 0 otherwise. P(y = C;|x) denotes the probability that the
pattern x belongs to class C;, which is estimated by the evaluated classifier.

Soft labelling can be applied to the cross-entropy loss function by replacing
the one-hot labels p;(y) with the soft label alternative pj(y):

J
L (x,y) = ij(y)[— log P(y = C;|x)], (4)

being pj (y) the j-th element of the soft label vector associated with target class y.
Previous works in the literature [7,11, 12] have characterised soft labels as a linear
combination of one-hot labels and a probability distribution. Consequently, the
value of p}‘(y) is expressed as:

p;(y) = (1 =n)p;(y) + nP(y = C;ly). (5)

Here, P(y = C;|y) represents the probability that the pattern belongs to the
j-th class given that the actual target is class y. The parameter 7, ranging from
0 to 1, regulates the smoothness of the labels. When 7 = 0, no smoothing is
applied, while = 1 results in completely smooth labels. P(y = C;|y) can be
derived using the probability density function of a continuous distribution, such
as normal, beta or triangular, or the probability mass function of a discrete
distribution like binomial, Poisson, among others.

Furthermore, in ordinal classification, the use of an unimodal distribution
ensures that the mode of the distribution aligns with the target class, concen-
trating the probability mass around it. As we deviate further from the target
class, the corresponding probability mass decreases. Moreover, it is crucial that
the probability distribution exhibits a small variance, with the majority of its
probability mass concentrated in the interval of the actual class. This ensures
that the probability of class membership experiences a significant reduction as
one deviates further from the correct class.

One of the first approaches in soft labelling for ordinal classification [7] pro-
posed the use of Poisson and binomial distributions for modelling the soft labels,
which were then incorporated in the loss function. However, a significant limi-
tation of these discrete distributions is their lack of flexibility in positioning the
mode of each distribution at the centre of the class interval while maintaining
a small variance. To address this issue, they proposed the use of an exponential
function followed by a softmax transformation to define the soft labels.
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In a recent study, [12] aimed at overcoming these limitations, the authors
suggested the use of beta distributions for modelling the soft labels. The beta
regularised loss function outperformed previous alternatives, owing to its low
variance and its domain, which is defined between 0 and 1. However, the use
of these distributions presents a challenge as it involves estimating two parame-
ters. Furthermore, traditional statistical parameter estimation methods are not
applicable in this scenario, as the sample is unknown.

Finally, in [11], the authors proposed a novel alternative that utilises triangu-
lar distributions for the determination of soft labels. This method is characterised
by its simplicity and effectiveness, as it only requires a single parameter () that
corresponds to the error in the adjacent classes. Using this parameter, the three
parameters of the triangular distribution can be straightforwardly calculated.

3 Age Estimation Problems

Age estimation based on an individual’s facial image is inherently ordinal, as
the categories follow a natural order relationship determined by the age inter-
vals defining them. The complexity of accurately estimating a person’s age from
a single photograph of their face adds a level of difficulty to this problem. Age-
ing is a non-uniform process. Therefore, the effects of age progression manifest
differently depending on the individual’s age. For instance, in childhood, facial
ageing is primarily linked to changes in facial structure. However, adulthood is
predominantly associated with alterations in skin texture. Hence, this study con-
siders four distinct facial age estimation datasets with different number of classes
(age ranges), spanning from 6 to 12. These datasets are frequently employed in
the literature. To set the age ranges associated with the ordinal categories, we
adopted the same intervals as those outlined in [11], which are described below.

1. Adience [1] is an age estimation dataset containing RGB images of human
faces. Each image is labelled with its gender and age, which is categorised into
different ranges, totalling 8 classes, according to the following intervals: [0, 2],
[4,6], [8,13], [15,20], [25,32], [38,43], [48,53], [60,+00). The entire dataset
comprises 26, 580 faces belonging to 2,284 individuals.

2. FGNet [3] is another age estimation dataset comprising 1,002 colour images
of human faces. Each image comes labelled with the exact age of the person
when the photo was taken. To create different ordinal categories, various age
ranges are defined: [0,3), [3,11), [11,16), [16,24), [24,40), [40, +00).

3. Wiki dataset is a subset of the IMDB-Wiki dataset [9], consisting of human
face images sourced from Wikipedia. It encompasses a total of 62,328 colour
images. Each sample in the dataset is associated with the date of birth of the
person and the date when the photograph was taken, enabling the derivation
of the exact age. For this study, the following age ranges are defined to estab-
lish six ordinal classes: [0,24), [24,29), [29,34), [34,45), [45,55), [55, +00).
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4. UTKFace [13] is another facial dataset that comprises a total of 20, 000 images
annotated with age, gender, and ethnicity information. For the current study,
the next 12 ranges are set: [0,2), [2,6), [6,12), [12,19), [19,23), [23,27),
27,30), [30, 38), [38,45), [45,55), [55,65), [65,73), [73,80), [80, +00).

A

]

Fig. 1. Selected examples from the Wiki dataset’s testing set, arranged from the first
class (leftmost) to the last class (rightmost).

Figure 1 presents a selection of images from the Wiki dataset, with one rep-
resentative image from each of the six categories. The images are arranged from
left to right, starting with the first class (youngest) and ending with the last class
(oldest). Distinguishing patterns that belong to adjacent classes is challenging
due to the varying impact of age on different individuals’ faces. This complexity
stands out the value of employing the soft labelling approaches discussed in this
work to address such issues.

4 Experimental Settings

4.1 Model Selection

The soft labelling approaches discussed in this study are versatile and can be
applied to any ML or DL model. However, as we are addressing an age estima-
tion problem from image data, we have chosen to use a CNN model. To expedite
the training process without compromising performance, we have employed a
lightweight residual neural network, specifically, ResNet18. This model, along
with similar alternatives, is frequently used in numerous studies [6] due to its
excellent performance and reduced parameter count. Thus, across all experi-
ments, the model remains unchanged except for the optimisation loss function,
which is different for each soft labelling approach. This scheme ensures consis-
tency while allowing for the examination of different soft labelling techniques.

4.2 Compared Methodologies

To provide a comprehensive comparison between standard nominal and soft
labelling approaches for the age estimation problem, four distinct soft labelling
methodologies' are tested alongside the nominal baseline:

! Available in https://github.com/ayrna/dlordinal.
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1. CCE: baseline approach employing the standard categorical cross-entropy loss
function for model optimisation.

2. CCE-Exp [7]: soft labelling approach using an exponential function to define
the soft labels employed for the loss function.

3. CCE-f [12]: soft labelling technique employing beta distributions with differ-
ent parameters to model the soft labels of each class. The parameters of each
distribution are determined by an analytical process detailed in [12].

4. CCE-T [11]: soft labelling approach using triangular distributions to derive
soft labels for each category. The three parameters of triangular distributions
are determined from the a; value, which adjusts the error in adjacent classes.
This parameter is cross-validated as described in [11].

5 Results

The results of the experiments delineated in Sect. 4 are presented in this section.
To ensure robustness, each experiment is conducted 30 times using 80% of each
dataset for training and 20% for testing. The average outcomes for each soft
labelling approach across the four datasets are examined using four performance
metrics: Quadratic Weighted Kappa (QWK) [11], Minimum Sensitivity (MS) [2],
Mean Absolute Error (MAE) [11] and 1-off accuracy [11]. Note that in ordinal
classification, the MAE metric measures the absolute deviation of the predicted
category from the target category, taking into account the order of the categories.
Consequently, Table 1 displays the mean results and the standard deviation for
each methodology and dataset. Additionally, it provides the mean value across
all datasets and the mean rank.

From a descriptive point of view, the CCE- methodology outperforms oth-
ers in terms of QWK on three out of four datasets, securing the highest mean
result and rank across all datasets. Furthermore, the CCE-Exp methodology
achieves the best result on two datasets and secures the second-best rank. In
terms of the MS metric, the CCE-3 methodology achieves the best result on
two datasets, while the CCE-T methodology is superior on the remaining two
datasets. Additionally, the CCE- methodology secures the best average result
across all datasets, while the CCE-T methodology achieves the highest rank.
Then, in terms of the MAE metric, the CCE-3 methodology outperforms oth-
ers by securing the top result on three datasets and the runner-up position
on another. Conversely, the CCE-T methodology claims the best result in two
datasets and ties for the first position in the mean result with the CCE-{. Despite
this, the CCE- methodology ultimately achieves the highest rank. Finally, for
the 1-off metric, the CCE-S methodology not only achieves the best results in
three out of four datasets but also secures the highest mean result and overall
ranking.

It is noteworthy that, across all datasets, the soft labelling methodologies
consistently outperform the baseline methodology employing categorical cross-
entropy loss with one-hot label encoding. This underscores the significance of
opting for a soft labelling alternative in ordinal problems, where labelling inac-
curacies are prevalent.
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Table 1. Average results across 30 executions of each dataset and methodology for all
evaluated metrics.

‘ Adience FGNet UTKFace | Wiki Mean Rank

QWK

CCE 0.8220.008 | 0.8090.027 | 0.738, pos | 0-7690.006 | 0.7850.033 | 4.000
CCE-Exp | 0.8470.006 | 0.8450.016 | 0.7530.007 | 0.7980.004 | 0.811¢.038 | 2.000
CCE-g 0.8630.004 | 0.8620.015 | 0.7530.006 | 0.7940.004 | 0.8180.047 | 1.750
CCE-T 0.8580.006 | 0.8580.017 | 0.7530.010 | 0.795, o035 | 0-8160.044 | 2.250
MS
CCE 0.1320.025 |0.2610.100 |0.1460.066 |0.2540.042 | 0.1980.059 |3.750
CCE-Exp | 0.199¢.043 |0.2300.077 | 0.1610.058 | 0.3150.023 | 0.2260.056 |2.750
CCE-g 0.2650.026 | 0.3870.058 | 0.152¢.046 | 0.3110.026 | 0.2790.085 | 2.000
CCE-T 0.2820.035 | 0.364¢ o57 | 0.1730.047 | 0.3320.027 | 0.275, 977 | 1.500
MAE
CCE 0.7514 915 | 0.5660.050 | 1.0860.021 | 0.7670.015 | 0.792¢.187 | 3.500
CCE-Exp | 0.7770.023 |0.5990.046 | 1.0230.023 | 0.7110.011 | 0.777, 15¢ | 3.000
CCE-B | 0.6760.00s | 0.4980.035 | 1.0220.015  0.715, 000 | 0.7280.150  1.500
CCE-T | 0.6760.013 | 0.4980.041 | 1.0250.025 | 0.7160.008 | 0.728¢.189 | 2.000
1-off
CCE 0.8340.007 |0.9090.016 | 0.8160.006 |0.8400.000 |0.8500.035 |4.000
CCE-Exp | 0.8510.010 |0.9220.017 | 0.8380.007 | 0.8700.005 | 0.8700.032 | 2.500
CCE-8 0.892¢ 004 | 0.952¢.013 | 0.8400.005 | 0.8690.005 | 0.8880.041 | 1.250
CCE-T 0.884¢.00s | 0-944¢.015 | 0.8400.007 | 0.8650.005 | 0.8830.039 | 2.250

In the subsequent part of this section, we delve into a statistical analysis
to derive solid conclusions from the experimental outcomes. Each of the four
metrics undergoes individual analysis. A Kolmogorov-Smirnov test is first con-
ducted for each metric — QWK, MAE, MS, and 1-off. The test results indicate
that the values of these metrics follow a normal distribution. Following this, an
ANOVA 1II Test is performed, with the methodology and the dataset as factors.
This test aims to examine the null hypothesis that all population means are
equal, against the alternative hypothesis that at least one mean differs from the
others. The parametric test reveals significant differences in the mean for both
factors (p-value < 0.001). It also reports an interaction between the methodol-
ogy and the database (p-value < 0.001), suggesting that the performance of the
methodologies varies depending on the dataset they are applied to.

Considering the significance of the factors, we further analyse the differences
between the methodologies using a posthoc HSD Tukey’s test. The results are
summarised in Table 2, where methodologies (detailed in Sect. 4.2) are grouped
into three subsets for QWK, MAE, and MS, and four subsets for 1-off. This
grouping ensures that within each subset, there are no significant differences in
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the means of each metric. However, significant differences are observed between
methodologies belonging to different subsets. For instance, in the third subset
for QWK there is no significant difference between CCE-T and CCE-§ (p-value
= 0.362). For 1-off, we form four distinct subsets, each containing a different
method. This indicates significant differences in the 1-off averages between each
approach, with CCE-§ emerging as the best performer. Finally, it is important
to note that, for all metrics, methodologies based on soft-labelling consistently
yield significantly better average results than the baseline CCE method.

Table 2. Results of the posthoc HSD Tukey’s test for the four metrics. The mean
value for each method across all datasets is shown. Also, p-values higher than o show
that there are no significant differences within the same subset.

Method |QWK MS MAE 1-off

1 2 3 1 2 3 1 2 3 1 2 3 4
CCE 0.785 0.198 0.792 0.850
CCE-Exp 0.811 0.226 0.777 0.870
CCE-T 0.816 0.275 0.728 0.883
CCE-8 0.818 0.279 0.728 0.888
p-value 1.000|1.000|0.362 |1.000|1.000|0.944 |1.000|1.000|0.999 |1.000|1.000|1.000 |1.000

6 Conclusions

In this study, we tackled the problem of facial age estimation using four diverse
datasets, each with unique image characteristics and label distributions. By asso-
ciating each image with an ordinal category representing the individual’s age
range, we framed this real-world task as an ordinal classification problem within
the domains of ML or DL. In ordinal classification, recognising the varying impli-
cations of classification errors based on the distance between the predicted and
target classes is crucial. Moreover, we considered the complexities of age esti-
mation, where ageing effects differ based on age groups: children exhibit facial
structure changes, while adults show alterations in skin texture. To address these
complexities, our study explored various soft labelling approaches tailored for
ordinal classification, proving particularly valuable in scenarios with challenging
age category distinctions.

Consequently, we addressed the four age estimation problems using a DL
model, specifically ResNet18, and three distinct unimodal regularised loss func-
tions rooted in soft labelling strategies. These strategies utilised different prob-
ability distributions to define soft labels and were compared with a nominal
baseline using the standard categorical cross-entropy loss function. Based on
the experimental results and statistical analyses, the notable superiority of the
soft labelling approaches, particularly the CCE-{ method, is evident. Consider-
ing the interaction of these methods with the datasets used, future work could
explore new ordinal soft labelling techniques with a broader set of facial images
datasets for age estimation.
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Abstract. Time Series Ordinal Classification (TSOC) is a yet unex-
plored field with a substantial projection in following years given its
applicability to numerous real-world problems and the possibility to
obtain more consistent prediction than nominal Time Series Classifica-
tion (TSC). Specifically, TSOC involves time series data along with an
ordinal categorical output. That is, there is a natural order relationship
among the labels associated with the time series. TSOC is a subfield of
nominal TSC, with the main distinction being that TSOC exploits the
ordinality of the labels to boost the performance. Two categories within
the TSC taxonomy are dictionary-based and convolution-based method-
ologies, each representing competing approaches presented in the litera-
ture. In this study, we adapt the Hybrid Dictionary-Rocket Architecture
(Hydra) approach, which incorporates elements from the two previous
categories, to TSOC, resulting in O-Hydra. For the experiments, we have
included a collection of 21 ordinal problems sourced from two well-known
archives. O-Hydra has been benchmarked against its nominal counter-
part, Hydra, as well as against two state-of-the-art approaches in the two
previous categories, TDE and ROCKET, including their ordinal coun-
terparts, O-TDE and O-ROCKET, respectively. The results achieved by
the ordinal versions significantly outperformed those of current nominal
TSC techniques. This underscores the significance of incorporating the
label ordering when addressing such problems.
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1 Introduction

Over the last decade, there has been a significant increase in the volume of
chronologically collected data. This type of data, referred to as time series, spans
various domains, including meteorology, where information about different atmo-
spheric variables is recorded at regular intervals [7], and economics, where the
returns of various cryptocurrencies are tracked over time [1], among others.

An expanding number of tasks can be applied to time series, ranging from
unsupervised methods like anomaly detection [4] or clustering [8], to supervised
methodologies such as classification [15] or extrinsic regression [10]. Time Series
Classification (TSC) is among the most popular tasks applied to time series
data, involving the prediction of a discrete output variable for a given time
series. One example of TSC problem was presented in [13], where the ethanol
content (a discrete variable with four different levels: E35, E38, E40, and E45)
of synthesised spirits was estimated from non-invasive spectroscopy data, which
is considered as a time series. As the results of the work determined, the use of
TSC approaches fitted well for these examples, achieving an excellent accuracy.

However, a field better suited for such problems, where the categories follow
an ordinal relationship, exists. This field is known as Time Series Ordinal Classi-
fication (TSOC), and it has received minimal attention so far [2]. There are two
key features of an ordinal variable that distinguish it from nominal classification:
1) misclassification costs should be carefully considered, implying higher penal-
ties for mispredictions that deviate further from the correct class. For instance,
in the previous example of ethanol content, misclassifying an E35 level as E45
may incur a higher penalty than misclassifying it as E38. And 2) exploiting the
inherent order information from the problem enhances the performance of pre-
dictive models. Therefore, in this paper, our focus is on TSOC problems, which
involve classifying time series data based on ordinal categories.

As previously mentioned, TSOC remains an unexplored field with limited
research. A TSC taxonomy was introduced in [15] with 8 categories of algo-
rithms based on the representation of the data at the core of the algorithm.
Thus far, TSOC has only been able to provide algorithms in four of these cate-
gories. For shapelet-based approaches, in [9], the authors proposed a novel ordi-
nal shapelet transformer, exploiting ordinal information of the data through an
ordinal shapelet quality measure and applying an ordinal classifier instead of a
nominal one. This methodology demonstrated superior performance compared
to nominal approaches across 7 TSOC datasets. The first dictionary-based app-
roach was introduced in [3], presenting an ordinal adaptation of the Temporal
Dictionary Ensemble (TDE) algorithm. Specifically, the O-TDE (Ordinal TDE)
enhances ordinality by selecting ensemble candidates according to the mean
absolute error (rather than the accuracy), and it improves the resulting dictio-
nary by modifying the threshold extraction method in the information gain bin-
ning, employing a decision tree regressor with Friedman mean squared error split-
ting criteria, a suitable approach for ordinal tasks. Furthermore, [2] presented
the first benchmarking of convolutional- and deep-learning-based TSOC method-
ologies. In this study, three convolutional-based approaches (O-ROCKET, O-
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MiniROCKET, and O-MultiROCKET) were introduced, demonstrating signif-
icantly superior performance compared to their nominal counterparts. These
convolutional-based approaches leverage a set of convolutional kernels and vari-
ous pooling operations. Subsequently, the ordinal LogisticAT classifier is applied
to the obtained transform with built-in cross-validation of the regularisation
parameter. Moreover, two different deep learning-based methodologies were also
presented in this work: an ordinal adaptation of the standard ResNet archi-
tecture, known as O-ResNet, and the O-InceptionTime, the ordinal version of
the InceptionTime architecture. Both methodologies utilise the cumulative link
model as the final activation layer. This study utilised 18 datasets to benchmark
the proposed approaches, including 5 multivariate ones.

Continuing our efforts to advance research in the TSOC area, this work intro-
duces an ordinal hybrid convolutional and dictionary-based approach to TSOC.
The foundation of this methodology, known as Hydra (Hybrid Dictionary-Rocket
approach) by the TSC community [6], has been shown to achieve competitive
performance when combined with the MultiROCKET approach, ranking second
best and not significantly different from the top-performing method, HC2 [15].
Hydra integrates two key aspects of dictionary methods: forming groups of pat-
terns that approximate the input time series and utilising the counts of these
patterns for classification. Similar to Rocket, Hydra transforms input time series
using random convolutional kernels. The final classifier is either a ridge classifier
or, for large datasets, a logistic regression classifier. In this work, we introduce
the ordinal version of the Hydra approach, referred to as O-Hydra. The primary
modification in O-Hydra is the utilisation of the ordinal LogisticAT classifier
as the final classifier. Additionally, this work expands the previous set of uni-
variate TSOC datasets from 13 to 21. The results achieved demonstrate the
superiority of the proposed O-Hydra not only over the nominal Hydra but also
over two popular dictionary-based and convolutional-based methods: TDE and
ROCKET, and their respective ordinal versions: O-TDE [3] and O-ROCKET [2].
The inclusion of these two approaches is justified given that Hydra combines ele-
ments of both dictionary-based and convolutional-based approaches. The results
indicated that O-Hydra achieves significantly superior performance compared to
its nominal counterpart across four ordinal and one nominal measures. Addi-
tionally, O-Hydra outperformed O-TDE and O-ROCKET in four out of the five
performance measures, with the remaining best score achieved by O-ROCKET.

The rest of the manuscript follows this structure: in Sect.2, we provide an
overview of the proposed methodology. The experimental framework employed
for its evaluation is detailed in Sect.3. The results achieved are analysed in
Sect. 4. Lastly, conclusions and future works are drawn in Sect. 5.

2 Methodology

In this section, some provide the preliminary definitions in Time Series Ordi-
nal Classification (TSOC) field. Then, we present a novel adaptation of the
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Hybrid Dictionary-Rocket Architecture (Hydra), termed Ordinal Hydra (O-
Hydra), which combines two of the most important categories in the TSC liter-
ature: the dictionary-based and the convolution-based categories, which are also
detailed.

2.1 Preliminary Definitions

In the context of TSOC problems, a training dataset is defined as D =
{X,y} = {(x1,91), (x2,92),..., (Xn,yn)}, where N is the total number of
patterns (or time series) considered. x; and y; represent the i-th time series
and its assigned label. Specifically, a time series is composed of L values,
x; = {%i1,%i2,..., T} Note that in this work we only consider univariate
equal-length time series. On the other hand, the output variable y; can take @
different values, each representing a category, y; € {C1,Cs,...,Cq} where the
order constraint C; < C2 < ... < Cg is observed. The general objective in TSOC
is to learn a mapping function using the training dataset able to accurately
predict the ordinal output for the time series of the unseen test set.

2.2 Dictionary-Based Methods

On one side, dictionary-based techniques transform the input time series into a
set of symbols. Each symbol is associated with a transformed sub-sequence of
the time series. Symbols extracted from the same time series are combined to
construct a word, which can be viewed as a symbolic representation of the time
series. The collection of these words forms what we refer to as a dictionary.
Generally, a dictionary-based technique is based on the following pipeline:

1) Pass a sliding window over the input time series.

2) Apply a specified transformation to each window, often a Fourier transform.

3) Use a binning algorithm, such as the Information Gain Binning (IGB) algo-
rithm from [17] to map this transformation into a discrete symbol.

4) Group the resulting symbols of the processed time series to form a word.

5) Repeat steps 1-4 for all training time series.

The resulting dictionary is used to classify new patterns. Classification is
achieved by comparing the distances between the known time series words and
the input time series word. This approach relies on the assumption that time
series belonging to the same class will be mapped to similar or closer words.

Two prominent approaches in the TSC literature within this category are the
Temporal Dictionary Ensemble (TDE) [14] and the Word ExtrAction for time
SEries cLassification (WEASEL) [17]. It is worth noting that the TDE already
has an ordinal counterpart, O-TDE, presented in [3].

2.3 Convolution-Based Methods

On the other hand, convolution-based methods entail convolving the input time
series. This convolution typically involves using kernels generated with random
parameters, such as random kernel length or random kernel weights. Features,
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such as the percentage of positive values or the maximum value, are extracted
from this transformation [5]. Subsequently, a ridge or a logistic regression clas-
sifier is trained using the transformed dataset built from these features.

The first method introduced in this category was the RandOm Convolu-
tional KErnel Transform (ROCKET) [5], which indicated potential for improve-
ment in this domain. Subsequently, two additional approaches were developed:
MiniROCKET, which involved a streamlined kernel extraction process, and Mul-
tiROCKET, which expanded the kernel extraction process by convolving the
first-order difference of the time series and employing additional pooling opera-
tors. Notably, all three approaches now have their ordinal counterparts, namely
O-ROCKET, O-MiniROCKET, and O-MultiROCKET [2].

2.4 O-Hydra Approach

The Hydra [6] algorithm is introduced as a hybrid approach combining elements
from the two aforementioned categories. Its objective is to use the outcome of
random convolution to construct the words dictionary. To accomplish this, the
following procedure is applied to each time series in our training set: 1) apply a
convolution arranged into g groups of k random kernels each; 2) from the result
of this convolution, we build a tabular dataset by counting the number of times
that the i-th kernel of the j-th group yields the closest result to the original time
series. With IV input time series, N represents the maximum count that can be
assigned to a kernel (assuming it yields the closest convolution result to every
time series); and 3) train a final classifier on a tabular dataset built from the
computed counts.

To enhance the robustness of the convolution, Hydra considers d different
values of kernel dilation, repeating the entire counting process for each of these
values. Additionally, it repeats the previous pipeline to the first-order differences.

With this setting, the resulting tabular data built from a set of N time series
has a shape of N rows and ¢- k- d -2 columns. As aforementioned, the resulting
transformation is used to train a final classifier. Typically, a Ridge classifier is
chosen for this purpose, while in cases with numerous input patterns, a Logistic
Regression classifier is preferred. For our ordinal approach we have decided to
apply a different model, which better accounts for the ordinality of the output
variable. An analogous method to the Ridge classifier in the ordinal classification
literature is the Logistic All-Thresholds (LogisticAT) classifier [16].

The LogisticAT model is part of a wider family of models known as threshold-
based methodologies within the ordinal classification literature. These models are
inherently ordinal, relying on the assumption that the ordinal output variable is
a discrete manifestation of an underlying continuous response, usually referred
to as latent variable.

Considering this premise, we construct the model based on two core ele-
ments: 1) A projection model f : R? — R which maps the input patterns to the
continuous latent variable space; and 2) a set of thresholds 8 € R?~! used to
associate real intervals to the ordinal classes. With this framework, the Logisti-
cAT methodology defines the projection model as f(x) = w’x, and optimises
the following objective function during its training phase:
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N yi—1 Q A
Yar :Z (Z h(0g — w'x;) + Z h(w'x; — 9q)> + §WTW. (1)

=1 \¢=1 q=Yi

Once the optimisation problem is solved, we obtain an optimal set of weights
w* and thresholds 6*. The final predicted probability of a pattern belonging to
class C, or lower classes in the ordinal scale will be equal to:

Py < Cylx) = g(0; — w*"x), (2)

with g being the cumulative distribution function (cdf) of an assumed probability
distribution F. This setting, based on cumulative probabilities, is characteristic
of the Cumulative Link Models (CLM) [11], which is in turn an special type
of threshold-based methodology. The LogisticAT method belongs to this family
of CLMs, with F' being the logistic distribution, and thus with the cdf g being
the logistic function ¢. Given this framework, the final probability of a pattern
belonging to a specific class C4, predicted by the LogisticAT model, is:

P(y = Cylx) = P(y < Cqlx) = Py < Cg-1]x) = £(0; — w""x) = £(0;-1 — w""x). (3)

Note that when predicting the probability of observing the first class C; we
consider the equality P(y = C1|x) = P(y = C1]x).

3 Experimental Setup

In our experiments, our aim is to conduct a robust comparison between the origi-
nal Hydra methodology and the adaptation proposed in this work for the ordinal
paradigm called O-Hydra. With this purpose, we have considered a selection of
21 univariate datasets from the time series domain!. Among these datasets, we
include original Time Series Extrinsic Regression (TSER) problems, where the
output variable has been discretised to be transformed into TSOC problems.
Detailed information about the datasets considered is provided in Table 1.

To enhance the robustness and reliability of our results, we conducted 10 dif-
ferent executions for each combination of approach and dataset. The first of these
executions is conducted using the default partition of the dataset provided in the
corresponding archive. The remaining experiments are performed using a strat-
ified resampling of the original datasets while maintaining the same train/test
proportion as the original partition. Additionally, for each run, the approaches
are initialised using a unique random seed. This approach attenuates the impact
of random initialisation on our results, providing a comprehensive and stable
evaluation of the performance across each method/dataset pair.

The proposed O-Hydra methodology is compared against its nominal coun-
terpart, Hydra. Moreover, we have incorporated to the experiments a dictionary-
based method, the Temporal Dictionary Ensemble (TDE) [14], and the first

! UCR TSC archive (https://timeseriesclassification.com), and Monash TSER archive
(http://tseregression.org).
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convolution-based method, the Random Convolutional Kernel Transform (RO-
CKET) [5], together with their ordinal counterparts (O-TDE and O-ROCKET,
respectively). The incorporation of TDE and ROCKET methodologies is well-
founded considering the previously discussed framework of Hydra, which com-
bines the main strategies of dictionaries and convolutions (see Sect.2). For the
ROCKET and HYDRA methodologies, a cross-validation of the regularisation
parameter A (see Eq. (1)) is performed. The set of A values to be tested is
obtained according to 1073T% where i € {0,1,...,9}. The optimal A value is
determined based on MAE for both nominal and ordinal approaches.

The results are evaluated in terms of the Correct Classification Rate (CCR)
together with other four more appropriate metrics for ordinal problems: MAE,
Averaged MAE (AMAE), Quadratic Weighted Kappa (QWK) and 1-OFF met-
rics. An in-depth description of these performance metrics can be found in [2].

Table 1. Information about the 21 univariate TSOC datasets considered in this work.
#Train and #Test stand for the number of training and testing patterns, respectively,
Q is the number of classes, and L is time series length.

Dataset #Train | #Test | Q | L
DistalPhalanxOutlineAgeGroup 400 139 3 /80
DistalPhalanxTW 400 139 6 80
EthanolLevel 504 500 4 11751
MiddlePhalanxOutlineAgeGroup | 400 154 3 |80
MiddlePhalanxTW 399 154 6 |80
ProximalPhalanxOutlineAgeGroup | 400 205 3 180
ProximalPhalanxTW 400 205 6 |80
AAPL 1720 431 5 |53
AMZN 1035 259 5 |53
Covid3Month 140 61 5 |84
GOOG 732 183 5 |53
META 408 103 5 |53
MSFT 1501 376 5 |53
AcousticContaminationMadrid 166 72 5 | 365
DhakaHourlyAirQuality 1447 621 5 24
GasSensorArrayAcetone 324 140 3 17500
GasSensorArrayEthanol 324 140 3 | 7500
NaturalGasPricesSentiment 65 28 5120
ParkingBirmingham 1391 597 5 14
WaveDataTension 1325 568 5 |57
WindTurbinePower 596 256 5 | 144
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4 Results

This section outlines the results of the proposed O-Hydra approach, utilising
the experimental configurations detailed in Sect.3. The results are presented
as the Mean and Standard Deviation (STD) across 10 independent executions
conducted across 21 univariate TSOC datasets (MeangTp) in Table 2.

As observed, regarding the ordinal performance metrics, O-Hydra obtains
the best results in terms of MAE, AMAE, and 1-OFF, securing the second-best
performance in terms of QWK, closely following O-ROCKET, which achieves
the top results. O-ROCKET also results as the second-best performer in terms
of MAE, AMAE, and 1-OFF. Regarding CCR,, O-Hydra once again achieves the
best results, surpassing its nominal counterpart, Hydra, which might be expected
to be the top performed in this nominal performance metric. This underscores
the validity of using ordinal approaches when addressing TSOC problems.

Table 2. Results display the Mean and Standard Deviation (STD) of the 10 executions
across the 21 univariate TSOC datasets of each method.

Method MAE (]) |AMAE (])| QWK (1) |1-OFF (1) | CCR (1)
Hydra 0.5920.360 | 0.7930.510 | 0.5270.376 | 0.871lo11s | 0.584 4 o1
O-Hydra | 0.5160.322  0.7080.467 | 0.5559 371 | 0.9000 102 | 0.5960 217
O-ROCKET | 0.573 5 495 | 0.751 350 | 0.5610.202 | 0.8950 991 | 0.5480.106

O-TDE 0.6610.384 | 0.8900.488 |0.4540.375 |0.8510.126 |0.537¢.212
ROCKET 0.6940.378 | 0.8830.445 | 0.4650.331 |0.841¢p.128 | 0.524¢.204
TDE 0.6770.394 |0.9010.489 |0.4480.371 |0.8440.131 |0.5360.211

Furthermore, a summary of performance statistics in terms of MAE is illus-
trated in Fig. 1, generated using the multiple comparison matrix tool [12]. We
observe significant differences between O-Hydra and the other methodologies,
with the exception of O-ROCKET. This observation validates the objective
of this work. Additionally, it is noteworthy that the original Hydra proposal
notably outperforms both the dictionary-based TDE and the convolution-based
ROCKET in their nominal versions. Another intriguing observation is that the
ordinal counterparts of these approaches consistently outperform their nominal
counterparts.
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O-Hydra 0O-Rocket Hydra O-TDE TDE Rocket
Mean-mae -0.5158 -0.5732 -0.5919 -0.6616 0.6767 -0.6945
Mean-Difference 0.0574 0.0761
OHydra 1o )r=c/r<c 15/1/5 16/1/4
-0.5158  wilcoxon p-value 0.0604 0.0054
-0.0574 0.0187
O-Rocket 5/1/15 - 13/1/7 0.2
05732 0.0604 0.3133
-0.0761 -0.0187 0.0697 0.0848 0.1026 o1 ¢
Hydra 4/1/16 7/1/13 - 15/1/5 13/0/8 17/1/3 o
-0:5919 0.0054 03133 0.0049 0.0043 0.0003 00 &
-0.0697 0.0151 0.0330 © o
O-TDE 5/1/15 - 12/0/9 10/1/10 <
-0.6616 0.0049 0.3205 0.9723 i—o‘lg
-0.0848 -0.0151 0.0178
TDE 8/0/13 9/0/12 - 10/0/11 —0.2
-0.6767 0.0142 0.0043 0.3038 0.7079
-0.1026 -0.0330 -0.0178 .
Rocket 3/1/17 10/1/10 11/0/10 If in bold, then
-0.6945 0.0003 0.9723 0.7079 o < @S

Fig. 1. Summary performance statistics obtained by a multiple comparison tool [12].

5 Conclusions

This paper continues our efforts to advance research in the TSOC domain. TSOC
involves the development of models that map time series data to discrete ordi-
nal response variables. Thus far, only a few methodologies have been adapted
from the nominal TSC area to TSOC. Notable among these are the dictionary-
based Temporal Dictionary Ensemble (TDE) and the convolution-based Ran-
dOm Convolutional KErnel Transform (ROCKET) family. Their ordinal coun-
terparts have shown significantly superior performance in terms of ordinal mea-
sures, which are appropriate as they take into account the ordering information
inherent in the data. This work has introduced an ordinal hybrid approach to
TSOC, which is a mixture of convolutional and dictionary-based techniques.
The basis of this methodology, known as the Hybrid Dictionary-Rocket Archi-
tecture (Hydra) in the TSC community [6], has demonstrated competitive per-
formance when coupled with the MultiROCKET method, ranking second-best
and not significantly different from the top-performing technique, HIVE-COTE2
[15]. Hydra integrates two key aspects of dictionary methods: the formation of
pattern groups approximating input time series and the use of pattern counts
for classification. Similar to Rocket, Hydra transforms input time series using
random convolutional kernels. The final classifier being either a ridge classifier
or, for larger datasets, a logistic regression classifier. In this study, we present
the ordinal variant of the Hydra approach, denoted as O-Hydra. The primary
adaptation in O-Hydra lies in the use of the ordinal LogisticAT classifier as the
final classifier. In terms of evaluation, O-Hydra has been compared against its
nominal counterpart, exhibiting significantly superior performance. Additionally,
O-Hydra has been compared against dictionary-based methods and their ordinal
versions, TDE and O-TDE;, as well as the convolution-based ROCKET approach.
This evaluation has been conducted using a set of 21 univariate TSOC datasets,
expanded from previous studies. The results underscored the superiority of the
proposed O-Hydra not only over nominal Hydra but also over two prominent
dictionary-based and convolution-based methods: TDE and ROCKET.
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As future works, the existing methodologies in TSOC could be enhanced
by focusing on the feature extraction phase or by using dilation. In the case
of convolution-based approaches, considering features from the convolution that
consider the ordinality of the output could be explored. In the case of dictionary-
based methods, dilation has shown significant improvements, and may offer
potential improvements when applied to ordinal dictionary-based approaches.
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Abstract. This study explores prodromal Parkinson’s Disease (PD)
by leveraging data from the Parkinson’s Progression Markers Initiative
(PPMI). The main goal was to discriminate between prodromals that
phenoconverted to PD in 7 years to those that did not. Through feature
selection, the system identified key first visit predictors of PD pheno-
conversion, encompassing demographic, clinical, and structural magnetic
resonance imaging (MRI) data. Employing seven machine learning algo-
rithms in standard and balanced forms, we find Support Vector Machine
(balanced) as most effective for demographic and clinical data, and Logis-
tic Regression (balanced) when adding thicknesses and volumes of MRI
data. The metrics were improve in the second case (AUC ROC of 0.84).
Significant predictors include olfactory dysfunction, motor symptoms,
psychomotor speed, and third ventricle dilation.

Keywords: Prodromal Parkinson’s disease - Machine Learning - MRI
data

1 Introduction

Parkinson’s Disease (PD) is the second most common neurodegenerative dis-
order [11], primarily affecting the elderly, with age being a significant risk fac-
tor. Diagnosis relies on clinical criteria such as bradykinesia and other motor
symptoms, with a strong link to dopaminergic cell loss in the substantia nigra
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[5]. Recent insights challenge this traditional view, highlighting that significant
neuropathological changes and nonmotor manifestations can occur well before
classic motor symptoms [14], indicating a ‘preclinical’ (symptom-free) or ‘pro-
dromal’ (exhibit various nonmotor symptoms and/or minor motor signs) phase
of PD. This early phase is crucial for diagnosis and offers a potential window for
intervention to slow disease progression [15]. It is important to highlight that
prodromal PD encompasses a broad spectrum of phenotypes, including indi-
viduals with genetic risk factors or clinical characteristics predating PD onset,
such as hyposmia (a reduced sense of smell) or REM sleep behavior disorder.
It is worth noting that the penetrance of genetic risk factors is not complete,
and the early clinical symptoms lack specificity for PD, making their individual
contribution to PD risk estimation limited.

Neuroimaging, particularly magnetic resonance imaging (MRI), offers a piv-
otal tool for exploring the prodromal phase of PD, allowing for the detailed
observation of structural brain changes. This capability facilitates early detec-
tion of neurodegenerative alterations, providing crucial insights into PD’s pro-
gression before more evident symptoms emerge. Recent research in identifying
prodromals that phenoconverted to PD has incorporated machine learning (ML)
approaches. A specific study [13] used ML to examine diffusion MRI and clinical
data for early PD detection, including assessments within a prodromal cohort.
While various data types, such as electrocardiograms [6], have been explored,
there appears to be a gap in studies using structural MRI data for this purpose.
Consequently, accurately identifying PD phenoconversion during the prodromal
stage continues to be a crucial yet challenging area for further exploration.

In this study, we integrated a set of clinical scales that assess both nonmotor
and motor symptoms with structural MRI data at first visit. Our objective
was to analyze the predictive performance of seven different machine learning
algorithms in identifying prodromal individuals who phenoconverted to PD as
opposed to those who did not, over a period of seven years.

The structure of the paper is as follows: Sect. 2 provides a detailed description
of the database characteristics and the data pre-processing approaches. Section 3
discusses the machine learning methodologies and the evaluation criteria used
in the experiments. The outcomes of these experiments are presented in Sect. 4.
Underlying meaning of the research, along with an exploration of the limitations
of this research, are presented in Sect. 5. The paper concludes with Sect. 6, which
summarizes the key findings and implications.

2 Data

2.1 Database Description

The core database for this study is derived from the Parkinson’s Progression
Markers Initiative (PPMI) [9].! The PPMI, an extensive and ongoing study, is
focused on identifying biomarkers that signal the progression of PD. The PPMI

! https://www.ppmi-info.org/.
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database is characterized by its diversity in data types, encompassing demo-
graphic and clinical data, as well as MRI data. Leveraging these varied data
sources, two distinct datasets were developed: the first one comprised exclu-
sively demographic/clinical data at first visit, and the second one integrated
both structural MRI and demographic/clinical data at first visit.

The study encompasses a cohort of prodromal subjects. This group includes
those with genetic mutations in LRRK2, GBA, and SNCA genes, and clini-
cal presentations like hyposmia or Rapid Eye Movement (REM) sleep behavior
disorder. Among the prodromal subjects, a subgroup (n=18) phenoconverted
to PD over a 7-year observation period, while the remainder (n=>54) did not
develop the disease within this timeframe. For detailed demographic and clinical
characteristics of these groups, refer to Table 1.

Table 1. Demographic and clinical features of participants. Qualitative variables
(genetic mutation, sex, race and handed) is expressed with proportion, whereas quan-
titative variables is expressed as mean (standard deviation). p-value is calculated using
the t-test in quantitative and chi-square in the case of qualitative variables.

n° NO-PHENOCNV PHENOCNYV | p-values
54 18
Genetic mutation T7.T7% 11.11% <0.01
UPSIT 31.17+6.49 15.97 £ 5.39 <0.01
REM 4.33 £3.17 7.22 +4.22 <0.01
Age 62.15 + 6.65 67.18 £6.19 <0.01
Sex (Male) 44.44% 77.78% | <0.01
Education years 17.28 £4.21 16.06 £ 3.67 0.275
Race (White, Black, Other) | 96.30%, 1.85%, 1.85% | 88.88%, 0%, 11.11% |  0.013
Handed (Right, Left, Mixed) | 81.48%, 12.96%, 5.56% | 88.88%, 5.56%, 5.56% | 0.194
MDS-UPDRS III 2.35+2.95 6.44 £ 5.45 <0.01
MoCA 27.54 +1.95 26.44 + 2.79 0.07

2.2 Demographic and Clinical Data

Demographic data includes age, years of education, sex, race, dominant hand,
and familial history of PD. Regarding the clinical data, it encompasses a range of
tests and questionnaires across different domains. Olfactory Tests: University
of Pennsylvania Smell Identification Test (UPSIT); Sleep-Related Question-
naires: Rapid Eye Movement Sleep Behavior Disorder Screening Questionnaire
(REM), Epworth Sleepiness Scale (ESS); Cognitive Assessments: Montreal
Cognitive Assessment (MoCA), Hopkins Verbal Learning Test-Revised (HVLT-
R), Benton Judgement of Line Orientation Test (BJLOT), Semantic Fluency
Test (SFT), Letter Number Sequencing (LNS), Symbol Digit Modalities Test
(SDMT); Motor Tests: Movement Disorder Society - Unified Parkinson’s Dis-
ease Rating Scale (MDS-UPDRS), Hoehn & Yahr Scale (NHY), Modified Schwab
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& England Activities of Daily Living (ADL); Neuropsychiatric Evaluations:
Geriatric Depression Scale (GDS), State-Trait Anxiety Inventory (STAI), Ques-
tionnaire for Impulsive-Compulsive Disorders (QUIP); Autonomic Function
Tests: Scale for Outcomes in Parkinson’s Disease - Autonomic (SCOPA).

For nonmotor tests, aggregate scores were used, except for HVLT-R, where
three distinct scores were calculated: Immediate/Total Recall (HVLT-R1), Dis-
crimination Recognition (HVLT-R2), Retention (HVLT-R3). For motor tests,
aggregate scores were used for ADL. Additionally, data from the first three parts
of MDS-UPDRS were incorporated, separately and as the sum of all three parts.
These parts encompass nonmotor experiences (MDS-UPDRS I), motor experi-
ences of daily living (MDS-UPDRS II), and motor examination (MDS-UPDRS
IIT). Notably, the MDS-UPDRS III data were specific to the unmedicated state.
The Levodopa Equivalent Daily Dose (LEDD) data was also included to under-
stand medication influences. Additionally, another variable (TD-PIGD) provided
insight into whether patients belonged to the Tremor Dominant (TD) or Postural
Instability and Gait Distress (PIGD) classifications.

2.3 Structural MRI Data

The methodology employed allowed the extraction of 98 brain volume and cor-
tical thickness features from T1-weighted MRI scans. Initially, quality control
measures led to the exclusion of three images due to duplication, incomplete-
ness, and excessive noise, ensuring the use of high-quality images. The scans then
underwent field bias correction with Advanced Normalization Tools [1]. Lastly,
Freesurfer software [4] was used for feature extraction, including brain volumes
and cortical thickness of anatomical regions defined by Desikan-Killiany MRI
atlas, which were normalized against the estimated total intracranial volume to
adjust for individual differences.

2.4 Pre-processing

In this study, data pre-processing was crucial to address common medical data
challenges such as missing values and scale disparities. In total, 8 variables had 1
or 2 missing values, and those were handled using a median imputation strategy.
Data standardization was achieved through z-score normalization, balancing the
scales of different variables by adjusting each to have zero mean and unit vari-
ance. These steps aimed to enhance data quality and consistency, setting the
stage for more effective and accurate analyses in later stages of the research.

3 Methodology

We first performed a feature selection, which helps reducing the dimensionality
of the problem and identifying the most significant features. Then, we trained
and validated various models.
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3.1 Feature Selection

We tried several features selection options, such as Correlation Based Feature
Selection, Boruta or PCA, but the best results were obtained with the following
procedure. The first step in feature selection process involved calculating the
Pearson correlation coefficient for each feature relative to the class (if a subject
phenoconverted or not). The used implementation not only computes Pearson’s
correlation coefficient but also tests the hypothesis that the underlying distri-
butions of the samples are uncorrelated and normally distributed. Typically, a
lower p-value suggests that the observed correlation is not due to random chance,
thus lending more credibility to the existence of an actual relationship between
the feature and the class. The threshold used for discerning between selected
and non-selected features was 0.05.

Given that multiple hypotheses are being tested (one for each feature), there’s
a risk of false discoveries - i.e., incorrectly identifying features as significant
due to random chance. To mitigate this, we applied a False Discovery Rate
(FDR) correction. FDR controls the expected proportion of incorrectly rejected
null hypotheses (false discoveries) [3]. By doing so, the p-values are adjusted to
reflect the likelihood of a feature being genuinely correlated with the class, not
just appearing so due to multiple comparisons.

3.2 Classification Algorithms

Seven different models were trained to predict outcomes based on the selected
features. These models include: Decision Tree (DT), K-Nearest Neighbors
(KNN), Logistic Regression (LR), Multilayer Perceptron (MLP), Random Forest
(RF), Support Vector Machine (SVM) and eXtreme Gradient Boosting (XGB).

Each of these models has unique characteristics and strengths, making this
a comprehensive approach to finding the best predictive model for the data. To
deal with class imbalance problem, class weight parameter was set to balanced
in one iteration (for all models except MLP and KNN), thus giving more impor-
tance to the minority class in the training data, and left as default (none) in
another iteration. The algorithms were implemented in Python, using the sklearn
package [12]. In the case of XGB the xgb library was used. For all algorithms
default parameters were used, except the case mentioned. Other oversampling
techniques, such as SMOTE, were explored, but gave worse results.

3.3 Classification Performance Evaluation

We used a Leave-One-Out Cross-Validation (LOOCV) due to the limited data.
We evaluate the models using the Area under the ROC Curve (AUC-ROC)
metric [7]. The AUC-ROC is particularly useful for validating unbalanced classi-
fication problems because it evaluates the model’s ability to distinguish between
classes without being influenced by the distribution of class labels. For the best
performance algorithms, we also validated with other metrics, such as Accuracy,
Balanced Accuracy, F-score, Recall, Precision and Specificity.
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3.4 Explanation

SHAP (SHapley Additive exPlanations) [8] algorithm was used to explain the
best model’s predictions. SHAP values are based on the concept of Shapley values
from cooperative game theory. The algorithm calculates the contribution of each
feature by comparing what a model predicts with and without the feature. This is
done across all possible combinations of features, providing a detailed attribution
of prediction. Each feature gets an importance value for a particular prediction,
essentially explaining how much each feature contributes to the final decision.

4 Results

The demographic and clinical characteristics of prodromal PD patients who pro-
gressed to PD significantly differ in various aspects from those who did not
convert over a span of 7 years, as shown in Table 1.

The initial stage of the experiments was dedicated to feature selection, as
depicted in Fig. 1. In a primary stage, with only demographic and clinical data,
12 out of 29 variables were selected, encompassing factors like age, sex, UPSIT
for olfactory tests, REM for sleep disorders, along with cognitive and motor
assessments. Introduction of structural MRI data led to the selection of 9 out
of 127 variables, notably excluding previously selected demographic and certain
cognitive and motor variables in favor of highlighting the third ventricle’s volume,
a critical brain structure situated centrally.

We trained 7 algorithms using LOOCV and evaluated them with the ROC-
AUC metric, adjusting the class weight parameter to balanced for some mod-
els. Overall performance was ROC-AUC =0.73 4 0.06. As showing in Fig. 1, for
DT, RF and XGB, adjusting the class weight did not increase performance. LR
showed similar outcomes. However, SVM benefited from the balanced setting.
Best performance was attained using SVM with a balanced setting for demo-
graphic and clinical data, and LR, also balanced, when incorporating structural
MRI data. Table 2 displays the metrics for these top-performing algorithms. The
inclusion of structural MRI data yielded a slight improvement in metrics.

Table 2. Metric of the best algorithms. SVM (class weight balanced) in the case of
Demographic/Clinical data (Data=1). LR (class weight balanced) in the case of Demo-
graphic/Clinical data + structural MRI (Data = 2).

Data | Algorithm | ROC AUC | Accuracy | Balanced Accuracy | F-score | Recall | Precision | Specificity
1 SVM 0.83 0.83 0.83 0.71 0.83 |0.62 0.83
2 LR 0.84 0.85 0.84 0.73 0.83 |0.65 0.85

The analysis of SHAP values revealed key variables impacting the likeli-
hood of phenoconversion to PD as shown in Fig.2. For demographic/clinical
data via the SVM algorithm, UPSIT (olfactory dysfunction) emerged as the
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Fig. 1. Selected variables and ROC AUC of the train algorithm. class weight is the
parameter that can be tuned to weight classes.

most critical predictor, where lower scores suggest a higher phenoconversion
risk. MDS-UPDRS 1I, related to motor experiences, indicates that increased
motor issues also favor phenoconversion likelihood. SDMT, assessing psychomo-
tor speed, showed that lower scores are predictive of phenoconversion. Incorpo-
rating structural MRI data with LR algorithm, the volume of the third ventricle
became a significant indicator, with increased volume (indicative of atrophy in
the surrounding areas) being a strong phenoconversion predictor.

Regarding other motor variables, in Fig. 2(a) the NHY emerges as more signif-
icant, consequently diminishing the relative importance of MDS-UPDRS III, as
both evaluate motor status. Without the NHY variable, MDS-UPDRS III gains
prominence in Fig.2(b). Although the MDS-UPDRS total score was selected
during feature selection, it does not seem to offer additional insights to the algo-
rithm, likely because it is a composite of Parts I, II, and III. Its selection is
attributed to the influence of Parts II and IIT but does not provide extra infor-
mation beyond these components.

In cognitive assessments, HVLT-R Immediate/Recall and SFT, both related
to verbal memory, contribute valuable information across scenarios. However,
BJLOT, focusing on visuospatial perception, has minimal impact on the model’s
decision-making, as evidenced in Fig. 2(a). Notably, BJLOT was not selected in
scenarios combining demographic/clinical data with structural MRI, indicating
its smaller relevance in this enriched dataset.
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Finally, the REM sleep behavior variable exhibited minimal influence in the
model’s decision process, as shown in Fig.2, with its impact being negligible
in Fig.2(b). Similarly, demographic variables demonstrated limited relevance,
highlighted in Fig. 2(a).

Variables mean High
UPSIT 022 —@ -« - -
MDS-UPDRS Il 0.08 B I e e -
SDMT 0.05 o i BaT ik
Yy 0.03 2 ; B
HVL::S 0.01 L % MOS-UPDRS Il 0.08 - -
REM 0.01 & T third ventricle 0.05 P "
age 0.01 $- g SDMT 0.02 . - 2
F ] . 0.02 g =
SFT 0.01 + % MDS-UPDRS Il :
sex 0.00 + s HVLT-R1 0.02 s 2
MDS-UPDRS Il 0.00 - SFT 0.01 +- =
BJLOT 0.00 - REM 0.00 [
MDS-UPDRS 0.00 + MDS-UPDRS 0.00 |
0z 00 o0z 04 06 08 ¥ 02 00 02 04 06 o
SHAP value SHAP value
(a) Demographic / Clinical (b) Demographic / Clinical and s-MRI

Fig. 2. SHAP values of the best performing algorithms. SHAP values highlight the
influence of each variable on the model’s prediction, with positive SHAP values sug-
gesting a higher likelihood of phenoconversion to Parkinson’s Disease, and negative
values indicating a lower likelihood. Variables are ranked by their impact, with a wider
range indicating greater importance. The mean absolute SHAP values, indicators of
variables impact, corroborate the same order. The color scheme, from violet to blue,
represents the variable’s value, with violet denoting higher values and blue lower ones.
(Color figure online)

5 Discussion

This study explored the progression of prodromal stages to PD over 7 years,
employing a ML approach that included a preliminary feature selection phase.
The LR algorithm with class weight balancing achieved the highest performance,
incorporating variables such as olfactory dysfunction, REM sleep disorder, cogni-
tive assessments, motor impairment tests, and the volume of the third ventricle,
resulting in an AUC ROC of 0.84.

Regarding the difference between subjects who phenoconvert PD and those
who did not, great heterogeneity was observed. The study analyzed various
genetic mutations in subjects with prodromal PD. Among those who did not phe-
noconvert, 55.56% had LRRK2 mutations, 12.96% had GBA mutations, 1.85%
had SNCA mutations, and 7.4% had both LRRK2 and GBA mutations. In con-
trast, among those who phenoconverted, only 11.11% exhibited LRRK2 muta-
tions. This observations underlines the complexity inherent in the early stages
of PD.

With regard to the performance, the effect of the balanced class weight
depend on the algorithm. Some of them did not improve with this option. In
the case of DT, its improvement can be less pronounced due to how they han-
dle data distribution. DT’s performance can vary significantly depending on the
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spatial distribution of the minority class in the feature space. On the other hand,
in the case of RF and XGB, their resilience to class imbalance might stem from
their inherent mechanisms for reshaping features and focusing on subsets of the
data. These algorithms construct multiple DTs and employ techniques which
can inherently adjust to and emphasize the minority class during the learning
process, making them less reliant on external balancing methods. Finally, the
balanced LR doesn’t change the metrics due to the intrinsic robustness of the
model against class imbalance, focusing on feature relevance and distribution
rather than class proportions alone.

As for the most significant variables identified are linked to diminished olfac-
tory function, motor symptoms, and psychomotor velocity. In the case of struc-
tural change, the third ventricle dilatation seems to be important. Interestingly,
the REM sleep variable, despite being a criterion for identifying prodromal cases,
shows minimal impact. Similarly, age, while a primary risk factor for the disease,
does not emerge as a crucial variable. This highlights the complexity of factors
influencing the progression to PD and suggests that the predictive importance
of symptoms and risk factors can vary.

In a previous research [10] that explored nonmotor variables for early-stage
PD prediction, olfactory dysfunction emerged as a significant indicator. However,
unlike the SCOPA test’s findings in that study, this aspect was not observed here.
While the volume of the third ventricle has not been directly linked to early PD
detection, existing literature [2] associates it with the disease’s cognitive decline,
underscoring its potential relevance in understanding PD’s progression.

The primary limitation of this study is the dataset’s size, despite utilizing the
PPMI, one of the largest databases for prodromal PD subjects. Additionally, not
tuning the algorithms’ hyperparameters represents another constraint, as opti-
mized hyperparameters could potentially enhance model performance. In future
research, we plan to investigate additional databases and conduct a compara-
tive analysis of feature selection algorithms, particularly the analysis of wrapper
methods, to further refine our methodology.

6 Conclusion

This research enriches the comprehension of the prodromal phase in Parkinson’s
disease by combining clinical, demographic, and structural MRI data. Initially, a
feature selection process was undertaken, followed by the application of machine
learning algorithms and a subsequent interpretability analysis. This approach
emphasized the critical roles of olfactory dysfunction, motor symptoms, psy-
chomotor speed and third ventricle dilation as key predictive markers.
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Abstract. The ozone concentration at ground level is a pivotal indi-
cator of air quality, as elevated ozone levels can lead to adverse effects
on the environment. In this study various machine learning models for
ground-level ozone forecasting are optimised using a Bayesian technique.
Predictions are obtained 24 h in advance using historical ozone data
and related environmental variables, including meteorological measure-
ments and other air quality indicators. The results indicated that the
Extra Trees model emerges as the optimal solution, showcasing com-
petitive performance alongside reasonable training times. Furthermore,
an explainable artificial intelligence technique is applied to enhance the
interpretability of model predictions, providing insights into the contri-
bution of input features to the predictions computed by the model. The
features identified as important, namely P My, air temperature and C'O2
concentration, are validated as key factors in the literature to forecast
ground-level ozone concentration.

Keywords: Ozone concentration - Time series forecasting -
Explainable artificial intelligence

1 Introduction

Air quality is a crucial aspect of environmental health, with atmospheric com-
position significantly impacting ecosystems and organisms. Ozone (O3) plays a
dual role as both a protective layer in the stratosphere and a potential hazard
at ground level. While the ozone layer shields against harmful UV radiation, ele-
vated concentrations of ground-level ozone can negatively affect human health,
ecosystems, and agricultural output. This poses a significant challenge to air
quality, particularly in urban areas with heavy traffic [1]. As concerns about
atmospheric pollution and its adverse effects intensify, it has become imperative
to develop precise and effective methods for accurate predictions of O3 concen-
tration in the air, as they enable proactive management strategies to mitigate
pollution, such as coordinating traffic patterns. In this context, Machine Learn-
ing (ML) and Deep Learning (DL) techniques have emerged as a promising
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A. Alonso-Betanzos et al. (Eds.): CAEPIA 2024, LNAI 14640, pp. 71-80, 2024.
https://doi.org/10.1007/978-3-031-62799-6_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62799-6_8&domain=pdf
http://orcid.org/0000-0002-0349-1154
http://orcid.org/0000-0001-8514-4182
http://orcid.org/0000-0002-6309-1785
http://orcid.org/0000-0002-9801-7999
https://doi.org/10.1007/978-3-031-62799-6_8

72 A. R. Troncoso-Garcia et al.

tool to improve prediction accuracy. However, environmental experts hesitate to
fully embrace these techniques in real-world applications and policymaking due
to their opaque nature.

This study aims to explore and assess the efficacy and efficiency of differ-
ent ML models in predicting future ground-level O3 concentration based on air
quality and meteorological measurements over the past hours. Then, the model
obtaining the best results is explained through an eXplainable Artificial Intel-
ligence (XAI) technique based on quantitative explanation rules, denoted as
RULEX, thus obtaining an accurate and interpretable framework for forecasting
concentrations Os.

The remainder of this paper is structured as follows. First, Sect. 2 summarises
contributions related to Os forecasting found in the literature. Second, Sect.3
introduces the proposed methodology, and third, Sect. 4 presents the results that
have been obtained. Finally, Sect. 5 concludes the paper and leads to future work
lines.

2 Related Work

Several approaches in the literature explored the integration of ML solutions for
the forecasting of O3 in the context of air pollution, with initiatives to improve
prediction models, thus considering the complex interrelationships between air
quality and meteorological elements. First, the authors in [2] conducted a com-
prehensive review focused on presenting the latest advances in the area, empha-
sising the nature of the models utilized and the input variables employed as
input data. The model repertoire comprised Support Vector Machines (SVM),
Artificial Neural Networks (ANN), decision trees, and hybrid models. The find-
ings indicated that while SVM-based models outperformed others in accuracy,
ANN are extensively employed in existing literature. Additionally, the analysis
revealed that nitrogen oxides (NO2, NO), particulate matter (PMyy, PMs5),
and ozone (O3) are the most frequently examined in the reviewed articles. Fur-
thermore, in the paper presented in [3], the authors used meteorological data
from Kennewick (USA) as input data to a hybrid approach combining differ-
ent models, namely random forest and linear regression. The results showcased
the system’s reliability with significantly reduced computational resources. In
this way, the benefits of introducing not only air pollution observances but also
exogenous variables such as temperature or wind speed are highlighted in [4]. The
application is carried out on a six-year data set of hourly O3 concentrations and
meteorological measurements from Béthune (France). The models were trained
with only air observations and with these measurements combined with exoge-
nous data, and the models trained with exogenous variables showed the best
predictive power.

Additionally, Neural Networks (NN) are extensively utilized in various appli-
cations in the literature. For example, the authors of the article in [5] proposed an
integrated model based on multilayer perceptron, combining available data from
other environmental models and measurements on-site of meteorological and
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air pollution parameters in Slovenia. Validation results demonstrated that inte-
grated models significantly improve Os forecasts and contribute to more effec-
tive alert systems. Moreover, a novel approach utilizing a spatiotemporal graph
NN to predict Os concentration dynamics in urban areas, using meteorological
and air quality data from Houston, Texas, was introduced in [7]. The research
incorporated various configurations of time lags, and three forecast horizons (1,
3, 6h ahead). The results demonstrated the efficacy of the proposed model in
recognising intricate spatio-temporal patterns within the data. Another exam-
ple is found in [6], where the authors introduced a comparative study between
a hybrid nonlinear regression (NLR) model and a NN model, both tailored to
predict next-day maximum 1-hour average ground-level O3 concentrations in
Louisville, USA, during 1998 and 1999. The NLR model demonstrated a slight
superiority over the NN model using observed meteorological data. Furthermore,
meteorological data and air pollutant observations were used as input to a DL
model with long short-term memory (LSTM) layers in [8]. Predictions of O3 con-
centrations are obtained for the next 48 h, thus improving both temporal and
spatial air quality.

Finally, in terms of an XAI perspective, the tool denoted eXplaining Air
Quality (AQX) was presented in [9] as a visual analytics system developed to
assist experts in validating DL models with domain knowledge. Thus, multiple
coordinated views were used to present input feature contributions across tem-
poral and spatial dimensions. The methodology was tested using a case study in
the field of O3 forecasting, showing the effectiveness and utility of the tool. Fur-
thermore, another DL approach has been developed in the domain of forecasting
evapotranspiration [10], an ecological concern similar to the forecasting problem
O3. The authors optimized and trained a LSTM model, and explanations were
obtained with SHapley Additive exPlanations (SHAP), aligning with existing
literature on the primary significant exogenous features.

ual explanations

Fig. 1. Methodology workflow.
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3 Materials and Methods

This paper introduces the application of a suite of ML models designed for O3
forecasting, followed by an explanation of the best-performing model using an
XAI technique. The overall methodology is depicted in Fig.1, with each step
elaborated in subsequent sections.

3.1 Machine Learning

ML models have consistently shown strong performance in the prediction of O3
concentration. To identify the most effective option, various techniques, includ-
ing Linear Regression (LR), Decision Trees (DT), k nearest neighbours (kNN),
Support Vector Regression (SVR), Random Forest (RF), Extra Trees (ET), and
Gradient Boosting Regression (GBR), are optimized and evaluated. The models
are delineated as follows.

— LR models the relationship between the dependent variable and one or more
independent variables by fitting a linear equation.

— DT divides the feature space into a set of regions and assigns a simple model
to each region, making predictions based on the region the input falls into.

— kNN makes predictions by averaging the target values of the k-nearest data
points in the feature space.

— SVR is a variant of the regression-adapted support vector machines.

— RF is an ensemble learning method that constructs a multitude of decision
trees and outputs the mean prediction of each individual tree.

— ET is an extension of the Random Forest method, thus building decision
trees from random training data samples, making it easier to train.

— GBR builds an ensemble of weak learners (typically decision trees) sequen-
tially, each new model correcting the errors made by the previous ones, using
a gradient descent method to minimize a loss function during training.

The stochastic approaches, including those based on trees, namely DT, RF,
ET, and GBR, are executed 25 times to ensure robustness and reliability of the
results.

3.2 Hyperparameter Optimization

The ML models underwent a process of optimization using a Bayesian technique
to iteratively refine the hyperparameters governing the ML models’ architecture
and training process. This technique employs Bayesian inference to construct a
probabilistic model of the objective function and utilizes this model to determine
the most promising points. Optimization balances exploring uncertain regions
with exploiting areas likely to yield improvement, ultimately converging toward
the optimal solution. Then, the hyperparameters optimized and their range are
detailed in Table 1. LR model has no parameters to optimize, and it serves as a
baseline model in this study. Furthermore, optimization encompasses the input
data window for all the models, including LR, thus refining the timeframe of
the input window, and, as the data is hourly, this entails testing window sizes
ranging from 24 to 72h, covering every hourly increment in between.
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Table 1. Hyperparameters ranges for each model optimization.

75

Model | Hyperparameters | Range
DT max_depth [2, 50]
KNN |k 2, 7]
SVR | C 0.0001, 5]
epsilon [0.0001, 1]
RF max_depth [2, 50]
n_estimators [10, 256]
ET max_depth [2, 50]
n_estimators [10, 256]
GBR | max_depth [2, 50]
n_estimators [10, 256]

3.3 XAI

The XAI method used in this experiment is denoted as RULEx, presented in
[11], and based on quantitative association rules (QARs), obtained with MOQAR
method. MOQAR [12] is a multi-objective evolutionary algorithm applied for dis-
covering QARs, to identify optimal configurations, with an approach specifically
suitable for time series data because it can handle association rules in continuous
intervals, thus allowing the capture of temporal relationships between events.

In this way, the RULEx technique aims to enhance the interpretability of
time series forecasting through the visual representations of sets of rules, thus
referring to patterns that capture relationships among variables. RULEx is a
model-agnostic explainability technique, thus elucidating how the model works
by illustrating the most important values for the time series forecasting task once
the predictions have been obtained. The output is a chart-based representation
colorized to reflect the significance of the input values in influencing the predic-
tions for each distinct prediction horizon. RULEx has been recently applied to
obtain time series explainability in [13].

4 Results

This section presents the results derived from this study. The experimental pro-
cess involves fine-tuning the models delineated earlier. After that, the predictions
generated by the optimal model are explained by employing the RULEx tech-
nique to offer interpretable explanations of the model’s predictions.

4.1 Input Data

The input data set comprises a collection of hourly measurements that include air
quality and meteorological data from 2006 to 2023. These measurements were
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recorded at a monitoring station located in the metropolitan area of Seville,
Spain, at the coordinates 42.8748° N and 1.6256° W. The meteorological con-
ditions included the average temperature, wind direction (DD), and wind speed
(VV), and the air quality factors considered were carbon monoxide (CO), nitro-
gen dioxide (NO3), and particles of 10 wm or less (PMjp). For more information
about the data, [14] can be consulted. The O3 measurements were also obtained
using the reference monitoring method [15]. The model is trained with data from
2006 to 2021, hyperparameters are validated using data from 2022, and model
performance is assessed on data from 2023. Furthermore, in this work, air quality
measures and meteorological variables are used to forecast O3 conditions for the
next 24 h, equivalent to one day ahead. This approach incorporates historical
data to predict future O3 levels, enabling more accurate and timely forecasts.

4.2 Evaluation Metrics

The models’ evaluation is conducted using metrics that are widely utilized in
forecasting tasks, thus ensuring robustness and comparability across different
methodologies, namely Mean Absolute Error (MAE), in Eq. (1), Root Mean
Squared Error (RMSE), in Eq. (2), and R-squared (R2), in Eq. (3). MAE and
RMSE metrics quantify the disparities between the predictions and the actual
values, ranging from 0 to infinity depending on the data, and values closer to
0 indicate higher predictive precision. On the contrary, R2 ranges from 0 to
1, where 1 denotes the complete explanation of the dependent variable. The
training time of each model is also measured on a machine with the following
specifications: 8 GB RAM and 512 GB SSD disk. The mathematical expressions
of the quality measures are described below, where y refers to actual data, 3 to
predicted data, n is the total number of samples, and 7 is the mean value of the
input samples.

MAE =3 |y — g 1)
=1
1 \2
RMSE = \/ ~52, (y - y) 2)
R2 =1 - M (3)

4.3 ML Optimization

In this section, the results of the Bayesian optimization process are introduced
and compared using the evaluation metrics presented above.

The best parameters obtained for each model are presented in Table 2, and
Table 3 outlines the error metrics and training times associated with each optimal
configuration, ordered by RMSE. The variation in window size for each model
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Fig. 2. RMSE boxplot for the Bayesian optimization process.

Table 2. Best hyperparameters configuration for each model.
Model | Window size | Hyperparameters
DT |44 {max_depth: 6}
kNN |38 {k: 6}
SVR |62 {C: 0.7020, epsilon: 0.1982}
RF 39 {max_depth: 27, n_estimators: 180}
ET 39 {max_depth: 27, n_estimators: 180}
GBR |66 {max_depth: 3, n_estimators: 180}

Table 3. Error metrics for the best configuration of each model.

Model | MAE | RMSE |R2 | Time (s)
GBR |11.38|14.55 |0.60 |416.79
ET 11.57 |14.73 |0.60 | 52.41
LR 11.52 | 14.80 |0.59 |0.09

RF 11.75 [ 14.88 |0.59 |186.14
DT 12.33 |15.73 |0.54 1 0.91
SVR |12.26 |15.44 |0.57 |81.52
KNN |14.22 |17.81 |0.46 |0.01

7

may stem from the distinct sensitivity of each algorithm to different lengths of
window, as certain models need longer windows to capture patterns in the data.
Then, Fig.2 illustrates the variations of RMSE metric across all the different
configurations of each model tested during the optimization phase.
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Based on Table3, the GBR model has the best performance in terms of
evaluation metrics, however, it requires substantially more time than the other
models. In addition, concerning Fig. 2, the mean RMSE for different configura-
tions of GBR models is considerably higher, exhibiting a wide range of variation.
With this concern, the Extra Trees (ET) is selected as the optimal option due to
its performance comparable to the best GBR configuration in terms of error met-
rics, with slightly higher values for MAE and RMSE and the same R2 value, and
with a significantly shorter training time of 52.41s. Moreover, all the tried ET
models collectively perform better, as Fig. 2 shows. Finally, regarding the input
time window, most models demonstrated improved performance with approxi-
mately two days of input data, given the hourly data frequency. Notably, the ET
optimal performance is achieved when trained on the preceding 39 h of data.

4.4 XAI

The selected model from the previous section, namely ET with a maximum
depth of 27, 180 estimators, and 39 items as input time window, is elucidated
through RULEx. A set of QARs is generated independently for each prediction
horizon, utilizing both the real input data (each variable in each time window)
and the predictions obtained by the ET model.
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Fig. 3. XAI outputs.

Figure 3a summarizes the importance of each feature in determining the fore-
casts. The most significant feature discovered is PMiq, the variable that indicates
the presence of particles smaller than 10 wm, and the past values of O3 are the
fourth feature in importance. These results align with the findings presented in
the review paper in [2], whose analysis revealed that particulate matter (PMjq,
PMs5), and Os are one the most frequently examined variable in estimating
O3 concentration. Moreover, in a city with a Mediterranean climate like Seville,
characterized by warm or hot temperatures for most of the year (with a mean
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temperature of 20 °C), the temperature (tmp) also emerges as an important fea-
ture. Additionally, given that the data are from a metropolitan area with heavy
traffic, the presence of C'O, is also notable and significantly impacts O3 con-
centration. Finally, the importance of wind direction (dd) may be attributed to
the presence of both a large urban area and nearby countryside, thus assuming
that if the wind is coming from the North-Est, air pollution will be higher, while
when coming from the South and West, the air would be cleaner. On the other
hand, Fig. 3b depicted the feature importance across the time windows, namely
39, given that measurements from the preceding 39 h have been utilized as input,
thus capturing the temporal dimension of each variable. The peak importance
values, particularly for C'Os, are concentrated between time windows 10 and
15, and these time intervals approximately correspond to the 24 h preceding the
predicted O3 concentration, indicating a high correlation between the current
value and the same time interval from the previous day. Moreover, in the most
recent time intervals (from 30 to 39 time window items), the most significant
values are the wind velocity (vv) and PMjy, features that could represent the
current contamination levels: the presence of high wind velocities indicates that
strong winds could significantly alter ground-level O3 concentration.

5 Conclusions and Future Works

Accurate O3 forecasts are invaluable for effective pollution reduction efforts, and
the acquisition of timely and precise information about O3 levels can guide tar-
geted interventions including emission reduction strategies, traffic management
measures, and public health advisories, aimed at minimizing health risks and
environmental impact associated with elevated O3 levels. Besides, ML solutions
have already demonstrated their effectiveness in ground-level O3 concentration
forecasting. Several models were tested in this study, and the best results were
achieved with an Extra Trees model regarding evaluation metrics and training
time. The explanations provided by the RULEx XAI technique illustrate that
the model prioritizes features that align with the expertise of domain experts in
the literature, namely the concentration of Oz in past moments, the concentra-
tion of C Oy, PMi, air temperature and wind direction. Finally, looking ahead,
future research could explore the integration of predictive models with additional
datasets, such as a wider range of meteorological variables or real-time satellite
imagery, to enhance forecast accuracy and comprehensiveness.
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Abstract. In the fast-evolving field of machine learning, the process of
feature selection is essential for reducing model complexity and enhanc-
ing interpretability. Within this context, filter methods have gained
recognition for their effectiveness in assessing features through statis-
tical metrics. A recently introduced metric, the Conditional Dependence
Coefficient, aims to assess the dependence between subsets of features
and a target variable, enhancing our understanding of feature relevance.
This paper presents a novel feature selection approach that integrates
this statistical metric with a multi-objective evolutionary algorithm. This
strategy leverages the flexibility of evolutionary algorithms to efficiently
explore the feature space and employs an intuitive metric for identifying
pertinent features. Unlike many filter-based approaches, our method does
not require thresholds or percentiles related to the number of selected
features and evaluates the collective merit of feature subsets instead of
the significance of individual features. To address the forecasting chal-
lenge of identifying the appropriate time lags and features, we performed
experiments on eight distinct datasets containing multivariate time-series
data. Comparing our method against a baseline with no feature selection,
our results show solid performance in efficacy and a notable reduction in
model complexity.

Keywords: Feature Selection - Multi-objective Optimization -
Genetic Algorithm - Neural Network - Time-Series Forecasting

1 Introduction

In today’s data-driven landscape, where massive and real-time information
becomes the norm, datasets often contain a vast number of attributes. This situ-
ation demands advanced storage and processing capabilities to handle increased
data volumes and rapid and interpretable responses. In this context, feature
selection [3] allows the identification of the most relevant subset of features,
enabling a focus on a reduced set of variables while maintaining or enhancing
efficacy.
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This process offers several benefits. Firstly, it enhances model interpretabil-
ity [7], enabling experts to focus on meaningful insights. Secondly, it addresses
the curse of dimensionality [17], reducing computational complexity and over-
fitting. Finally, eliminating irrelevant features prevents the need to sample data
requiring extensive resources.

Feature selection remains a dynamic area of research. Despite the diverse
range of approaches, it is possible to distinguish three distinct groups: filter,
wrapper and embedded methods [4,10]. Within this domain, filter methods are
gaining significant attention for their ability to quickly assess feature importance
through statistical measures, but may overlook feature interactions.

This paper introduces MOLS (Multi-Objective Lag Selection), a novel filter
feature selection algorithm that combines the Conditional Dependence Coeffi-
cient (CODEC) [1] with a multi-objective genetic algorithm. The CODEC met-
ric evaluates the collective importance of a feature subset. This metric addresses
the limitations of numerous filter techniques that primarily emphasize individual
feature rankings.

The multi-objective genetic algorithm approach aims to balance model sim-
plicity and interpretability by selecting a concise set of highly relevant features.
Our proposal is based on the Pareto-optimal set and the NSGA-IT algorithm
[6], overcoming the limitations of traditional genetic algorithms that rely on
weighted functions, leading to suboptimal trade-offs and sensitivity issues.

Given the complex relationships between variables and the significance of
identifying key lags, time series forecasting provides an optimal scenario to eval-
uate our approach.

Therefore, the main contributions of this paper are:

— Introduction of a multi-objective filter method for feature selection that eval-
uates feature subsets collectively. Unlike several filter approaches, this method
eliminates the need for hyperparameters that dictate the number of features
to be selected, such as thresholds, percentiles, or a specific number of features.

— The proposal is applied over a neural network, leveraging the significant ben-
efits that feature selection can provide. This model is further optimized via
the Bayesian Optimization.

— Evaluation of the proposal effectiveness across eight diverse time-series
datasets, covering various domains such as air pollution, electricity, and traffic
forecasting. The results demonstrate competitive performance and a reduc-
tion in model complexity through feature selection.

The paper is organized into several sections. Section2 reviews previous
research on feature selection and Sect. 3 describes MOLS proposal. Section 4 out-
lines the experimental methodology applied and Sect.5 presents the obtained
results. Finally, Sect.6 summarizes the main conclusions and suggests future
research directions.
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2 Related Works

As the demand for more interpretable and efficient models grows, there is a
noticeable shift towards integrating feature selection methods into neural net-
work architectures. A notable example of this trend is the work of Liu et al.
[14], who combined a mutual information-based feature selection method with a
hybrid deep neural network model to accurately forecast wind speed. Similarly,
Kilincer et al. [12] have made a significant contribution by using recursive feature
elimination with multilayer perceptron optimization to improve the detection of
cybersecurity threats in healthcare systems.

Among feature selection strategies integrated on machine learning models,
filter methods stand out for their versatility and computational efficiency. The
CODEC metric, introduced in [1], marks a significant advancement in filter meth-
ods by efficiently detecting both linear and nonlinear dependencies.

Despite the potential of feature selection, optimizing search techniques within
a vast feature space presents a considerable challenge. To overcome this, the
adoption of bio-inspired algorithmic techniques has been suggested. Zhou et al.
[19] proposed a genetic algorithm guided by a correlation matrix as a feature
selection strategy. In a similar vein, Espinosa et al. [8] have incorporated a multi-
objective evolutionary feature selection approach into an LSTM model, achiev-
ing notable improvements in air quality prediction in Italy. Our work similarly
leverages a multi-objective evolutionary approach, combined with the CODEC
metric, to enhance feature selection.

The importance of feature selection is underscored in various domains, partic-
ularly in the analysis of time-series data. The need to pinpoint relevant temporal
points and tackle issues like temporal dependencies and seasonality is paramount.
Addressing this need, in [15] is developed a two-stage feature selection process
(correlation analysis and wrapper method utilizing a shallow neural network) for
financial time series forecasting. Our research parallels these initiatives, concen-
trating on rigorously assessing our methodologies within the time-series domain.

3 Description of the Proposed MOLS Algorithm

We propose an evolutionary strategy-based method to identify the optimal fea-
ture subset. The main goal is to identify the subset of features maximizing
CODEC value while keeping the number of features as small as possible.

The Conditional Dependence Coefficient (CODEC) [1] (see Eq. 1) assesses the
relationship between a target variable Y and a feature set Z in a dataset of N
instances. We focus on the unconditional version of CODEC, which evaluates the
direct relationship without conditioning on additional variables. The formulation
is as follows:

Sy (N min {Ri, Ry} — L?)
Zﬁil Li (N - Li)

CODEC(Y, Z) =
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In this formula, for each instance i we consider the following terms. R; repre-
sents the rank of the Y value for the i-th instance. L; represents the inverse rank
of the Y value for the i-th instance. M (i) represents the index of the nearest
data point to the i-th instance, computed using only the dimensions defined by
7 and Euclidean distance. The metric quantifies the strength of the relationship
between Y and Z by assessing how Z influences ranks and positioning. In [1],
the authors demonstrate that CODEC is a nonlinear generalization of partial
R2.

Our proposal is based on a multi-objective genetic algorithm based on Pareto
front inspired by the NSGA-II algorithm.

1. Initialization. We start by generating an initial population of p individuals
at random, where each is codified by a binary vector (“1” for inclusion, “0”
for exclusion of each feature).

2. Evolutionary process. The whole evolutionary process is repeated until
the desired number of generations (ngens) is reached. At each iteration, we
generate a new population through a series of steps:

(a) Offspring generation. At each generation’s outset, A offspring are pro-

duced through the following evolutionary operations (only one at each
time): crossover (chance czpb), mutation (chance mutpb), or reproduc-
tion (chance 1 — mutpb — cxpb).
In crossover, two parents are randomly selected from the population, pro-
ducing a single offspring using a two-point crossover mechanism. During
mutation, each gene from a randomly selected individual have a probabil-
ity (gmutpb) of flipping from 0 to 1 or vice versa, introducing variability.
In reproduction, a random individual is cloned and the clone is added to
the offspring, preserving genetic information.

(b) Evaluation and selection of subsequent population. The offspring,
combined with the current population, undergo evaluation. The top u
performers are selected for the next generation. Each individual is evalu-
ated based on two criteria: its CODEC value (reflecting the dependence
between the selected features and the target variable) and the number of
features it represents.

Individuals are sorted into layers called Pareto fronts. The first front con-
tains individuals that are not dominated. Subsequent fronts are filled with
individuals that are only dominated by those in the previous front(s).
For the next generation, the top p individuals are selected starting from
the first front and moving on to the next ones as needed. If including an
entire front would exceed the desired population size, the crowding dis-
tance within that front is used to choose individuals, ensuring the selection
prioritizes diversity.

3. Best solution selection. Once the evolutionary process is completed, indi-
viduals within the population are classified into different Pareto fronts. The
first front comprises non-dominated solutions, characterized by achieving an
optimal balance between high CODEC values and a reduced number of fea-
tures. The best individual on the first front is chosen based on the criterion of
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Table 1. MOLS Parameter Settings.

Parameter Default Value
Population size () 50
Offspring size () 50
Number of Generations (ngens) 20
Crossover Probability (czpb) 0.5
Mutation Probability (mutpb) 0.5
Gene Mutation Probability (gmutpb) | 0.2

having the minimum number of features. This selection provides an optimal
balance between maintaining high dependency and ensuring model simplicity.

The parameters of the multiobjective genetic algorithm have been fixed
(Table 1). Optionally, these parameters could be tuned, but our results (Sect. 5)
suggest that the parameters are good enough to obtain competitive results.

4 Methodology and Experimentation

This section outlines the experimental methodology, details the learning model
in Sect. 4.1 and the main phases of the approach in Sect.4.2.

4.1 Model

As a base model, we selected a fully connected neural network architecture
(MLP). It features one or two hidden layers, each containing 50 to 100 neurons.
The Rectified Linear Unit (ReLU) activation function is used for its efficiency in
speeding up convergence and reducing the vanishing gradient issue. The Adam
optimizer is used for network optimization, with a learning rate set between
0.0001 and 0.01. This learning rate spectrum allows for a balanced approach to
learning, adaptable to the unique demands of the problem at hand. Finally, to
prevent overfitting, an early stopping mechanism is applied, stopping training if
the validation loss fails to improve for 10 consecutive epochs.

4.2 Main Phases

1. Preprocessing: The initial dataset is segmented into three subsets: training
(70%), validation (15%), and test sets (15%); ensuring unbiased model eval-
uation. As the algorithms require the lagged information, each time series is
segmented into fixed-size, non-overlapping windows. Data from all channels
are flattened into a one-dimensional vector. Standardization is also applied
to address issues that arise from different scales and distributions.
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2. MLP hyperparameters tuning: First, we perform MOLS feature selection
on the training set and apply the selection over train and validation sets. To
identify the optimal hyperparameters for the MLP, Bayesian optimization [16]
is employed. This involves training models with a variety of configurations
on the training set and assessing their performance on the validation set.
The configuration that results in the lowest Mean Absolute Error (MAE) is
considered optimal.

3. Best model training and evaluation: In this step, MOLS feature selection
is applied. Then MLP is trained with the optimal hyperparameters and MAE
is evaluated over the test set.

The experiment is carried out with and without feature selection and is
repeated using 5 different random seeds.

5 Results and Discussion

This section presents the results, introducing the datasets in Sect.5.1 and ana-
lyzing the effectiveness of the MOLS approach in Sect. 5.2.

5.1 Datasets

The proposal is evaluated in eight time series datasets. Preprocessing techniques
are detailed in Sect. 4.2, focusing on windowing and channel flattening.

— The Torneo dataset [11] consists of four separate datasets, each focusing on
a specific pollutant (CO, NOs, O3 or PMg), gathered by hourly sensors in
the Torneo region (Seville). The dataset consists of 7 variables (4 pollutants
and 3 meteorological attributes) and a past history of 24 h (thereby resulting
in a total of 168 features). The target variable is the level of pollutant for the
next hour. Each dataset contains 2,798 instances and 168 features.

— The Electricity dataset [9] contains measurements of electricity consump-
tion in Portugal for 321 different clients. A past history of 24 h is taken into
account. The target is to predict the next hour for the first sampled client. It
comprises 1,095 instances and 7,704 features.

— The Traffic dataset [5] details the road occupancy rates captured between
2015 and 2016 by sensors placed on highways in the San Francisco Bay Area
at 10-minute intervals. It includes data from 862 sensors and 24h of past
history. The target consists of predicting the occupancy for the first sensor in
the next hour. The dataset includes 730 instances and 20,688 features.

— The ExchangeRate dataset [13] covers daily exchange rate data for the
period between 1990 and 2016 in eight countries: Australia, the United King-
dom, Canada, Switzerland, China, Japan, New Zealand, and Singapore. This
dataset considers 8 countries, and a historical record of the 7 previous days
is considered. The target of this dataset is to predict the value of the next
hour for the first country. It is made up of 1080 instances and 56 features.
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— The ETTh2 dataset [18] comprises data collected from an electrical trans-
former located in China, with hourly measurements spanning from July 2016
to July 2018. The dataset includes 7 variables (High Useful Load, High Use-
less Load, Middle Useful Load, Middle Useless Load, Low Useful Load, Low
Useless Load, and Oil Temperature) and a historical record of 24 h is consid-
ered. The target is to predict the transformer oil temperature for the next
hour. It contains 725 instances and 168 features.

5.2 Result and Analysis

Table 2 presents the effectiveness of our proposal compared to the results without
using feature selection, based on the performance in terms of MAE and selected
features. The entire experimentation process was repeated using 5 distinct ran-
dom seeds to ensure the robustness and reliability of the results. The average
MAE (Mean Absolute Error) and the average number of features from the 5
executions were recorded and are shown in Table 2.

Table 2. Average efficacy Results in Terms of MAE and Number of Features.

MAE # Features
Dataset MOLS No Selection MOLS Total
ExchangeRate 0.007 0.006 9.8 56
TorneoCO 1.415 1.291 50.4 168
TorneoNO2 1.432 1.386 46.8 168
TorneoPM10 1.225 1.274 49.6 168
TorneoO3 1.362 1.375 48.6 168
ETTh2 1.875 1.897 50.2 168
Electricity 204.573 213.243 3611.6 7704
Traffic 0.007 0.009 9925.8 20688

In terms of MAE, our proposal exhibits superior performance compared to
the approach without feature selection in five datasets, while obtaining a MAE
close to the baseline method in the remaining three datasets. This underscores
the strength of the CODEC metric in accurately capturing the dependence
between subsets of features and the target variable. In particular, a significant
enhancement was observed in the Electricity dataset. However, it should be
mentioned that the results for TorneoCO were slightly worse. Furthermore, our
proposal stands out by substantially simplifying the model, selecting fewer than
half of the total features available in the datasets, and most cases selecting
approximately 20-30% of the total features.

Figure1 illustrates the progression of the MOLS algorithm throughout the
feature selection process for one of the 5 random seeds executions considered,
using the TorneoPM10 dataset. The first Pareto front fitness points is highlighted
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Fig. 1. MOLS selection on TorneoPM10 in one of the 5 random seeds executions.

in red, while the rest of individuals fitness is represented in black. It is evident
that, across generations, individuals tend to converge towards the bottom-right
corner of the graph. This indicates a tendency towards achieving a balance of
higher CODEC values with a reduced number of features. At the end of the pro-
cess, the MOLS algorithm successfully achieves a robust balance, thus ensuring
effective and efficient feature selection.

The observed well-balanced relationship between the Mean Absolute Error
(MAE) and the number of features underscores the potential of the multi-
objective evolutionary approach to maintain or enhance effectiveness while
reducing complexity.

To ensure the significance of the conclusions obtained, a statistical test [2]
was applied to the results. Figure 2 presents the results of the Bayesian analysis
comparing our methodology with the NoSelection (NS) method. With a 77%
confidence level, we found that the NoSelection method results in a higher error.
This results allow us to identify that there are significant differences between
the methods compared.



MOLS: Multi-Objective Lag Selection 89
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p(MOLS) = 0.229 p(NS) = 0.771

Fig. 2. Bayesian MAE comparison result.

6 Conclusions and Future Works

The paper presents MOLS, a novel approach that integrates the CODEC met-
ric into a filter feature selection algorithm for time-series forecasting. MOLS
aims to balance the feature dimension with the efficacy, addressing the chal-
lenges posed by datasets with numerous features. The key contributions include
proposing a multi-objective filter selection method, applying a neural network
model optimized via Bayesian Optimization, and evaluating the proposal across
diverse time-series datasets. Results indicate that MOLS outperforms the app-
roach without feature selection in terms of MAE in several datasets, achieving
a significant reduction in the number of features while maintaining or improv-
ing model efficacy. Statistical analysis supports these findings. However, more
research is needed to establish the significance conclusively.

Future work could focus on refining the MOLS algorithm, exploring addi-
tional datasets and models, and investigating other statistical metrics or opti-
mization techniques. Additionally, extending the application of MOLS to differ-
ent and more complex time-series forecasting problems could provide valuable
insights into its effectiveness and versatility.
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Abstract. The cornerstone of the 2030 Agenda for Sustainable Devel-
opment are the 17 Sustainable development goals (SDGs). These goals
are measured through 109 indicators and, in very basic terms, the degree
of achievement of the 17 SDGs for a country, the so called SDG Index,
is calculated with a weighted sum without taking into account any pri-
orities among the goals.

Besides this, several facts are not considered: the different situations
and priorities of every country, the different relevance that can be given
to the SDGs and the potential imprecision in the data.

Here we propose a fuzzy alternative to the SDG Index, called FuSDG,
having two main features: 1) it does not require an explicit set of weights
to model priorities among SDGs, 2) it implicitly considers the impreci-
sion in the input data, and explicitly in the output value.

A FuSDG value will be modelled with a triangular fuzzy number due
to the reduced number of parameters required and the easy interpreta-
tion of its meaning. We illustrate the application of FuSDG over recent
data, and we discuss potential issues.

Keywords: Sustainable development goals - fuzzy index - triangular
fuzzy numbers

1 Introduction

The 2030 Sustainable Development Agenda, adopted by all UN Member States
in 2015, provides a common framework for peace and prosperity for people and
the planet, both now and for the future [2].

The 17 Sustainable Development Goals (SDGs) are the cornerstones of this
Agenda, which offer the most practical and effective way to address the causes of
violent conflicts, human rights abuses, climate change and environmental degra-
dation, with a view to ensuring that there will be no one left behind at all. The
Sustainable Development Goals (SDGs) are based on an understanding that
sustainable development at all levels must integrate economic growth, social
well-being and environmental protection.
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As it is well known, these SDGs are (as UN orders them): “No poverty”, “Zero
hunger”, “Good health and well-being”, “Quality education”, “Gender equality”,
“Clean water and sanitation”, “Affordable and clean energy”, “Decent work and
economic growth”, “Industry, innovation and infrastructure”, “Reduced inequali-
ties”, “Sustainable cities and communities”, “Responsible consumption and pro-
duction”, “Climate action”, “Life below water”, “Life on land”, “Peace, justice,
and strong institutions” “Partnerships for the goals”.

The “Europe Sustainable Development Report” [6] provides an annual
overview of the European Union’s progress towards the SDGs, as well as the
progress of 38 individual European countries (including all EU countries, EU
candidate countries, and regional partner countries) and highlights areas of suc-
cess as well as opportunities for further improvement and uses the data to com-
pare the progress of European sub-regions.

The degree of achievement of the SDGs by a country is measured by the SDG
Index, where a score of 100 indicates that all SDGs have been achieved. The
2023/24 SDG Index for Europe comprises 109 indicators, derived from official
and non-official statistics: for 95 of these, data is available from 2015.

Particularly, in the 2024 edition [6], one can read that

SDG progress in Europe has stalled since 2020. Even before the pandemic
hit, progress in the EU was too slow to achieve all of the SDGs by 2030.
Still, progress on the SDG Index was three times as fast over the period
2015-2019 (0.73 points per year) than over the period 2019-2022 (0.2
points per year).

The index is topped by Northern European countries. Finland ranks first for
the fourth year in a row, followed by Sweden and Denmark - which all have
scores close to or above 80 (out of 100).

The methodology for calculating the SDG Index is simple: firstly, the scores
for each goal are calculated using the arithmetic mean of the scores of the indi-
cators for that goal; secondly, these goal scores are then averaged across all 17
SDGs to obtain the SDG Index score. Equal weights were used for aggregating
indicator scores into the goal scores, and for aggregating goal scores into the
overall index score (See the Methodology section at [6]).

Due to the different characteristics of the countries in terms of size, popula-
tion, location, political priorities, and so on, three elements can be problematic:
the quality of the data, the simultaneous consideration of the 17 SDGs and the
use of equal weights.

At a given time, not all the countries may agree on the most relevant SDG,
nor in the possible preferences among them. Besides this, we recognize both the
difficulty of agreeing in a specific set of weights and the need to be aware of the
potential presence of imprecision in the data. This later aspect becomes clear if
we check the description of some indicator. For example, one of the indicators
for Goal 4 (Ensure inclusive and equitable quality education) is “Proportion of
youth and adults with information and communications technology (ICT) skills,
by type of skill”; or for Goal 1 (End poverty in all its forms everywhere), the
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indicator “Proportion of men, women and children of all ages living in poverty
in all its dimensions according to national definitions” [5].

In this context, where many pieces of information have an obvious fuzzy
nature, the aim of this contribution is to propose a Fuzzy SDG Index (FuSDG
in what follows) to evaluate the level of achievement of a set of SDGs by a
country. The calculation of FuSDG does not require an explicit set of weights
but a prioritization of the goals. Besides, it considers implicitly the imprecision
in the input data, while explicitly in the output representing the score as a
triangular fuzzy number.

The paper is organized as follows. Section 2 presents the FuSDG and how to
calculate it. Then, Sect. 3 illustrates the application of FuSDG in a case study
with 20 countries and six SDG with a given prioritization. Different rankings are
derived from FuSDG values and comparisons among them are performed. Also,
in Sect.4 an example using different prioritizations of the goals is provided to
illustrate the changes implied in the FuSDG values. Finally, Sect. 5 is devoted to
discussions and conclusions.

2 Definition of a Fuzzy SDG Index (FuSDG)

In this section, we propose to define the FuSDG index as a triangular fuzzy num-
ber (TFN, in what follows). So, we describe how every parameter is computed.

The calculation of the FuSDG for a given country requires the following
information.

Firstly, a vector V' = {vy,va,...,v,}, where v; € R represents the degree to
which the country achieves the SDG ¢. All the SDGs or a subset of them can
be considered. Secondly, it requires a preference order of the SDG defined as an
ordinal relation among them denoted as g1 =, g2 =p ... =p gn. The symbol =,
stands for “at least as preferred to”.

In many situations, such order can be translated into a set of weights w; >
W > ... > Wy, W1+ ... +w, =1and w; >0 (Vj=1,...,n) and then a crisp
SDG Index score of a country 4 can be calculated using a weighted sum model:

zi(w) = Zwivi (1)

where z;(w) is the scoring function for a country ¢ and a given realization of the
vector of weights w = (wy,...,w,). Using the so called ranked weights [1,9],
specific values for w; can be readily obtained.

But it is here where one of the motivations for proposing FuSDG arises.
Let’s suppose we consider three SDGs: g1, 92,93 and the following preference
order: g2 =, g1 =p g3. Then, the weights should satisfy w, > w; > w3 and
wy + ws + w3 = 1. As the reader may notice, there are infinite sets of weights
that satisfy those constraints. For example, (1,0,0), (1/2,1/2,0), (1/3,1/3,1/3),
(0.7,0.2,0.1), (0.65,0.20,0.15) and so on.

Due to potential measurements errors or lack of confidence in the data, we
assume that the v; values can be imprecise, and that they can be interpreted as
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“around v;”. In this case, it is clear that fuzzy numbers can be a good choice to
model such kind of imprecision in the input data. However, we will not model
this imprecision in explicit terms. As the input information available has single
v; € R values, we do not want to make an artificial “fuzzification” of the values.

In turn, we will consider such imprecision in the value given by the FuSDG.

The FuSDG of a country i is denoted as z;. In order to avoid the introduc-
tion of (potentially unnecessary) layers of complexity we will represent Z; as a
triangular fuzzy number (TFN), which just require three values (a,b, c) for its
definition. In what follows, the calculation of such values is shown.

Finally, let’s consider the SDGs preference order is g1 =5 g2 =p ... =p Gn-

Obtaining the support of the FuSDG
As we previously stated, there exist an infinite number of realizations of the w
vector, thus leading to an infinite number of potential scores that a country can
achieve. We are interested in two specific scores values: the minimum and the
maximum. If we can calculate such values, then the support of the corresponding
TFN can be readily obtained.

The minimum and maximum (crisp) scores that a country can achieve can
be obtained by solving the two following linear programming problems where
the decision variables are the weights:

n n
min a= W;V; - .
i Z Vi muz}xc szvz
=1 =1
st. wy > we > ... > Wy st. wy > wy > ... > wy,
wy+we+...+w, =1 wy+wes +...+w, =1

The particular structure of both problems make them easy to solve, even without
the need to run a conventional Linear Programming algorithm. More details
about this are available in [7,10] and the references therein.

Now, two out of three values to define FuSDG are available: Z; = (a, ,c).

Obtaining the Core of the FuSDG
The last step for completing z; is the definition of value b.

In the context of multicriteria decision making, authors in [8] explored six
different alternatives for such definition. The idea was to locate the core, at a
particular score attained with a given set of weights. For example, using equal
weights, or some definitions for ranked weights or just taking the center of the
support. The results showed that, in terms of the ranking obtained for a set of
alternatives, differences are very minor, thus recommending the use of simple
approaches.

Although the use of the score obtained using equal weights is interesting
(and easy to calculate), the resulting fuzzy numbers are hard to interpret. This
is because the resulting numbers are not symmetric or, in some cases, the core
lies at one of the extreme values of the support. That’s why we propose to define
b=a+ (¢c—a)/2, ie. at the center of the support. In this way, the classical
interpretation of “around b” can be assigned to the FuSDG Z;.
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Country a b [ EwW
SWE 065 073 081 0,81 owed i,
DNK 064 073 082 082 o
IRL 065 072 078 0,78 IRL -
FRA 063 070 078 0,75 FRA%
DEU 060 069 079 0,75 DEVS
PRT 062 068 073 0,72 MO
HUN 060 067 074 071 -
POL 058 067 075 0,74 2
EUU 057 0,66 074 0,73 B
GRC 058 065 071 066 g ESP-
ITA 056 064 071 0,68 GRC-
ESP 053 063 073 0,71 ITA-
EST 052 061 070 0,70 NLD-
ROU 056 061 065 057 BeL-
FIN 043 060 077 077 s
BEL 042 058 074 0,72 CBRY
NLD 034 055 076 0,76 . B
BGR 048 054 060 0,57 i i,
GBR 033 053 072 072 , i :
TUR 042 052 062 055 o s’ o o8

Fig. 1. In the left, FuSDG values for every country are shown. Column “EW” contains
the score calculated using equal weights for all the SDGs considered. In the right, a
graphical representation of the FuSDG values appears.

3 Case Study

As we stated before, the 2023/24 SDG Index for Europe comprises 109 indicators,
derived from official and non-official statistics. For the sake of simplicity, we start
here with the aggregated values for each of the 17 SDGs and we restricted to a
set of 20 countries.

Considering the topics of SDGs, it is easy to understand that some priorities
among them can be established. In fact, given the local context of every country,
it is clear that the interest among them is not the same. For example, SDG 14
“Life below water” could be very relevant for a country in the sea shore, but less
relevant for a country in the center of Europe. In this regard, a recent study
by the World Economic Forum and Ipsos consultancy agency [3] asked 20,000
people in 28 countries which of the SDGs they thought were most important.
The global priority ranking based on the average ranking of all 17 goals in the
28 countries surveyed was 2, 1, 3, 6, 8, 4, 13, 15, 14, 7, 16, 10, 11, 12, 5, 9, 17.

The six more relevant SDG were “Zero hunger” (2), “No poverty” (1), “Good
health and well-being” (3), “Clean water and sanitation” (6), “Decent work and
economic growth” (8) and “Quality education” (4). So, for illustrative purposes
we will deal with these six SDGs.

In what follows, we will calculate the FuSDG value for 20 countries, using
the preferences g2 =, g1 =p 93 =p 96 =p g8 =p 94-
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Table 1. Equal Weights (EW), Conservative (based on a values), Neutral (b) and
Optimistic (¢) Rankings.

Ranking (Positions 1 - 10) Ranking (Positions 11 - 20)

EW | Cons. | Neutral | Optim. EW | Cons. | Neutral | Optim.
1 |DNK|IRL |SWE DNK |11 GBR|ITA |ITA BEL
2 |SWE  SWE | DNK SWE |12|PRT |ROU |ESP ESP
3 |IRL |DNK |IRL DEU 13 HUN | ESP | EST PRT
4 |FIN |FRA |FRA IRL 14  ESP |EST |ROU GBR
5 |NLD | PRT |DEU FRA 15| EST |BGR | FIN ITA
6 |DEU HUN |PRT FIN 16 | ITA |FIN |BEL GRC
7 |FRA DEU |HUN NLD 17 GRC | BEL |NLD EST
8 |POL POL |POL POL |18 ROU TUR | BGR |ROU
9 EUU GRC |EUU HUN |19 BGR |NLD |GBR TUR
10 BEL |EUU | GRC EUU |20 TUR | GBR TUR BGR

Figure 1 shows the FuSDG value for every country. The fuzzy scores (their
parameters) and their graphical representation are shown. The specific crisp
score value attained for every country when using equal weights is displayed in
the column “EW Score”. The country labeled as “EUU” is a fictitious country
constructed using the mean of the corresponding v; values.

From these results, we derive three rankings, sorting the values according
to each parameter of the FuSDG value. A conservative ranking (based on a),
a neutral (on b) and an optimistic ranking (on ¢) are shown. For comparison
purposes, we also derive a ranking from the attained scores using equal weights
for the SDGs (no prioritization). The results are graphically shown in Fig. 3.

Looking at the plots, four countries seem to “break” the order in the Equal
Weights and Optimistic rankings. These are FIN, NLD, BEL and GBR. All of
them have quite wide support in their fuzzy scores in comparison with the other
values. In these rankings, those countries seem to be in the wrong position.
Intuitively, they should not be there. However, the conservative and neutral
rankings look as one may expect.

Table1 displays the ranking of the countries. Some basic facts are readily
observed. DNK, SWE, and IRL are always at the TOP-4. EUU which is an
“average” country, is always in the middle of the rankings. If we consider the
EW ranking as the reference one, we observe that GRC goes from position 17
to the 9th in the Conservative ranking (or 10 for the Neutral one). In turn, FIN
goes from 4 in EW to 16 in the Conservative ranking (or 15 in the Neutral one).
The case in NLD is also notorious. It appears in the 5th position en EW, but in
position 19 in the Conservative ranking (or 17 in the Neutral one). Something
similar happens with BEL and GBR, which goes from positions 10 and 11 in
EW to 17 and 20 in the conservative view, respectively.
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Table 2. Kendall correlation coefficient of the rankings obtained from the different
criteria.

Ranking | EW score | Cons. | Neutral
Cons 0.57 - -
Neutral |0.57 0.66 |-
Optim | 0.51 0.58 |0.66

Table 2 displays the Kendall’s correlation coefficients among the rankings. In
general, the values are quite low indicating that they are quite different. The
most similar ones are the Neutral and Optimistic rankings, while the less similar
ones are those obtained by the EW and Optimistic variants.

4 On the Impact of Prioritization of the SDG

The use of different prioritization of the SDGs implies changes in the support
values of the TFN associated with the FuSDG. In turn, if the set of SDGs is
fixed, the use of equal weights to make the aggregation always gives the same
value. To illustrate the impact of the preferences/prioritization in the FuSDG
values, we take a few countries and different preferences of the goals.

The countries considered are ESP, FIN, GBR and NLD and they will be
analyzed according with the four different prioritization of six goals shown in
Fig 2 (left). From one prioritization to another, just the relevance of two SDGs
is exchanged.

ESP-1-

ESP-2-

ESP-3-

Prioritization Cases ESP—41
1 2 3 4

ZH NP NP NP
NP ZH GH DW
CH GH zZH zH
CW CW CW CW
DW DW DW GCH
QE QE QE QE

NLD-1-

FIN-1-

FIN-2-

FIN-3-

FIN-4-

Alternative

GBR-1-

NLD-2-
NLD-3-
NLD-4-
0.4 D.S SCOO;Z 0.7 D.B
Fig. 2. Prioritization cases and the corresponding Fuzzy-SDG Index for every country.
Goals abbreviations are: ZH (Zero hunger), NP (No poverty), GH (Good healt), CW
(Clean water). DW (Decent work), and QE (Quality Education).
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a) Equal Weights b) Conservative
DNK- IRL-
SWE- SWE-
IRL- DNK-
FIN- FRA-
NLD - PRT-
DEU- HUN-
FRA- DEU-
POL- POL-
2 Euu- 2 GRe-
8 - 8 cuu-
2L 2
< GBR- < ITA-
PRT- ROU -
HUN- EsP-
ESP- EST-
EST- BGR-
ITA- FIN-
GRC- BEL-
ROU- TUR-
o A .y
TUR- GBR-
04 0’5 0’6 07 08 04 0’5 06 07 0’8
Score Score
¢) Neutral d) Optimistic
SWE- DNK-
DNK- SWE-
IRL- DEU-
FRA- IRL-
DEU- FRA-
PRT- FIN-
HUN- NLD-
POL- POL-
2 Euu- 2 HUN-
€ Gre- € -
2 2
I M- = Be-
ESP- ESP-
EST- PRT-
ROU- GBR-
FIN- ITA-
BEL- GRC-
NLD- EST-
BGR- ROU-
TUR- BGR-
04 0's 0’5 07 0’8 04 0’5 0’6 07 0’8
Score Score

Fig. 3. FuSDG values sorted by different criteria. Colors are associated with countries.
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Figure 2 (right) displays the corresponding results. The most notorious
changes are observed from the first prioritization to the other ones. The reduc-
tion of the support of the FuSDG values from FIN-1, GBR-1 and NLD-1 to the
other cases is almost about 50%. The main difference from case 1 to case 2 is
the exchange of the first two SDGs.

The example shows that FuSDG values provide more information than a
basic crisp score. For every case study we can observe both, the change in the
support and the “displacement” of the fuzzy number. While the later has a clear
meaning, the former deserves further discussion. Here, some of the ideas recently
posed in [4] can be explored.

5 Discussion and Conclusions

In this contribution we proposed FuSDG, an index to assess the achievement of
Sustainable Development Goals in terms of fuzzy numbers.

As the index is represented by means of symmetric triangular fuzzy numbers,
the linguistic interpretation is straightforward: a value x is interpreted as “around
2”. We provided a simple mechanism to calculate the corresponding parameters
and we showed its applications in various examples.

Although we are aware of the many ways available to compare fuzzy num-
bers and thus, construct different rankings, this is not the way we propose to
explore. Comparing countries in terms of the achievements of the SDGs can be
problematic, due to the many issues involved.

However, we envisage FuSDG as a useful tool to evaluate the behavior of a
country along the time. In the last example, and when the priorities change, we
observed both, the modifications in the support and the “displacement” of the
fuzzy numbers. The later has a clear meaning: if the FuSDG is “moving” to the
right, then the country is improving. The change in the support poses several
questions with respect to its interpretation. For example, one may consider that
the support of the FuSDG can be associated with the “certainty” of the value.
But a wider support implies an increase or a decrease of such “certainty”?. Here
one may be tempted to explore more sophisticated techniques to model the
imprecision in the outputs, but a proper balance with the interpretation of results
that non-experts can do from the values should be taken into account.
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Abstract. One of the crucial aspects of solving robust optimization over
time (ROOT) problems is to efficiently approximate the robustness of the
solutions. However, current progress in this area has been scarce to date.
To help bridge this gap, this paper proposes an alternative approach to
one of the predominant frameworks in this field. Specifically, we decouple
the fit and prediction of future environments that occur for each fitness
evaluation by just evaluating previously fitted surrogate models. In this
way, we globally approximate the robustness of the solutions by learn-
ing fitness functions, rather than point-wise predicting values during the
execution of the algorithm. Preliminary results obtained from computa-
tional experiments indicate that this approach can achieve significantly
superior performances to the existing framework, especially for specific
surrogate model configurations. Furthermore, we show that in certain
cases where our algorithms are less efficient than the existing approach,
such inefficiency is compensated by improvements in error.

Keywords: robust optimization over time - radial basis function -
surrogate optimization - autoregressive models

1 Introduction

In the context of dynamic optimization problems, where the fitness function
changes with time, the goal is to find the optimal solution at the current time
(i.e., before the change) [7]. As population-based techniques are usually applied
to solve these problems, the field is known as Evolutionary Dynamic Optimiza-
tion (EDO) [2,8].

A recent topic in EDO is Robust Optimization Over Time (ROOT) [11,14].
Unlike traditional dynamic problems, in ROOT problems the quality of a solu-
tion depends on its performance in the past, current, and future environments.

A discrete-time and continuous bounded search space ROOT problem can
be formally defined as:

max R(z,t) (1)
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where 2 C RP is the search space and x € 2 is a candidate solution. Value t € N
is the environment of the problem. The function R computes the robustness of
a solution z in the environment ¢. The task is to find the set X* = {aF

t = 1,2,...,N} such that 7 maximizes R. Two definitions for R currently
predominate: average fitness and survival time. In this paper, we focus on the
former, which is defined as:

w
RGet) = g D fosila) 2
1=0

where f; is the objective function for the environment i, and W is the time
window.

In general, the fitness functions f;; of the future environments are unknown,
so the solving strategy must implement mechanisms to predict the values of these
functions. A common approach is to rely on the performance of the solution in the
past, to construct forecasting models (e.g., autoregressive models). Regardless of
whether the past can be accurately evaluated, the task of predicting the future
is very error-prone [9,11].

Jin et al. [6] proposed an approach for solving ROOT problems. The main
idea is that a solution’s robustness is approximated by fitting a forecasting model
using the history of past environments. Alternatively, Yazdani et al. [13] proposed
to learn the characteristics of the search space during the run. This approach
exploited information about the problem, such as the presence of peaks, that may
be is not available in real-world problems. From this perspective, Jin’s approach
is more robust. However, it entails a significant computational overhead, since
each function evaluation involves fitting a forecasting model.

In this context, the following question arises: is it possible to find a less
complex evaluation mechanism for robustness while maintaining performance
levels comparable to Jin’s approach?

This aspect, which we consider crucial in ROOT, has been very little investi-
gated so far. In addition to the previous contributions [6,13], the efforts reported
[3,4] are also relevant, highlighting the complexity of this task in the absence of
smooth transitions between environments. Specifically, [3] concluded that when
this condition is not met, a sophisticated predictor such as Support Vector
Regression is no better than a simple regression model. This motivated the
proposal of artificial problems that allow these models to adequately capture
the dynamics of the problem [4]. Similarly, in [9] how to approximate the fit-
ness functions from the past environments was studied. The authors concluded
that the contribution of surrogate models to the algorithm depended on problem
characteristics, such as the number of local optima.

This contribution aims to present and evaluate a new approach assisted by
surrogate models to model future environments. Instead of fitting a forecast
model for every solution to predict its future fitness values, our approach con-
structs surrogate models of the future environment from a set of reference solu-
tions. These surrogate models will allow the robustness of solutions to be approx-
imated without fitting forecast models during the optimization, as suggested by
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[6]. We have studied our proposal from computational experiments using ROOT
problems with different time windows and using Jin’s framework as a baseline
for comparison.

The remainder of this paper was organized as follows. Section 2 delves into
the proposed approach, which is analyzed in Sect. 3. Finally, Sect. 4 summarizes
the main conclusions from our findings and future work.

2 Proposed Approach

In the so-called Jin’s framework [6], the calculation of robustness implies fitting
a forecast model at each evaluation of the objective function, thus incurring a
significant computational cost. An alternative would be to decouple the fitting
of these forecast models from the objective function evaluations.

In this sense, we propose to fit these forecast models before starting the
optimization of each environment and based exclusively on a set of previously
selected representative points of the search space. In this way, it is possible to
build surrogate models of future environments that would interpolate any further
evaluation during the optimization process.

Formally, let be a ROOT problem with a time window W. At the beginning
of the execution, our approach creates (for one time only), a set X with N
randomly generated D-dimensional points in the search space. We refer to X as
the reference points. Since we are interested in covering as much of the search
space as possible, these points should be evenly distributed. For example, using
a technique such as Latin hypercube sampling or Sobol sampling [1].

Next, during the learning period of the algorithm (cold start) when there is
not enough information to calculate robustness, we populate a matrix Y with
the corresponding evaluations of the reference points in the first L environments.
So, a value y;; of Y stands for the fitness evaluation of the point x; in the
environment j. We will refer to Y as the reference point history.

Once the learning period is over, for each subsequent environment, we update
Y by removing its first column and appending a new one y; at the position L.
Here, y; is a column vector of dimension N of the evaluations of the reference
points in the fitness function of the current environment.

The next step is fitting forecasting models @; ; for each reference point ¢, that
is, by using the row y; from Y as input. This procedure is depicted as step I in
Fig. 1.

Then, we employ these models to forecast the fitness of each point ¢ in the
subsequent W environments (step 2, Fig. 1). This results in a N x W matrix Y.,
which is used together with reference points for building W surrogate models.
Specifically, each surrogate model fiy;, ¢ =1,..., W is fitted using X and the
j-th column of Y, (step 3, Fig.1). So after this process, we have an array of
W surrogate models that will be used by an underlying EA to estimate the
robustness of the solutions during the environment ¢.

Algorithm 1 shows our general framework for solving ROOT problems by
incorporating surrogate models. Like Jin’s framework [6], ours incorporates an
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Fig. 1. Method for creating the surrogate models.

evolutionary algorithm (EA) for the optimization process within the current
environment. We assume here that this EA implements mechanisms for detecting
and reacting to changes.

In addition to decoupling the fitting of forecasting models during fitness
assessment, our approach differs from Jin’s in other respects worth noting. First,
our approach learns future fitness functions, whereas Jin’s approach only fore-
casts fitness values in the future. So, our robustness approximation can be viewed
as a global approach, while that of Jin’s is a local approach. Finally, since we
rely on a set of reference points and their respective fitness values in the past,
our approach does not require approximating the past with the hybrid approach
proposed in Jin’s. That is, by combining solution storage and surrogate model
building [6]. In other words, our approach addresses the issue of modeling the
past, which enables it to be applied to ROOT problems both assuming that the
past is perfectly known and in problems where it is not [11].

3 Computational Experiments

To assess the benefits of our proposal, we make a set of computational experi-
ments on three instances of the popular benchmark proposed by [5]- specifically,
from the RMPB-I class. The configurations of these instances are summarized in
Table 1. Note that the problem is a maximization problem with a 2-dimensional
search space and a fitness landscape of 5 peaks per dimension. More details can
be found in [5].

In this artificial problem, we can compute the optimal solution in terms
of the robustness in each environment ¢ as the fitness functions for the future
environments are perfectly known. So, the true error of the algorithm can be
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Algorithm 1: Proposed framework for solving ROOT problems.

1 X « generateReferencePoints(N);
// Learning period

2 while t < L do
Evaluate X in f; and store in yy;
Append y; to Y as the column ¢;
if a change is detected then

| t—t+1;
end
Run the EA using the fitness function of the current environment;

© 00N O ;s W

end
// Learning period is over
10 while t < T}4, do

11 if a change is detected then

12 Evaluate X in f; and store in yy;

13 Update Y with y;

14 Fit N forecast models using Y (history of reference points);
15 Forecast the next W future fitnesses and record them in Y~'t;
16 Fit W surrogate models (f;) from X and Yy;

17 t—t+1;

18 end

19 Run the EA using the approximated robustness (Eq. 2 with fz) as the
fitness function.;
20 end

used as the performance measure. We opted for the error of the best solution
before each change [11], which is averaged at the end of each run:

Trmaz

Brat = — 3 (IR(e" 1) = R 1)) (3)

t=1

where R is the robustness calculated according to Eq. (2), c¢* is the optimal
solution of the problem and x* the best solution found by the algorithm.

Table 1 shows that we explored three instances derived from varying the time
window W. Note that this parameter defines how many alternative models have
to be built.

To forecast future environments, we considered an autoregressive model with
lag 5, which aligns with settings from previous research [5,11].

We explored different variants for constructing the surrogate models of future
environments. Specifically, we have considered different instances of Radial Basis
Function (RBF) interpolation models by combining the parameters listed in
Table 2. Each combination produces a different setting of a Differential Evolution
(DE) algorithm (e.g. 8 settings) which is the EA technique used here. DE basic
parameters are a population of 30 individuals, parameters F' = 1.0, CR = 0.5,
and mutation strategy DE/rand/2 [12].



106

P. Novoa-Hernandez et al.

Table 1. Parameter settings of the tested problems.

Parameter Values
Number of peaks (m) 5
Dimension (D) 2

Search space
Number of changes (Tiaz)
Change frequency (Ae)

[—25.0,25.0] x [—25.0,25.0]
50
3000 function evaluations

Change type Small step
Peaks’ height range (h) [30.0,70.0]
Height severity (hscverity) | 5.0

Peaks’ width range (w) [1.0,13.0]
Width severity (wseverity) |0.5
Rotation angle range () | [—m, 7]
Angle severity (Oseverity) |1.0

Time window (W) € {2,4,6}

History size (period L) 12

Table 2. Parameter settings for the surrogate models.

Parameter Values

Kernel {Linear, Multiquadric}
Shape factor (¢) 0.1

Smoothing factor (<) 0.5

Number of points (N) € {50,100}

Neighbors proportion (9) | € {0.5,1.0}

Within each environment (periods in which the problem does not change),
the EA has a budget (Ae) of 3000 fitness evaluations of the current environment.
To isolate the effects of our proposal, we will also assume that the algorithm can
detect changes. Finally, we also measured the time in seconds consumed by the
algorithm during its execution in each problem environment. At the end of each
run, we averaged these values. Overall, 20 independent runs of the DE with each
setting have been performed.

As a basis for comparison, we have implemented Jin’s approach, which except
for the mechanism to evaluate robustness, relies on the same configurations as
the algorithms derived from our proposal. Furthermore, we assume that Jin’s
approach can accurately evaluate past environments, thus avoiding any effect of
the past approximation mechanism implemented by that approach.

3.1 Computational Complexity

It is worthwhile to delve into the computational complexity of our proposal
and that of Jin’s approach. According to Jin [6], the complexity of fitting an
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autoregressive model is cubic in terms of the lag 1, i.e. O(¥®). Predicting from
this already fitted model is linear in terms of the time window W, i.e., O(W).
So for Jin’s approach, evaluating a solution has a cost of O(¢® + W + ¢;), where
¢y is the cost of evaluating the current environment. Being the dominant term
13, it is reasonable to assume that its complexity is O(z®). Moreover, in an
environment where the EA performs Ae evaluations, the complexity of Jin’s is
O(Ae - 3).

In contrast, in our case, fitting a radial basis function model has a complexity
of O(N?) [6] in terms of the number of radial functions (V). Once fitted, evalu-
ating it has a linear cost in terms of N. More specifically, if a neighbor approach
is used, then this complexity is reduced to ¥ - N, where the non-neighbor-based
approach is equivalent to ¥ = 1.0. Since W models are fitted, evaluating a solu-
tion using our approach will have a cost of O(W - ¢ - N 4 ¢;), which leads to
O(W -9 - N). Considering a whole environment, our approach has a complexity
of O(Ae - W -9 - N). This is because the entire construction of the surrogate
models is left out of the optimization process carried out by the EA.

This implies our approach will be more computationally expensive when
W -9 -N > 3 Based on the configurations used for W (Table1) and the
surrogate models (Table2), we can at least expect our approach to be faster
than Jin’s on problems with W = 2 except for ¥ = 1.0 and N = 100, and also
on problems with W = 4, whenever ¥ = 0.5 and N = 50.

3.2 Experiment Results

Figure 2 shows a summary, through a scatter plot, of the performance of the DE
variants on the three problems considered. Each subplot corresponds to a prob-
lem with a specific time window, while every point reflects the position of a DE
variant in terms of its execution time (z-axis) and its error (y-axis). Note that
the DE variants are labeled following a nomenclature referring to the configura-
tion of the surrogate models that they included. For example, lin_ 50 0.5 corre-
sponds to the DE that employed surrogate models with a linear kernel, 50 radial
basis functions, and a neighborhood proportion of 0.5. Similarly, mul 50 0.5
refers to a surrogate model with a multiquadric kernel and the same settings for
parameters N and 9.

As Jin’s approach is our baseline for comparison, we included two lines that
intersect at the point corresponding to this algorithm, and which divide the
graphs into four quadrants. See that the lower left quadrant corresponds to
algorithms that outperform Jin’s algorithm in both performance and runtime.

As we had anticipated in our complexity analysis, our algorithms are notice-
ably faster than Jin’s on problems with W € {2,4}. In particular, for W = 2, all
the variants exhibited lower average execution times than Jin’s. As W increases,
so did the execution times of our proposals, since more surrogate models are
required to calculate the robustness of the solutions. However, our estimates
overestimated these execution times, since surprisingly, for W = 6, the vari-
ants with N = 50 and ¥ = 0.5, were faster than Jin’s approach. A possible
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Fig. 2. Scatter plots of the average performance of the DE variants regarding the error
and the run time, in problems with different time windows (W).
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Fig. 3. Overall improvement of our proposal over Jin’s approach in problems with
different time windows (W).

explanation for this discrepancy lies in the implementation used to fit and eval-
uate the models'.

However, what we did not expect was such a significant improvement in
terms of the error. Regardless of the problem, all the DE variants fall below the
dashed horizontal line, indicating the error of Jin’s approach. Nevertheless, some
variants are more sensitive to increasing W than others. This is the case of those
that use N = 50, regardless of the kernel and the proportion of neighbors. On
the contrary, those with 100 radial basis functions not only achieve better errors
but are much more stable depending on the problem. Overall, the performances
of our variants were significantly better than Jin’s, as evidenced by a Friedman

! For surrogate modeling, we utilize Python’s SciPy 1.12.0, built on NumPy 1.26.0.

NumPy’s optimizations, leveraging libraries like OpenBLAS and LAPACK, enhance
linear algebra operations.
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test p-value of less than 0.05 (omnibus test) and adjusted p-values of less than
0.05 from the Wilcoxon multiple comparisons test.

An important question here is to what extent improvements in error com-
pensate for inefficiency. To answer this, we calculated the improvement rates of
DE variants over Jin’s for both error and runtime. To globally characterize the
improvements, we consider both the error and the runtime rates. Thus, a positive
value would indicate that our algorithms globally improve over Jin’s approach.
In particular, in cases where our algorithm was less efficient, a positive value
indicates that the improvement in error rate compensates for the inefficiency. In
contrast, a negative value means the opposite. Figure 3 summarizes this analy-
sis through bar graphs corresponding to the overall improvement rates of our
algorithms over Jin’s algorithm. Note that, consistent with the first analysis, our
variants improve Jin’s on the problem with W = 2, but partially on problems
with W = 4 and W = 6. Out of the 10 configurations that did not improve
in runtime to Jin’s approach, but did improve in performance, only 4 compen-
sated for their inefficiency with improvements in error. These 10 configurations
correspond to the black-bordered bars in Fig. 3.

4 Conclusion and Future Works

This proposal is an initial step towards the development of more sophisticated
algorithms for solving ROOT problems. Nevertheless, we can draw some impor-
tant conclusions from these preliminary results. The most important conclusion
is that it is possible to separate the local fitting of prediction models from the
robustness computation at run time. Our approach, based on surrogate models
that are fitted before optimizing each environment, allows for achieving better
performance, at least for the problems considered.

Additionally, the efficiency of the proposal deteriorates with the increase in
the problem time window and the number of radial basis functions of the model.
However, the sacrifice of this efficiency is compensated by the performance of
the algorithm. There is no single surrogate model configuration that is optimal
for all problems, considering both performance and execution time. Our findings
suggest that an appropriate balance between these criteria can be achieved by
carefully selecting the number of radial basis functions and the proportion of
neighbors used to interpolate solutions.

Based on these results, we plan to extend our experimentation in the future.
Firstly, it would be interesting to observe how the efficiency scales as a function
of the number of dimensions of the search space, which increases the complex-
ity of the reference points. Secondly, our proposal’s sensitivity to the surrogate
model parameters highlights the importance of designing strategies to learn these
configurations at runtime. This is an issue that can be addressed from the per-
spective of self-adaptation [10].
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Abstract. The Bi-Objective Double Floor Corridor Allocation Problem
is one of the most recent incorporation to the family of Facility Layout
Problems. This problem, which has been a challenge for exact and meta-
heuristic approaches, involves optimizing the layout of the given facilities
to minimize material handling cost and the length of the corridor con-
sidering more than one floor. This paper introduces a new approach
based on the combination of two greedy methods and a path relinking
implementation to tackle this problem. The experimental results show
the superiority of our proposal in relation to the current state-of-the-art
under different multi-objective metrics.

Keywords: Path Relinking - Bi-Objective optimization - Facility
Layout Problem

1 Introduction

Facility Layout Problems (FLP) aim to optimize facility arrangements in order to
minimize a certain objective function. This family of problems has a wide range
of applications, such as manufacturing, delivery services, urban planning, and
computer storage design [11]. Typically, three resolution approaches are found
in the literature [2]: exact, heuristics, and machine learning approaches. Initial
FLP research began with the Single Row Facility Layout Problem (SRFLP)
[13], followed by the Double Row (DRFLP) [3] and Multiple Row (MRFLP) [7]
versions, each with different row layouts and conditions. A significant variant is
the Corridor Allocation Problem (CAP) [1], which is a DRFLP variant without
spaces between facilities.

Previous papers dealt with one objective, the material handling cost (MHC).
Recently, new variants of the problem have been studied where an additional
objective is considered, such as the closeness rating (CR) [14] or the corridor
length (CL) [8]. The Bi-Objective Corridor Allocation Problem (bCAP) [9] and
Bi-Objective Double Floor Corridor Allocation Problem (bDFCAP) [6] involve
optimizing facility layout for MHC and CL. The latter is a two-floor variant
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of bCAP, which was tackled by means of a Mixed Integer Linear Programming
and a Memetic Algorithm (combining a Genetic Algorithm and Variable Neigh-
borhood Search) in the previous work, providing results for instances up to size
30. In this paper, we study the bDFCAP proposing a metaheuristic algorithm
based on the combination of a greedy constructive method and Path Relinking.
This approach has obtained competitive results in relation to the state-of-the-art
method in the studied instances.

The remaining sections of this paper are organized as follows. In Sect. 2, we
present the description of the problem. In Sect. 3, our optimization proposal is
described. In Sect. 4, we provide an analysis of our results and compare them
with the state of the art. Finally, in Sect. 5, we present our conclusions and future
work.

2 Problem Description

The bDFCAP considers a layout with two floors: the lower and the upper ones.
In each floor, facilities can be located at both sides of a corridor without allowing
any gap between two adjacent facilities in a row. In addition, there is an elevator
on the side where the origin of the four rows is set, allowing the flow of material
between facilities located on different floors (see Fig. 1, where the origin is set
on the left-hand side). The objective is to arrange all the facilities in the layout
minimizing both, the overall MHC, defined as the weighted sum of the center-to-
center distances between each pair of facilities in the layout, and the CL, defined
as the length of the longest row. Notice that the distance between facilities in
different floors must consider the route through the elevator.

VAl
d— ]

y:

Fig. 1. Layout with two floors and one corridor per floor. Facility 3 is located in the
first row of the first floor (fs =1, r3 = 1). Similarly, facility 14 has (fia = 1, r1a = 2),
facility 6 has (fs = 2, r¢ = 1), facility 13 has (fi13 = 2, 13 = 2), and so on.

More formally, given a set F' of n facilities, n = |F|, where each ¢ € F has
an associated length [;; the flow cost per unit distance c;; between each pair of
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facilities 7,j € F; and a layout with two floors (floors 1 and 2, separated by a
height h), and two rows in each floor (rows 1 and 2, separated by a corridor of
width w); the bDFCAP consist in finding an assignment of facilities to floors
f:F — {1,2} and rows r : F — {1,2}, and a vector z € R"™ with the center
positions of all the facilities in the layout (measured from the common fixed left
origin where the elevator is located) that minimizes both the total MHC and
CL. Mathematically:

min f(f, r, x) = {fMHC, -7:CL} (13‘)
s.t. fMHC: Z Cijdij (1b)
ijer
1<)
FCL = max(L117L127L217L22) (]'C)
|I27’I]|Z(li+l])/2 i,jEeF, i<y, Ty =Tj (1d)
dij:|$i_$j| 1,7 €F, 1<y, Ty =Tj (16)
dij = |zi — 5] +w LjEF, i<j, fi=f; riFr; (1)
dZ]:$Z+$]+w+h Z»]EFv 7’<J7 fl#fj (lg)
La= Y. L a,be {1,2} (1h)
e F
fi=aANr;=b

Equations (1b) and (1c) represent the MHC and CL objectives, respectively.
Equation (1d) avoids the overlapping between two adjacent facilities in the same
row. Equations (1e) to (1g) compute the distance between two facilities in three
different situations: (1le) located in the same row; (1f) located in different rows
of the same floor; and (1g) located in different floors. Finally, Eq. (1h) computes
the length of each row.

3 Optimization Proposal

This paper introduces a Path Relinking (PR) approach to tackle the bDFCAP
problem. Originally conceptualized as a method to combine intensification and
diversification strategies within Tabu Search [12], PR is based on the notion of
establishing a trajectory between two solutions. The aim is to discover poten-
tial solutions while traversing this trajectory. The process involves incremental
integration of the features of a second high-quality solution, known as the guide
solution, into a first solution, known as the initial solution. Given that both
solutions are of considerable quality, the expected outcome is that exploration
along the generated path will venture into new and valuable areas of the search
space.

3.1 Bi-Objective PR

In single-objective problems, determining the superiority of one solution over
another is straightforward. For minimization problems, the solution with the



114 N. R. Uribe et al.

lowest value is preferable, while in maximization problems, the highest value
prevails. However, in multi-objective problems, the comparison involves multi-
ple objective functions. Specifically, in this context, we are dealing with two
functions that need to be minimized. A solution can either dominate, be dom-
inated by, or be non-dominated with respect to another. To be more precise, a
solution ¢ is said to dominate another solution @5 (denoted as 1 < ¢3) if for
every objective function F;, ¢ is either better or equal, and there is at least
one objective function where ¢, is better. This concept is formally defined in
Eq. (2).
1 < p2if
Vi € {1..k} : Fi(p1) < Fi(p2) (2)
A e {1k} : fz(gﬁl) < fZ(QOQ)

Since our algorithm deals with multiple solutions at the same time, they
must be organized within a suitable data structure. For this purpose, we will
utilize a set named as ND, designated for storing only non-dominated solutions.
To incorporate a new solution ¢ into this collection, we will employ an Update
function. This function will first determine whether ¢ is dominated by any exist-
ing member of the set. Should ¢ not be dominated, the function will proceed to
evaluate all present solutions within the set, excluding any dominated by ¢.

3.2 Path Relinking

Our PR proposal creates a path between two solutions ¢ and y by iteratively
including in ¢ elements from x. The method starts using insert moves to bal-
ance the rows from the initial solution to the guide solution. Then, it applies
interchange moves to match the guide solution. Moreover, the method tries to
update the ND set with all the solutions generated in the path.

Figure 2 shows an example of the whole procedure using the instance S9H,
where an initial solution ¢ (in the top part of the figure) will be modified until
reaching the guide solution y (at bottom). Our idea behind the insert move is to
ensure that each row in the initial solution matches the size of its corresponding
row in the guide solution. For this purpose, let us define a vector N, with the
number of facilities in each row of ¢, hence, in this example, N, = {4,3,1,1}
and N, = {2,2,3,2}. Then, in order to balance the number of facilities in each
row of ¢, all the candidate insert moves at each iteration are those insertions
of facilities from a row rowl with N, (rowl) > N, (rowl) to a row row2 with
Ny(row2) < Ny(row2). In this example, facilities 6, 2 and 4 in rowl of ¢ (not
present in rowl of x) are candidate facilities to be inserted in rows 3 and/or
4. Similarly, the three facilities in row?2 of ¢ (not present in row?2 of x) can be
removed but, in this case, only facilities 1 and 8 can be inserted in row3. Figure 2
shows below the initial solution two insert moves among the six possible moves.
Moreover, we intend to benefit from placing a facility in the identical location
as it appears in the guide solution (facility 6 inserted at the beginning of row3,
and facilities 2 and 4 at the end or beginning of row4, respectively). Once we
have all the solutions resulting after the possible insertions at each iteration
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(6 in this case), the method selects one of the solutions at random to belong to
the path and continue the procedure. The selected solutions, which belong to
the path, are highlighted in red in the figure. This phase of the process continues
until each row in the initial solution matches the size of its corresponding row
in the guide solution, ending in what we call the intermediate solution.

Initial solution (¢)
[ BT STe T 5 | o |
r row1 row2 row3 row4 j
—————3 [ 1
B2 eT s | 4 [o]—--- [R]85 [ [2]
r row1 row2 row3 row4 1 row1 row2 . row3  row4
[Bl2]s] & [s] 4[] HERTEN N ENENEN
row1 row2 row3 row4 r row1 row2 l row3 row4 j

Intermediate solution

F712I1I3|615|814 [o]
1 2 row3 row4 ‘l
(Lo T o R o [+ [2]

—1
r?lZMIﬁlGlSIBI‘*HI
LF‘H_JH’_H_J LF_JH(_JH,_JH,_J
row1 row2 row3 row4 row1 row2 row3 row4

Guide solution (y)
HEICEERCIKEENE

Insert phase

Interchange phase

row1 row2 row3 row4

Fig. 2. Graphic representation for the PathRelinking procedure.

The second phase of the PR procedure compares the intermediate solution
with the guide solution to match the position of all the facilities in both solutions.
Therefore, it analyzes all the facilities in ¢ to check if they are located at the
same position in y, otherwise an interchange is needed to match this facility
in both solutions. Following the example in Fig.2, only five facilities from the
intermediate solution (2, 1, 3, 5 and 9) can exchange its position in ¢ at the
first iteration of the second phase. Then, the procedure selects one of these
moves using a given function, following a Greedy Randomized Adaptive Search
Procedure (GRASP) methodology [5]. In this case, the greedy function of a
candidate move g(move) is the objective function of the resulting solution after
the interchange move, and the selected move is randomly chosen from a restricted
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candidate list built including all the candidate moves with g(move) < gpin + -
(9maz — Gmin)- Hence, the randomness/greediness of the procedure is controlled
by the a parameter (o« = 0 purely random, o = 1 purely greedy). Once the
move is applied, the resulting solution is added to the path, and the procedure
continues after it.

We have encapsulated the whole PR procedure in a method PathRelinking(y,
X, @, func), where ¢ is the initial solution,  is the guide solution, « is the parame-
ter required by the GRASP methodology of the interchange phase, and func is the
objective function (MHC or CL) to be used as the greedy function by the GRASP.
The method will return the set of solutions selected for the path.

3.3 Algorithmic Description

Algorithm 1 shows the pseudo-code of our Bi-objective Path Relinking (BPR)
proposal. The algorithm receives two input parameters: the number of itera-
tions for the greedy construction phase, maxCons; and a value a controlling
random/greedy selection of the move to be performed at each iteration of the
PathRelinking procedure.

In step 1, we initialize our set of non-dominated solutions, called ND, to an
empty set. In step 2, we generate maxCons solutions with the Greedy method
considering MHC' and store them in S;. In step 3, we repeat the same process
but considering CL. This greedy algorithm will be later explained. Next, in
steps 4 to 7, we proceed with a PathRelinking process between each solution
¢ from S; and each solution y from Sy (steps 6 and 7) and then the other
way around (steps 8 and 9). Notice that the first and third methods consider
MHC, while the second and fourth consider CL. These steps generate the initial
set of non-dominated solutions ND. In step 10, we update ND with the sets of
non-dominated solutions generated in steps 6 to 9. Notice that the value for the
third parameter in the uses of PathRelinking is 1 in these steps. The reason
of this value is that we want the most greedy behavior in this phase. In step
11, we set improve to true, and then, in step 12, we enter a loop. The aim of
this loop is to improve ND while new solutions are included in ND. In step 13,
we set improve to false. In step 14 to step 19 we repeat a similar procedure for
the PathRelinking, but instead of using S; and S, using the solutions in ND.
Notice that in step 20 we Update ND’ instead of the original ND. In step 21 if
ND’ and ND are different, we set ND to ND’ in step 23. Finally, in step 24, we
return the final set of non-dominated solutions ND.

Regarding the Greedy algorithm, it generates maxzCons solutions based on
a greedy strategy. Firstly, it selects four random facilities and places them in
each row. Then, the remaining facilities are placed in the solution considering
the indicated objective function as greedy criteria, either MHC or CL.
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Algorithm 1: BPR(maxzCons, a)

1 ND 0
2 51 < Greedy(maxCons, MHC')
3 Sy « Greedy(maxCons, CL)
4 for ¢ € 51 do
for x € S2 do
P, < PathRelinking(yp,x, 1, MHC)
P, — PathRelinking(y, x, 1, CL)
P3; «— PathRelinking(x, ¢, 1, MHC)
P, < PathRelinking(x, ¢, 1, CL)
10 ND « Update(ND U Py U P, U Ps U Py)

11 improve «<— true
12 while improve do

© 0w N o o

13 improve < false

14 fori=1to |ND|—1do

15 for j =i+ 1 to |[ND| do

16 P, — PathRelinking(ND]i], ND[j], «, MHC)
17 P, «— PathRelinking(ND[i], ND[j], ., CL)
18 P; — PathRelinking(ND|j], ND[i], o, MHC)
19 Py «— PathRelinking(ND[j], ND[i], a, CL)
20 ND' « Update(NDU P, UP, UP3U P4)

21 if (ND # ND') then

22 improve < true

23 ND «— ND'

24 return ND

4 Results

In this section, we present our experimental findings and subsequently bench-
mark them against the state of the art. We provide our results through various
metrics to facilitate a clearer comparison. The parameter values used in the exe-
cution of our algorithm are the following: maxCons = 5 - n, where n is the size
of the instance, and &« = RND, where RND means that there is a random value
[0, 1] for each iteration.

This research evaluates the results using literature multi-objective metrics
[10] [15], where each metric calculates different values, such as the dominance,
the distance between solutions, etc. Except for the Hypervolume, these metrics
require a comparison between two sets of non-dominated solutions. For each
problem instance, we compiled a reference set of non-dominated solutions by
aggregating the results from the state-of-the-art and our algorithm.

The coverage metric C(X,Y") assesses the proportion of solutions from algo-
rithm X that weakly dominate those from algorithm Y, with C(X,Y) =1
suggesting that all solutions from Y are weakly dominated by those from X.
We define coverage as C(Ref, Alg), where Ref is the reference set. Hypervolume
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(HV) measures the objective space volume occupied by a set of non-dominated
solutions. The epsilon metric (€) quantifies the minimum distance needed to
reach solutions from a set of non-dominated solutions to the reference set. Gen-
erational (GD), inverse generational (IGD), and additive inverse generational
(IGD+) distances quantify the divergence of solutions from the reference set,
each with its distinct, but similar, calculation methodology. We also considered
the number of solutions in each set, labeled as Size, and the spread (A), which
are the size of the set, and the average distance between adjacent solutions,
respectively. Also, we compare the computational time in seconds (T(s)).

These metrics were calculated using the jMetal [4] framework. For all metrics
but HV and Size, lower values indicate better results.

We compare our algorithm proposal, named BPR, with the algorithm in [6].
The authors propose a memetic algorithm, composed by a Genetic Algorithm
with Variable Neighborhood Search (GAVNS). Table 1 displays the performance
of both algorithms. There are 22 instances in the state of the art, and we have
split them in 4 sets, depending on the size of the instance, for a better com-
parison. In addition, the total average is calculated for each metric. In the first
set, our proposal obtains better results for the HV,GD, Size and time. In the
second set, we obtain better results for the GD, Size and A. It is the only set
in which we obtain HV worse than GAVNS and better results in A. For the
third and fourth sets, our approach reaches better results in HV, e, GD, Size,
and T'(s). It is important to note that we have spent only 12%, 6%, 16% and
20% of the execution time of the state of the art, respectively. In conclusion, we
obtain better results in HV, e, GD and Size, spending only 20% of the execution
time of the GAVNS on average.

In addition, we also include Fig.3 as a graphic representation of the results
for both algorithms in instance N30_05. In blue, we have the results for the
GAVNS algorithm, and in red, for our proposal. In the ordinates, the values
for CL are represented, while in the abscissas, the values for MHC'. It is worth
mentioning that GAVNS obtains better values in both ends, mainly in the end
for MHC, where our proposal is still far from those solutions. However, our

Table 1. Overview for both algorithms for each set and each metric.

Set Algorithm | C(Ref, Alg) |HV |e GD IGD IGD+ Size | A T(s)
[9,12] | BPR 0.24 0.49/0.10 | 1227.35|1088.17 | 3000.07 7 1.00 |4.67
GAVNS 0.02 0.47 10.09|1304.81 |1069.81 2955.10 |6 0.98 | 38.45
(13, 20] | BPR 0.52 0.49 | 0.12 | 1781.97 | 1548.09 | 5699.38 12 | 0.98 48.33
GAVNS 0.04 0.52/0.11|1943.87 |1525.20 5616.89 |10 |0.99 |773.89
[25] BPR 0.43 0.41|0.04|3178.81 | 2958.89 |14203.25 |23 |0.95 |443.40
GAVNS 0.10 0.39 10.09 | 5067.48 |2939.09 14118.05|9 0.93 | 2803.09
(30] BPR 0.52 0.37/0.10| 6525.34 | 5975.67 |26476.98 |18 |0.96 |1227.80
GAVNS 0.13 0.34 10.12 | 9019.89 |5912.30 26193.00 |9 0.95 | 4967.20
Total |BPR 0.42 0.45|0.09 | 3026.21 | 2749.56 |11618.08 |14 |0.98 | 394.27
GAVNS 0.07 0.43 | 0.10 | 4087.68 |2719.41 11499.42 |8 0.96 | 1987.52
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algorithm obtains non-dominated solutions in the middle of the front. Although
we have represented one of the largest solutions, the performance is similar in
the other instances.

220 )
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Fig. 3. Representation of the results for both algorithms in instance N30_05.

5 Conclusions and Future Work

The Bi-Objective Double Floor Corridor Allocation Problem has been intro-
duced in the recent literature. This paper details the implementation of a meta-
heuristic algorithm that utilizes the Path Relinking technique as alternative to
the state of the art. Our proposal obtained competitive results in eight different
multi-objective metrics spending a 20% of the time of the previous work.
Looking ahead, our research will focus on incorporating an External Path
Relinking technique in order to improve the search on the ends of the front,
where the previous approach obtains a good behavior. Moreover, our aim is to
enhance our findings by improving aspects like coverage or execution time.
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Abstract. Quantum computing holds great promise for enhancing
machine learning algorithms, particularly by integrating classical and
quantum techniques. This study compares two prominent quantum
development frameworks, Qiskit and Pennylane, focusing on their suit-
ability for hybrid quantum-classical support vector machines with quan-
tum kernels. Our analysis reveals that Qiskit requires less theoretical
information to be used, while Pennylane demonstrates superior perfor-
mance in terms of execution time. Although both frameworks exhibit
variances, our experiments reveal that Qiskit consistently yields superior
classification accuracy compared to Pennylane when training classifiers
with quantum kernels. Additionally, our results suggest that the perfor-
mance of both frameworks remains stable for up to 20 qubits, indicating
their suitability for practical applications. Overall, our findings provide
valuable insights into the strengths and limitations of Qiskit and Penny-
lane for hybrid quantum-classical machine learning.

Keywords: Quantum Computing - Quantum Support Vector
Machine + Quantum Kernel + Hybrid Quantum-Classical Algorithms

1 Introduction

Quantum computing, with its inherent parallel processing capabilities, offers a
quantum advantage over classical computing. Its potential to drive breakthroughs
across various science and engineering domains is widely acknowledged. Machine
learning emerges as a pivotal domain poised to leverage the power of quan-
tum computing. Despite the successful development of numerous machine learn-
ing algorithms, such as support vector machines or neural networks, over recent
decades, their training processes are often protracted. Moreover, tackling today’s
vast datasets exacerbates the computational intensity of these algorithms.
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This paper compares Qiskit and Pennylane, two prominent quantum devel-
opment frameworks, focusing on their features and performance in the context
of hybrid quantum-classical support vector machines (SVMs) with quantum ker-
nels. Support vector machines are widely used in classical machine learning for
classification tasks, and their extension to utilize quantum kernels offers a path-
way to exploit the computational advantages of quantum systems.

The motivation behind this comparative study stems from the rapid growth
and diversification of quantum computing frameworks, each offering unique fea-
tures and capabilities. As the field of quantum computing continues to evolve
rapidly, new frameworks and libraries are constantly being developed, each offer-
ing unique capabilities and approaches. Understanding the strengths and weak-
nesses of these frameworks allows researchers and practitioners to make informed
decisions when selecting the most suitable tool for their specific quantum com-
puting tasks. Furthermore, by examining the features and performance of exist-
ing frameworks, we gain valuable insights into emerging trends and best practices
in quantum algorithm development. This comparative analysis serves not only
to guide current research and development efforts but also to shape the future
direction of quantum computing frameworks, ultimately advancing the field as
a whole.

Qiskit [5], developed by IBM, and Pennylane [2], developed by Xanadu, rep-
resent two prominent open-source platforms for quantum programming, each
with its tools, libraries, and community support. Understanding the strengths
and limitations of these frameworks is crucial for researchers and practitioners
aiming to harness quantum computing for practical applications, particularly in
machine learning. Thus, the primary objective of this paper is to provide a com-
prehensive comparison between Qiskit and Pennylane in the context of hybrid
quantum-classical support vector machines with quantum kernels. Specifically,
we aim to:

1. Evaluate the ease of use and accessibility of both frameworks for developing
hybrid quantum-classical algorithms.

2. Compare the performance of Qiskit and Pennylane in terms of execution time
and resource utilization for training and testing SVMs with quantum kernels.

3. Assess the scalability and flexibility of each framework for handling increas-
ingly complex quantum-classical workflows.

4. Highlight any unique features or advantages Qiskit and Pennylane offer that
may be relevant to hybrid quantum-classical machine learning applications.

The remainder of this paper is organized as follows. Section 2 briefly overviews
existing quantum computing and hybrid quantum-classical frameworks. Section 4
describes the fundamentals of Qiskit and Pennylane, covering their respec-
tive architectures, features, and programming interfaces. Section 5 presents the
results achieved, followed by a comprehensive discussion. Finally, Sect.6 con-
cludes the paper with a summary of findings and avenues for future research.
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2 Related Works

Diverse frameworks and libraries mark the landscape of quantum computing,
each offering unique features and capabilities for developing and executing quan-
tum algorithms. In this section, we provide an overview of several prominent
quantum computing frameworks and libraries, including Qiskit, Pennylane, Q#,
Cirq, Wolfram Quantum, Amazon Braket, Strawberry Fields, TensorFlow Quan-
tum, and OpenFermion. We discuss each framework’s architecture, features, and
suitability for various quantum computing tasks. Additionally, we highlight the
pros and cons of each framework to aid researchers and practitioners in selecting
the most suitable tool for their specific needs.

Qiskit [5], developed by IBM, is a comprehensive open-source quantum com-
puting framework that provides tools for quantum circuit construction, simula-
tion, and execution. It offers a user-friendly programming interface and exten-
sive documentation, making it accessible to both beginners and experienced
users. Qiskit also supports hybrid quantum-classical computing and integrates
with classical machine learning libraries for hybrid quantum-classical algorithms.
However, its performance on certain tasks may vary and have scalability and
resource utilization limitations.

Pennylane [2], developed by Xanadu, is a quantum machine learning library
focusing on differentiable programming and hybrid quantum-classical comput-
ing. It offers seamless integration with popular machine learning libraries like
TensorFlow and PyTorch, enabling the development of hybrid quantum-classical
algorithms. Pennylane’s strength lies in its efficient optimization techniques and
support for various quantum hardware platforms. However, it may have a steeper
learning curve compared to some other frameworks, and its ecosystem is rela-
tively smaller.

Q# [7] is a quantum-focused programming language developed by Microsoft
that provides a high-level programming model for quantum algorithms. It offers
seamless integration with classical languages like C# and Python. One of its
strengths lies in strong support for quantum simulation and debugging tools.
However, its ecosystem is relatively smaller compared to other frameworks.

Cirq [4], an open-source quantum computing framework developed by
Google, allows researchers to design, simulate, and execute quantum circuits.
Despite a steeper learning curve compared to higher-level quantum program-
ming languages, Cirq offers flexibility and modular architecture for building cus-
tom quantum algorithms. However, it may lack some tooling and visualization
capabilities present in other frameworks.

Wolfram Quantum [9], part of the Wolfram Language ecosystem with full
integration into Mathematica, provides tools for symbolic quantum computa-
tion, quantum circuit simulation, and algorithm development. Its integration
with Wolfram Language’s extensive mathematical and computational capabili-
ties offers high-level symbolic manipulation of quantum expressions. However,
Wolfram Quantum may have limited support for quantum hardware interfaces
compared to other frameworks.
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Amazon Braket [1], an AWS quantum computing service, offers access to
quantum hardware from multiple vendors and provides a development environ-
ment for quantum algorithms. While it integrates seamlessly with AWS infras-
tructure for scalable and cloud-based computing, it may be perceived as a rela-
tively new platform with evolving features. Additionally, the pricing model could
be prohibitive for some users.

Strawberry Fields [6], an open-source quantum programming library devel-
oped by Xanadu, focuses on continuous-variable quantum computing and inte-
grates with Pennylane for hybrid quantum-classical computing. Its specializa-
tion in continuous-variable quantum computing and integration with Pennylane
make it suitable for quantum photonic systems. However, its applicability to
discrete-variable quantum computing tasks may be limited.

TensorFlow Quantum [3], an open-source library developed by Google and
others, enables researchers to construct hybrid quantum-classical models using
TensorFlow. While TFQ integrates with TensorFlow for scalable and efficient
machine learning workflows, its complex integration with quantum simulators
and hardware may require familiarity with TensorFlow and quantum computing
concepts.

3 Fundamentals

3.1 Quantum Fundamentals

This subsection will briefly explain some quantum concepts, such as a qubit, a
quantum circuit, or a feature map.

First, a quantum bit or qubit is the fundamental unit of quantum infor-
mation in quantum computing. Unlike classical bits, which can exist in one of
two states (0 or 1), qubits can exist simultaneously in a superposition of both
states, thanks to the principles of quantum mechanics. This unique property
allows quantum computers to perform calculations in parallel and potentially
solve certain problems much more efficiently than classical computers. Equation
(1) shows the representation of a qubit.

[¥) = a]0) + BI1) (1)

where o and 3 are complex probability amplitudes. Furthermore, o and 3 are
constrained by Eq. (2):
o> + 16> =1 (2)

The previous equation means that the sum of the probabilities squared must
be equal to 1.

A quantum circuit is a graphical representation of a sequence of quantum
operations performed on qubits. These operations can include simple operations
like applying a gate (analogous to a classical logic state) to a single qubit or more
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complex operations involving multiple qubits. Quantum circuits are analogous to
classical in digital electronics but operate according to the principles of quantum
mechanics.

Finally, we move on to explain the feature map. Initially, our datasets consist
of traditional binary bits, not quantum bits or qubits, needing the translation
of classical information into quantum information for quantum computing uti-
lization. This transformation is fundamental for developing a robust quantum
or hybrid quantum model. Typically, this conversion is known as data encod-
ing, data embedding, or feature mapping, a pivotal step in the quantum machine
learning pipeline. Feature mapping is a familiar concept in conventional machine
learning; however, translating data into quantum states is unique to quantum
computing, as classical machine learning exclusively deals with data in a classical
context.

3.2 Support Vector Machines

The Support Vector Machines (SVM) algorithm is a supervised learning model
for classification and regression tasks. The primary concept behind SVM is iden-
tifying the hyperplane that best separates the data classes within the feature
space. In binary classification scenarios, the goal is to find the hyperplane that
maintains the maximum distance (margin) from the nearest data points of each
class, known as support vectors. This margin is critical because the greater it is,
the more reliable the classification will be for new data.

SVM employs mathematical techniques to maximize this margin and deter-
mine the hyperplane’s position. When data are not linearly separable in their
original space, SVM uses a kernel function to transform them into a higher-
dimensional space where linear separation is possible. This ability allows SVM
to handle complex and nonlinear problems effectively. In Eq. (3), one observes
the equation of a kernel.

k(@i 75) = (f(%), £(%5)) 3)

4 Methodology

In this section, we present the methodology followed during the experimentation.
Firstly, it is important to mention that we adhered to the basic workflow of
machine learning. This entails a series of steps outlined as follows.

Initially, data preprocessing was conducted to prepare them for subsequent
analysis and modeling. Subsequently, we proceeded with the model training and
testing phase. During this stage, a portion of the preprocessed data was used
for training, while another portion was reserved for performance evaluation. We
employed the hold-out technique with a 70% split for training and a 30% split
for testing.

Upon completion of the previous phase, model validation was carried out. In
this stage, the model’s ability to generalize to unseen data was evaluated using
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the subset set aside for testing. Finally, an analysis of the results obtained by
the model was performed. This included the evaluation of performance metrics
available in the results section.

The novel aspect being presented is using a classical SVM alongside the
computational power provided by quantum computing [8]. This is depicted in
Fig. 1, where it can be observed how the classical SVM algorithm is injected with
a quantum kernel generated from a quantum machine, thus creating a hybrid
algorithm. The one provided by the Sklearn library was employed for the classical
algorithm due to its ease of integration with the quantum kernel. Subsequently,
each part of the diagram will be described in detail.

QSVM - Hyovid

Quantum simulator

— B .

Dataset — »  Feature map

Quantum kermnel

{33}

—————*  Kermel matrix
K Results Performance |‘3:—|U
| SVM - » -

: assessment

Fig. 1. Methodology employed.

The first step is to define the feature map of the problem. The quantum
circuit representing this map can be observed in Fig. 2.

Upon examining the circuit, we observe a series of wires corresponding to
the dataset’s features. A qubit represents each wire, and the circuit should be
interpreted from the bottom to the top to determine the qubit order, followed
by reading from left to right to establish the sequence of gate operations.

Once we have constructed the feature map of the problem, the next step is
to prepare the quantum kernel, which uses the former. This quantum kernel is
equivalent to the classical kernel, as it is merely a function used to transform the
input data space into a new space where it may be easier to separate the data
into categories. The sole difference is that the new space is quantum.
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Fig. 2. Quantum circuit for feature mapping.

The final step to complete the quantum kernel is to prepare the quantum
simulators where both the kernel and the aforementioned circuit will be executed.
The execution is conducted on a simulated quantum machine facilitated by the
capabilities provided by both frameworks. Simulation is employed due to the
limitations of accessing real quantum machines, including the high costs and
limited accessibility.

In our case, we have chosen to employ the most basic simulators. The use
of these simulators mitigates the need for datasets with high dimensionality. If
a more powerful simulator is desired, one can utilize the simulator provided by
the Qiskit_aer library.

When we have created the quantum kernel, the next step is to generate the
kernel matrix. Much like its classical counterpart, this matrix is a square matrix
in which each element represents the result of applying the kernel function to a
pair of points in the training set. The only difference with its quantum version
is that it involves using quantum states.

Finally, we need to pass the kernel matrix and the training data to the
classical SVC algorithm, which will then generate predictions using the test set.
Subsequently, a series of metrics are applied to the results produced by the
hybrid model to evaluate the predictions’ quality and performance.

5 Results

This section introduces the datasets employed during the experimental phase,
including multi-class and binary classification datasets, each accompanied by a
brief description. Additionally, we detail the results obtained for these datasets,
as well as the metrics used to evaluate the performance of the hybrid models.
Furthermore, a brief explanation of each metric utilized is provided.
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5.1 Quality Parameters

In binary classification tasks, where the goal is to classify instances into one of two
classes, it is essential to evaluate the performance of a predictive model using var-
ious metrics. Commonly used performance metrics include true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN). These metrics
provide insights into the model’s ability to correctly classify instances belonging
to each class and help quantify different types of classification errors. Additionally,
sensitivity (Sens) and specificity (Spec) measure the model’s ability to correctly
identify positive and negative instances, respectively. Furthermore, positive pre-
dictive value (PPV) and negative predictive value (NPV) assess the accuracy of
the model’s positive and negative predictions, respectively, among all instances
classified as positive or negative. Equations (4)—(8) show their formulas.

TP

Sens = TPLFN (4)
Spec = % (5)
PPV = Jﬁipﬂj (6)
NPV = % (7)
Accuracy = TP+ TN (8)

TP+TN+FP+FN

5.2 Dataset Description

The datasets used for experimentation comprised the Iris dataset and
ad_hoc_data. The Iris dataset consists of 150 instances of 5 features, with three
distinct values for the class column. The second dataset is derived from a func-
tion provided by Qiskit to create a synthetic dataset. This dataset was generated
with 200 instances across 4 features, featuring two possible values for the target
column. These datasets were chosen due to constraints posed by the simulators
employed. For instance, Qiskit’s default simulator has a maximum capacity of
20 qubits, limiting the use of larger datasets.

5.3 Discussion

Table 1 provides a detailed comparative analysis of the performance of a hybrid
algorithm, specifically the SVM with a quantum kernel, applied to the most basic
simulators of the two frameworks in use. The algorithm has been evaluated using
the datasets described in the previous section.

For Qiskit, the performance on the Iris dataset shows an accuracy of 86.66%.
Specificity, positive predictive value (PPV), and negative predictive value (NPV)
are also high for the three classes of the Iris dataset, demonstrating a strong
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discriminate ability and reliability in predicting both positive and negative out-
comes. However, for the ad_hoc_data dataset, accuracy drops to 68.33%, with
a decrease in sensitivity and specificity compared to the Iris dataset, indicat-
ing potential challenges in generalizing the model to this more complex or less
structured dataset.

On the other hand, Pennylane shows a lower accuracy on the Iris dataset
with 75.55%. Sensitivity ans specificity vary across the classes, with some classes
exhibiting higher sensitivity but lower specificity compared to Qiskit. For the
ad_hoc_data dataset, accuracy falls to 55%, with a decrease in sensitivity and
specificity compared to the Iris dataset, indicating lower predictive capacity for
this dataset.

In terms of execution time, Qiskit consistently shows longer times than Pen-
nylane. For instance, Qiskit takes 41 s for the Iris dataset, while Pennylane takes
only 21s. This pattern is maintained across the tests, suggesting that Pennylane
could offer an advantage in computational efficiency.

In summary, Qiskit delivers better performance in classification metrics, par-
ticularly with the Iris dataset, but at the expense of longer execution times.
Pennylane may be preferable when execution time is critical, although this may
involve a trade-off with accuracy and other performance metrics. These differ-
ences can be crucial when choosing the appropriate library for practical appli-
cations of quantum algorithms, depending on whether the priority is precision
or speed.

Table 1. Performance comparison of Qiskit and Pennylane frameworks.

Framework | Dataset Class Acc. (%) | Sens. | Spec. | PPV | NPV | Ex. time (s)
Qiskit Iris Setosa 86.66 0.87 |1.00 |1.00 [0.93 |41
Versicolor 0.76 [0.96 |0.92 |0.87
Virginica 1.00 /0.84 |0.70 |1.00
Ad_hoc_data | Binary 68.33 0.66 |0.70 |0.68 |0.67 |53
Pennylane | Iris Setosa 75.55 1.00 [0.96 |0.94 |1.00 |21
Versicolor 0.72 |0.79 |0.53 0.90
Virginica 0.55 |0.88 [0.76 |0.75
Ad_hoc_data | Binary 55.00 0.56 |0.53 |0.54 |0.55 |36

6 Conclusions

This study compared Qiskit and Pennylane in the context of hybrid quantum-
classical (SVMs with quantum kernels). Our investigation evaluated both frame-
works’ ease of use, scalability and performance for developing and executing
quantum-classical machine learning algorithms. Our analysis revealed several
key findings. First, Qiskit emerged as the more user-friendly framework, offering
an intuitive and well-documented programming interface. Its extensive library
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of quantum algorithms and built-in tools for quantum circuit visualization and
simulation make it an accessible choice for both beginners and experienced
users. Second, Pennylane demonstrated superior performance in terms of execu-
tion time, consistently outperforming Qiskit across various experimental setups.
This advantage can be attributed to Pennylane’s efficient quantum circuit opti-
mization techniques and lightweight computational overhead. Third, while both
frameworks exhibit variances, our experiments reveal that Qiskit consistently
yields superior classification accuracy compared to Pennylane when training
classifiers with quantum kernels. Fourth, Our experiments indicated that Qiskit
and Pennylane exhibit stable performance for up to 20 qubits, highlighting their
scalability for practical applications. Future research directions include exploring
optimization techniques to enhance the performance of Qiskit and investigating
the scalability of both frameworks for larger quantum-classical workflows.
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131311B-C22.
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Abstract. The exceptional performance of Convolutional Neural Net-
works (CNNs) entails increasing requirements in computing power and
storage. While several efficient compression methods have been devel-
oped, there is no consideration on which features are removed or pre-
served, which can affect pruning. In this paper, we propose a novel filter
pruning strategy, named Layer Factor Analysis one to one (LFA1-1),
that, relying on explainability, selects the filters that best retain the
essential features underlying convolutional layers. We provide insights
about the relevance of preserving these features and verify its relation-
ship with compressed network’s performance. The explanatory analysis
carried out allows us to justify pruning efficiency and detect problematic
parts. Experiments with VGG-16 on CIFAR-10 are conducted in order
to validate our approach. Quantitative and qualitative comparisons with
methods in the literature uncover pruning properties and prove the effec-
tiveness of our proposal, which reaches a 89.1% parameters and 83.8%
FLOPs reduction with the lowest accuracy drop.

Keywords: Convolutional Neural Networks - Explainable Artificial
Intelligence + Compression Methods + Factor Analysis

1 Introduction

In recent years, Convolutional Neural Networks (CNNs) have proven incredi-
ble performance in a wide variety of computer vision tasks, from classification,
to object detection, and image segmentation. They have surpassed traditional
methods, which do not achieve such generalization capabilities. Nevertheless,
the enormous computational cost and storage required for deep networks consti-
tutes a challenge when dealing with resource-constrained devices, such as mobile
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devices or on-board systems for autonomous vehicles. As a result, compression
methods have been under development for some time now. Starting from a pre-
trained CNN, these techniques achieve a large reduction of parameters and float-
ing point operations (FLOPs!), with negligible accuracy loss.

Firsts works [2,6] prune individual weights, giving rise to sparse models that
require concrete software and hardware. Consequently, recent research focuses
on filter pruning approaches, which remove the whole convolutional kernel. In
general, these methods are based on defining metrics of importance for filters
(or, equivalently, channels) and removing the less relevant ones. The values of
the metrics can be obtained from the filter weights, for example with the [y
norm [8] or cosine similarity [1]. Activation maps are considered too. The work
in [3] computes the average percentage of zeros on these maps, while [15] defines
relevance in terms of feature maps information. Other techniques combine both
strategies, such as [7] which introduces diversity and similarity-aware selection.
Different approaches involve reconstruction-based methods [10] or scaling factors
in objective functions [9], among others.

In spite of their success, pruning methods neither take into account nor ana-
lyze which characteristics are being removed or preserved. This knowledge is
determinant, since, depending on the dataset, some features will be more impor-
tant than others in the prediction. While a selection criterion works well with
certain datasets, it may not be suitable for others by not prioritizing the appro-
priate features, as analyzed in [11]. This drives our work, where we define a
pruning strategy that retains as many learned features as possible, and compare
well-known methods in terms of how many of these features they preserve.

Thanks to ezplainable Artificial Intelligence (xAl, [13]), it is possible to study
and understand what CNNs have learned. These techniques can be used not
only to interpret network predictions, but also to improve its performance or
related processes, such as pruning. This motivates our proposal, where we employ
Explainable Layer Factor Analysis method (ELFA-CNNSs, [12]) to obtain a few
essential features underlying the convolutional layers that guide pruning. It is
worth noting that, unlike ELFA, our goal is pruning, and we do not make use
of its explanatory strategy, but only of the parameters provided by its model to
elaborate a new compression technique and our own explanatory analysis.

In particular, we propose a novel filter pruning method, named Layer Factor
Analysis one to one (LFA1-1), which, based on the parameters provided by
ELFA, selects those filters that best cover the essential features. We hypothesize
that retaining as many latent features as possible leads to better performance
on the compressed models. Thanks to the explanatory analysis conducted, we
are able to validate this statement, justify the efficiency of well-known pruning
approaches, and detect where problems arise in adverse cases. Although works
such as [16] quantify filters relevance based on xAI, we look for learned features,
whereas [16] only deals with pruning, without reaching state-of-the-art rates.

Experiments with VGG-16 on CIFAR-10, one of the most analyzed both in
pruning and explainability frameworks, were carried out to prove the effectiveness

! We only consider FLOPs of convolutional operations, including multiplication and
addition, as it is commonly used for comparison.
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Fig. 1. Flowchart of the proposed pruning method.

of our approach. Comparisons with methods in the literature validate our pro-
posal, which achieves almost 89.1% parameters and 83.8% FLOPs reduction with
the lowest accuracy drop. The explanatory study conducted uncovers properties
of pruning methods, contributing to a better understanding.

The major contributions and novelties of this article are the following:

1. The design of a novel CNN filter pruning strategy based on explainability,
which maintains the underlying essential features.

2. The analysis and evidence of the importance of preserving these essential
characteristics for the performance of compressed networks.

3. The explanation of the success of well-known filter pruning criteria in terms
of the retained features, as well as the detection of problematic parts.

The paper is organized as follows. Section 2 focuses on the first contribution
and presents our filter pruning strategy. Section 3 addresses the experiments con-
ducted and analyzes the effectiveness of our approach. Section4 delves into the
importance of retaining essential features, taking care of the remaining contri-
butions. Finally, Sect.5 draws the conclusions and some future work.

2 Filter Pruning Strategy

This section introduces our filter pruning approach, which retains the essential
characteristics underlying layers. As shown in Fig.1, given a pretrained CNN,
each convolutional layer is pruned. Then, we fine-tune the compressed model to
recover performance.

2.1 Layer Essential Features

In order to define a strategy that preserves the learned features, we must first
find them. The xAlI field often assumes that each filter matches a single feature.
In addition to being incorrect [14], the large amount of filters makes it difficult to
identify the most relevant characteristics for network learning. This is why ELFA-
CNNs [12] is considered. Based on Factor Analysis (FA), it obtains a summary
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of the layer knowledge by finding a few underlying essential features and their
influence on the original filters. Our aim is to prune CNNs so that these essential
characteristics are preserved, and network knowledge is not hardly damage.
Let C be a convolutional layer whose output a has dimension h x w X m,
where m is the number of filters (or equivalently channels) and h x w is the
dimension of the activation maps. Let a®¥ = (a7, - ,a*¥) be the values of the
(z,y) location of these maps along the different channels, with 1 < 2 < h and

1 <y < w. Then, according to ELFA, C follows the factorial model given by
QY — = AT 4 e, (1)

where = (@1, -, tm), with p; being the mean of the jth activation map. The
variables f*¥ = (f{,---, f3¥) € RP, with p < m, represent the p latent features.
Meanwhile, e*¥ € R™ is a vector of unobserved perturbations or errors.

The matrix A € M,,p, called loading matrix, describes how much these
essential features influence the original channels. Indeed, A equals the correlation
matrix between both. It is this parameter, and not the whole ELFA strategy, that
inspires our compression method, which also aims at a totally different objective.
After pruning, A can be used to quantify the influence of the essential features
in the remaining filters. This will allow us to analyze the different performances
in compression approaches, as shown in Sect. 4.

2.2 Pruning Method

In light of the advantages of filter pruning, we remove whole convolutional filters
and their corresponding connections to adjacent layers. Given a convolution with
m filters, the proposed strategy consists of the following steps (shown in Fig. 1):

1. Obtain the essential features underlying that layer fi,..., f, (see eq. (1)).

2. For each latent feature f;, select the filter/channel ¢(j) that represents it
better (see Eq. (2)). Thus, we obtain one to one pairs of the form (f;, c(j)).

3. Remove the m — p non selected channels. In this way, we preserve as many
filters as essential features have been obtained, p < m.

We do not prioritize some features over others because we believe that, whenever
possible, it is better to store all the prior knowledge. When selecting the most
representative filters, we hope that a small fine-tuning will be enough for the
layer to readjust without losing the already learned features, leading to better
performance. The analysis of Sect.4 will prove the above statements.

Note that our proposal, denoted hereafter by LFA1-1 (Layer Factor Analysis
one to one), as opposed to many pruning methods, is not based on computing
filter’s importance scores and removing those with low values. As mentioned
above, these strategies do not ensure that the remaining filters cover all latent
characteristics. Section 4 exposes that, depending on which essential features are
preserved, they may lead to poor performance recovery.
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Pairing Essential Features and Channels. Given a latent feature, to find
the filter/channel that represents it better, we rely on the matrix A € M,, ,, of
equation (1). Each column, Aej = (A1j, -+, Am;) ! with 1 < j < p, determines
the impact of the jth essential feature f; on the channels cq,...,cp. Thus, the
one with the maximum impact (positive or negative) is chosen, denoted by ¢(j)

() ={a | 1<k <m and dy= max {Ay[}). 2)

If already selected, choose the next with highest |\;;|.> This leads to the pairs
{(f5,¢(4)) Y=, taking over the method’s second step.

Fine-Tuning. Because of the damage that filter pruning causes to generaliza-
tion ability, fine-tuning is a fundamental step in any compression method. It can
be conducted iteratively, i.e., retraining each time a layer is pruned; or as a final
step, after all the layers have been pruned. We choose the later, since iterative
fine-tuning can be time consuming due to the complexity of datasets or CNNs.
Moreover, pruning all layers at once provides a clearer idea of the resilience of
the compressed network. In general, fewer epochs than the quantity employed
to train the original model are used.

3 Experiments and Results

In this section we validate our proposal and compare it with other state-of-the-
art methods, proving its effectiveness. The experimental settings are presented
first, followed by the pruning configuration. Then, several compression methods
are considered for comparison. An in-depth analysis is performed in Sect. 4.

Finally, it is worth noting that all the experiments are conducted within
Matlab and executed on a 19.10900X CPU 3.70 GHz with 46 GB of RAM and
NVIDIA GeForce RTX 3080 GPU.

3.1 Experimental Setting

Experiments are carried out with VGG-16 [8], which consists of 13 convolutional
layers followed by batch normalization and ReLLU. Due to its widespread use in
pruning framework, the results are easily comparable between strategies. It is
trained from scratch with the following training options: sgdm optimizer with
momentum of 0.9, 10~2 learning rate dropping every 25 epochs by a factor of
3x1073, weight decay of 10~2, with 80 epochs and 128 mini-batchsize. Regarding
the final fine-tuning after the pruning, 40 epochs (half of the original) are used.

As dataset, CIFAR-10 [5] is employed. It contains 60000 images of 32 x 32,
divided into 40000 for training (67%), 10000 for testing (16.5%) and 10000 for
validation (16.5%), randomly and proportionally picked with 10 different classes.
Random horizontal and vertical reflections are used for data augmentation. In
addition to being widely used, its simplicity allows for explanatory analyses that
uncover properties of pruning methods, as shown in Sect. 4.

2 Tt should be noted that it was not necessary in practice.
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3.2 Pruning Setting

This section presents the setting used to obtain the essential latent features via
ELFA-CCNs (first step of our proposal). For each convolutional layer, the facto-
rial model given by Eq. (1) is estimated with the parameters of the original paper
for VGG-16 on CIFAR-10 [12]. As detailed there, this is the model that satis-
fies the quality requirements and has the lowest number p of essential features,
achieved with Kaiser’s method [4], the Standard Error Scree criterion [17], or the
25%-50% of the given channels, depending on the layer (Table 1). We choose to
be a bit more lax with the quality bounds. In particular, D; > 0.6, D~ > 0.85,
and 77 > 0.75. As explained in [12], this can be done as far as the model is useful
and minimum fit requirements are accomplished. We make use of the results in
[12, Appendix A.3] to justify this small adjustment. Thus, fewer latent features
are obtained without harming the quality of the factorial model.

3.3 Comparing Different Filter Selection Criteria

We compare our proposal with other strategies in order to demonstrate its valid-
ity. Several methods in the literature are based on the elimination of the filters
with the lowest importance score, defined by certain criteria. To properly ana-
lyze how pruning affects the essential features, the pruning setting is kept as
similar to ours as possible. In each layer we prune the same number of filters
as in our approach. That is, m — p, where m is the number of filters and p the
number of latent features estimated. Then, we select which filters are removed
according to the method’s importance criteria. This is a balanced solution that
let us compare pruning and learning performance. Since this implies that all the
methods evaluated will prune the same percentage of parameters, we could focus
on testing the effectiveness of the proposal in terms of the final accuracy.

The following selection criteria are considered: standard deviation of activa-
tion maps (Std), I3 norm of filter’s weights (L1, [8]), sparsity of activation maps
(APoZ, [3]), redundancy of feature maps (FeatStats, [7]), feature maps entropy
information (FmlInfo, [15]), and mean of activation maps (MeanAct).

3.4 Results

Following Sect. 3.2, we estimate the essential features for each convolutional
layer. Table 1 shows the number of features obtained, compared to that of orig-
inal filters. The summary involved in considering the latent characteristics is
obvious. Once we have the number of channels to retain, we proceed with the
pruning as explained in Sect. 2.2 and 3.3.

The performance of the compressed network, according to the different strate-
gies considered, is summarized in Table 2. It shows the percentage by which the
accuracy, parameters, and FLOPs have decreased w.r.t the baseline model. The
latter metrics are also included on top of the table for better comprehension.
The last column is the average time it takes to segment an image, which has
been obtained with the entire test set.
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Table 1. Number of underlying essential features for each convolutional layer of VGG-
16 on CIFAR-10, and the method employed to compute it: (K) Kaiser, (S) Standard
error scree method or (x%) just the x% of the given channels.

Layers cvll| cvl 2| cv2.1 | cv22| cv3_1l cv3_2 cv3.3 cv4l cvd2 | cv43 cvh_1l cvb2 | cvb3
Channels | 64 64 128 128 256 256 256 512 512 512 512 512 512
Features |12 (S) |25 (S) |44 (K) 64 (S)|128 (50%) | 128 (50%) | 128 (50%) | 150 (K) | 270 (S) | 128 (25%) | 128 (25%) | 126 (S) |46 (S)

Table 2. Results of pruned VGG-16 on CIFAR-10. Acc. is short of accuracy and Param.
of parameters. | indicates the drop percent between pruned and original models.

Original: Acc = 85.05%, Param = 14.9M, FLOPs = 6.26x10%, time = 6.8 x 1072 s

Method Acc. | (%) Param. | (%) FLOPs [(%) time (x1073 s)
LFA1-1 0.97 3.7
Std 2.76 4.4
L1 [8] 0.99 4.4
APoZ [3] 1.94 89.1 83.8 4.4
FeatStats [7] 1.31 4.2
Fmlnfo. [15] 3.19 4.1
MeanAct 1.79 4.3

Despite the huge drop in parameters and FLOPs (the same in all methods as
explained in Sect. 3.3), LFA1-1 and L1 show no significant decrease in accuracy,
less than 1% and with the former being the best. This lies below the mean
(1.85%). On the contrary, the rest of the strategies (excluding FeatStats) present
almost a 2% accuracy reduction (above the mean), being even more than a 3% for
FmlInfo. It should be noted that this second group coincides with those criteria
that only include activation maps in their computations. A thoughtful analysis
of these relationships is presented in Sect. 4. Finally, the drop in parameters and
FLOPs is evidenced by the decrease in segmentation time by almost half, with
LFA1-1 below the mean (4.2) and the variance being low (0.12).

4 Discussion on the Importance of Retaining the Essential
Features

Taking advantage of the information gathered on the loading matrix, it is used
to study how different pruning criteria affect the essential features. As will be
shown, this validates the assumption that preserving as many latent features as
possible leads to better performance on the compressed networks.

Given a convolutional layer, we remove from the loading matrix A the rows
corresponding to the deleted channels, and compare this pruned matrix with the
original. Figure 2 displays a visual representation for each of the pruning strate-
gies in the first convolution. Note that rows correspond to channels, and columns
to latent features. These pruned matrices represent the correlation between the
essential features and the remaining channels. The more dispersed they are, the
more distributed the influence of latent characteristics in those channels will be.
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Fig. 2. Original (left) and pruned (right) A matrices for the first convolutional layer
of VGG-16 on CIFAR-10. A is the correlation matrix between channels (rows) and
essential features (columns). Large absolute values reveal the influence of these features.

Clearly, LFA1-1 and L1 exhibit the greatest dispersion, encompassing all the
columns. That is, after pruning, these approaches preserve virtually all of the
essential features. This uniformity is reduced for FeatStats, APoZ, and MeanAct,
where the strong values are accumulated in the first columns. As a result, the
last essential features (columns) are not represented in the pruned layer, losing
this knowledge. An extreme case is that of Std and FmlInfo, where the retained
channels relate almost only to the first latent feature, forgetting the others.

A quantitative analysis completes the previous one by testing whether the
pruned matrices are uniformly distributed. First, we compute the mean M (f;)
of each column (feature), given by M(f;) = (1/m)> ", |\ij|. If the matrix
values are spread out, we expect these means M(f1),..., M(fp) to be similar.
Therefore, the smaller the standard deviation S of the vector of means, the more
distributed the influences of the essential features are, where

P 3 L P
= 53 (M(y) - M) with M) = M) ()
p—1 = pi3

This uniformity test, whose results are shown in Fig. 3, allows us to analyze
deeper convolutions, as the large number of channels prevents us from doing so
visually. The first and last layers manifest the same pattern. The low S values
of LFA1-1 and L1 exhibit their ability to retain a wide variety of the essential
features, unlike the other methods. We observe that this tendency of preserving
the influence of the essential characteristics after pruning agrees with the results
of Table 2. The strategies with better pruning performance coincide with those
where the remaining filters cover more essential features. Meanwhile, middle
layers present similar S values for all methods. Perhaps, other test will yield more
information. We conclude that the cause of the poorer performance of methods
such as APoZ, Std, or FmlInfo, comes from the first layer. There, these strategies
fail to preserve the influence of enough essential characteristics, focusing on only
one in the most extreme cases (see Fig. 2). This is in line with the work of [11],
which shows that the standard deviation highlights color detectors over others.
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Convolutional layers
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Fig. 3. Uniformity test (3) results for the pruned A matrices of VGG-16 on CIFAR-10.
Low values imply more dispersion in correlations between channels and latent features.

All in all, the above analyses expose the importance of retaining essential
and adequate features when pruning. Besides, in the case of CIFAR-10, criteria
based on activation maps do not adequately prioritize the important channels.

5 Conclusion

In this paper, we propose a novel filter pruning strategy, named LFA1-1, that
effectively prunes CNNs, through an explanatory approach, and retains essential
features. We provide insights about the importance of preserving these features
and prove that it is related to the compressed network performance. Qualitative
and quantitative comparisons with other pruning methods are conducted.

In the future, we would like to perform a deeper study, considering other
complex CNN models (residual, inception), datasets (more images and classes),
usual pruning method modes, and extending the analysis on the preserved fea-
tures using more explainable parameters and metrics. In addition, the use of our
approach for a more selective pruning, prioritizing for example the removal of
counterproductive characteristics, is also worthy to be investigated.
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Abstract. Facility location problems cover a great variety of different
real-life scenarios. Among them, it is usual to consider distances between
facilities and/or distances with clients in order to determine the best loca-
tion for them. However, a different problem arises when the distribution
of clients among the open facilities is considered and the cost of opening
the facilities is also taken into account. In this paper, we study a problem
with these features, the Facility Location problem with Limited Choice
rule. We propose a first metaheuristic approach to this problem by means
of an Iterated Local Search, which is able to obtain similar results than
the state of the art spending shorter execution times.

Keywords: Iterated local search - Facility location problem - Limited
choice rule

1 Introduction

Facility location problems form a family that comprises the model and resolu-
tion of many different real-world problems where the shared feature is the need
to determine the location of a given number of facilities under a particular set
of constraints. Depending on the defined scenario, different objective functions
are considered. Healthcare facility location, trying to reduce different features
related to the relationship between health providers and patients [1], facility
location considering pollution [9] and obnoxious facility location, trying to dis-
tribute the annoying effect of the facilities [2] are some of the most recent topics
that nowadays coexist with the classical facility location problems [10]. In fact,
the family is divided into different categories of problems like the continuous
Covering Location Problems, Discrete Network Location Models, or Competi-
tive Facility Location problems, among others [3].

The problem we tackle in this work, namely the Facility Location problem
with Limited Choice rule (FLLC), belongs to the category of the Competitive
Facility Location problems (CFL). In CFL choice models are applied to estimate
the expected revenue and/or the expected market share when a company plans
to introduce a service to a market by opening a set of facilities from some pre-
determined sites. Once some facilities are open, customer zones split the buying
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power among their consideration set (the subset of open facilities that the cus-
tomers are willing to patronize according to their utility) plus an outside option
(not using the service or seeking the service from other providers). The objec-
tive of FLLC is to maximize the expected profit of the company, that takes into
account the revenue and the fixed cost of facilities, by determining the optimal
location for the facilities.

The version of the problem that we have studied was proposed in [5]. Here,
the problem was defined and a mathematical model was presented, proposing a
generalized Benders decomposition scheme which is compared with two state-
of-the-art methods: a branch-and-cut approach based on outer approximation,
and a mixed-integer conic quadratic program.

In this work we propose an Iterated Local Search (ILS) algorithm that is
able to obtain competitive results for the FLLC problem in relation to the
state of the art spending shorter computation times. The ILS proposal begins
with a constructive algorithm based on the Greedy Randomized Adaptive Local
Search Procedure (GRASP) strategy, followed by a custom best-improvement
local search, and helped with a fast perturbation method, all of the tailored
to this problem. The experimental results show that our proposal is able to
obtain the same number of best results as the state of the art spending shorter
computation times.

The paper is organized as follows: the problem is formally described in Sect. 2,
our algorithmic proposal is detailed in Sect.3, the experimental experience is
explained and analyzed in Sect.4, and the conclusions are drawn in Sect. 5, also
pointing out future work.

2 Formal Description of the Problem

The FLLC can be formally described as follows. Let J be a set of m candidate
facilities, m = |J|, that a company can open to offer some service to a set I of
n customer zones, n = |I|. Each facility j € J has a fixed opening cost, f;, and
an attractiveness A;. Each customer zone ¢ € I has a buying power, b;, and a
maximum number of facilities in its consideration set ;. Moreover, given the
distance between a customer zone and a facility, d;;, the utility of a facility j to
the customer zone 7 is u;; = A;/ dfj and, besides the facilities, there is an outside
utlhty, U;0-

Defining a binary variable z; € {0,1} for each facility (equal to 1 if facility
J is open, 0 otherwise), and additional binary variables y;; € {0,1} (equal to
1 if facility j is in the consideration set of customer i, 0 otherwise), the FLLC
can be mathematically formulated by Eq. (1), where m;; = u;j/us. The first
term in Eq.(1a) is the expected revenue collected by the new facilities, while
the second one is the fixed cost of opening the facilities. Equation (1b) avoids
unopen facilities j in the consideration set of a customer zone i. Equation (1c)
restricts the size of the consideration set of a customer zone i to ;.
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As described in [5], this model states that customers first rank the open
facilities according to the utility of facilities to customers from the largest to
the smallest and then pick the first ; facilities from the sorted list into this set.
Then, defining ¢ as the set of open facilities and x; as the consideration set a
customer zone ¢ € I, the mathematical model described above can be rewritten
as shown in Eq. (2):

max F(¢ Zb je); Z fi (2a)
ij

iel JGX JEP

which is useful to explain the procedures of our metaheuristic proposal. Notice
how the only decision variable is the set of open facilities ¢, since once this set
is fixed, each customer zone ¢ € I populates its consideration set y; including
the v; facilities j € ¢ with the best utility relative to customer 4, u;;.

3 Iterated Local Search

Tterated Local Search (ILS) is a stochastic metaheuristic with several applica-
tions to different combinatorial optimization problems [6,7]. It iteratively applies
a local search procedure to a perturbed solution of the incumbent one to escape
from local optima. This metaheuristic has four different components: (1) a con-
structive method to generate the initial solution, (2) a local search procedure
to improve the current solution, (3) a perturbation strategy to generate a new
starting solution for the local search, and (4) an acceptance criteria to select the
solution the ILS continues the search from. It effectively combines the intensifi-
cation provided by a local search procedure with the diversification introduced
by the perturbation strategy.

Algorithm 1 shows the pseudo-code of our ILS proposal inside a multi-start
schema (MsILS), which runs the standard ILS ¢,,,, times returning the best
solution found among all runs. The loop starts in step 2 by constructing an ini-
tial solution with the constructive method later described in Algorithm 2 and
improving its quality in step 3 by means of the local search procedure later
described in Algorithm 3. Then, it enters a loop that restarts the local search
from a new solution with a perturbation procedure in step 6 that removes one
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facility at random. The acceptance criteria is checked until there is no improve-
ment after k., iterations. Finally, steps 13 to 14 update the best solution found
in the overall procedure.

Algorithm 1: MSILS(a,kmaz,tmaz)

1 for t =1 to tymaez do
2 ¢ < Constructive(a)
3 ¢ < LocalSearch(yp)
4 k<0
5 while k < kpae do
6 @' « Perturbation(y)
7 ¢’ « LocalSearch(y’)
8 if F(¢') > F(p) then
9 o=y

10 k<0

11 else

12 | k—k+1

13 if F(p) > F(¢*) then

14 | v =0

15 return ¢*

Algorithm 2 shows the method used to construct an initial solution, which
follows a Greedy Randomized Adaptive Search Procedure (GRASP) methodol-
ogy [4]. It starts with a partial solution ¢, with no facilities, which represents
that all the facilities are closed. Then, it enters a loop that opens a new facility
while there is an improvement on the solution quality. At each iteration, the
candidate facility to be incorporated on the partial solution is selected following
a random-greedy strategy. Hence, the best solution in terms of a greedy function
is selected from a restricted candidate list (RCL), which is created randomly
selecting facilities from the candidate list (CL) according to the parameter «.
Notice that the greedy function G,qq in step 7 is the objective function after
adding the candidate facility j’ to the partial solution ¢,,.

Algorithm 3 shows the pseudo-code of the local search procedure to improve
the current solution. It tries to add the best facility to the current solution
at each iteration until there is no improvement on the solution quality (steps
5 to 12). Then, it follows the same procedure but removing facilities (steps
14 to 21). Notice the analogous greedy function G,e,, on removing facility j’.
The procedure continues until there is no change on the current solution after
sequentially applying the above add and remowve procedures.
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Algorithm 2: CONSTRUCTIVE(«)

1 p 0
2 CL—J
3 repeat
4 improve < false
5 size «— max(|a - |CL|],1)
6 RCL < SelectRandomSet(CL, size)
7 | J argmaxGada(pp, ')
j’ERCL
8 wp — @p U{j}

9 CL — CL\ {j}
10 if F(pp) > F(p) then
11 P = ¥p
12 1mprove «— true

13 until improve = false
14 return ¢

Algorithm 3: LOCALSEARCH(yp)

improve < true
while improve do

1

2

3 improve «— false

4 continue <+ true

5 while continue do

6 continue «— false

7 j « argmax Gaaa(p, j’)

Jj'€J\g

8 ¢ —pU{j}

9 if F(¢') > F(p) then
10 continue <« true
11 improve «— true
12 o — ¢
13 continue <+ true
14 while continue do
15 continue «— false
16 j — argmax Grem (g, j")

Jj'€p
17 ¢ — o\ {j}
18 if F(¢') > F(p) then
19 continue «— true
20 improve «— true
21 o=y

22 return ¢




ILS for the Facility Location with Limited Choice Rule Problem 147

4 Computational Experiments

To assess the computational efficiency of our MsILS approach against the pre-
vious algorithm, denoted as BC-Benders, we conducted experiments using three
different datasets studied in [5]. Set RI has a total of 135 (5 x 9 x 3) instances
corresponding to 5 different distributions of I = 100 customer zones and J = 100
facilities on a square area [0,1000]2, 9 values of v € {1,2,3,4,5,7,10,20,nh}
and 3 different values of the opening cost f € {500, 1000,2000} each. The value
~v = nh means that v; is generated from an integer uniform distribution [1, 39]
for all i € I. Set R2 has 90 (5 x 9 x 2) instances generated with the same proce-
dure as R1 but using I = 200 and f € {500,2000}. Finally, set R3 contains 24
bigger instances with I € {800,1000}, J € {100, 150,200} and f = 2000. More-
over, all the customer zones have a buying power b; € [10,1000], A; =1,Vj € J
(uij = Aj/dfj), and u;o = 1/1002 for R1 and R2, and u;o = 1/502 for RS.

All the experiments were executed on the same machine, an AMD EPYC
7282 processor with 32GB of RAM running Kubuntu 22.04. We used Gurobi
10.0.1 as an exact solver for BC-Benders using the Python code kindly provided
by the authors of [5], and Java Temurin 17.0.6 using the MORK framework [§]
for our MsILS proposal. BC-Benders was executed with a time limit of 7200s
for each instance. Regarding MsILS, we experimentally checked that t,,4, = 50
executions and k., = 50 iterations without improvement at each execution
were enough to achieve good results in a reasonable CPU time.

Table 1 shows the aggregated results for each different instance category in
both algorithms. We can see the average cost, denoted as Cost, the average time
in seconds, CPU(s), and the number of times the best cost value was reached,
#Best. Best results are highlighted in bold font. Before breaking down into each
instance category, we can see that the new proposal is faster than the previous
one, spending less than 45% of the time of the previous method. We can also
see that in R3 we have improved the number of best results, 23 out of 24, but
the average cost is not better. This result happens because BC-Benders gets
the best solution in one of the instances by bigger difference than the instances
where MsILS gets the best solution. In addition, we have found a best value in
R3 not reported previously.

Table 1. Comparison between BC-Benders and MsILS. Each row show the averaged
cost, CPU time and number of best over all the instances in each set. Best values for
the metrics are highlighted with bold font.

Instance set | BC-Benders MsILS

Cost CPU(s) | #Best | Cost CPU(s) | #Best
R1 20542.09 68.9 |129 20542.14 | 57.8 135
R2 53349.70 | 527.7 | 85 53350.28 | 160.8 | 90
R3 160440.80 | 2251.7 | 21 160432.70 |1054.7 | 23
Average 78110.86 | 9494 | 78 78108.37 | 424.4 | 83
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Table 2 shows the detailed results for R1. Here we can see that the cost of
both algorithms is similar in every instance. For small v values BC-Benders is
faster and returns the best value. However, when v increases, both algorithms
report a higher computational time, showing a direct relationship between
and computational time. This relationship arises that given the gap between the
slowest and fastest time of BC-Benders is wider than for MsILS, BC-Benders
has a steeper slope ending up timing out on big instances with big ~.

Table 2. Comparison between BC-Benders and MsILS for RI. Each row show the
averaged values of the 5 different instances for every value of f and «. In this set
I =100 and J = 100 for all the instances. Best values for the metrics are highlighted

with bold.

Instance | BC-Benders MsILS

f v | Cost CPU(s) | Cost CPU(s)

500 |1 24739.88 5.9 | 24740.30| 24.2
2 27035.17 | 11.2 27035.17 | 30.2
3 28015.83 | 12.9 28015.83| 374
4 |28594.87| 17.3 |28594.87| 43.3
5 28985.39 | 22.2 28985.46 | 51.7
7 129496.50 36.3 |29496.50| 73.1
10 | 29951.44 | 65.6 29951.44 | 954
20 30532.72 | 545.6 30532.90  183.9
nh | 29605.16 | 104.2 | 29605.16 | 1174

1000 | 1 17253.63 8.5 17253.63 | 17.8
2 19552.12| 10.2 19552.12 | 23.7
3 20568.52 | 14.6 20568.52 | 31.8
4 21176.23 | 22.0 21176.23 | 39.3
5 21604.04 | 32.5 21604.20 | 45.7
7 22162.49 | 36.7 22162.49  62.0
10 | 22635.39| 83.8 22635.39| 86.3
20 | 22857.04 | 260.4 22857.04 | 116.0
nh | 22119.63 | 73.6 22119.73| 83.5

2000 | 1 8764.35 | 11.6 |8764.35 12.8
2 10723.84 | 13.5 10723.84 | 20.2
3 11682.42 | 19.6 11682.42 | 28.8
4 12220.86 | 28.8 12220.86 | 35.7
5 12591.93 | 37.7 12592.29 | 44.2
7 113041.59 87.5 |13041.59| 61.2
10 | 13101.51 | 113.8 13101.51| 69.8
20 | 13101.51 | 123.3 13101.51| 71.0
nh |12522.35| 60.5 |12522.35 54.7

Average | 20542.09 | 68.9 |20542.14| 57.8
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Table 3 shows the results for R2, where we can see a similar behavior than in
the case of R1. Due to the larger size of the instances, BC-Benders spends more
execution time on the largest ones, ramping up on the highest two v values.
When 7 is equal to 20 we can observe the biggest difference, getting the same
value in a forth of the time for f equals to 500. For f equals to 2000 the time
improves a thirteenth of the previous algorithm.

Table 3. Comparison between BC-Benders and MsILS for R2. Each row show the
averaged values of the 5 different instances for every value of f and ~. In this set
I =200 and J = 100 for all the instances. Best values for the metrics are highlighted
with bold.

Instance | BC-Benders MsILS
f v | Cost CPU(s) | Cost CPU(s)
500 57936.22 11.1 |57937.06| 62.7

1

2 63367.91 26.6 |63368.02| 79.7
3 165599.75| 35.0 65599.75| 94.5
4 166872.21| 47.1 | 66872.21 116.8
5 |67709.33| 72.5 |67709.33| 1324
7 |68788.68 138.9 68788.68| 176.8
10 |69712.48| 351.1 |69712.48 238.2
20 |71063.56 | 2100.0 |71063.56 | 456.3
nh |69666.79 | 499.8 |69666.79 | 395.0
1 /31358.33 15.3 | 31358.33| 31.2
2 |36427.57| 28.6 | 36427.57| 50.2
3 |38749.97| 58.7 | 38749.97| 66.0
4 140099.63| 117.0 |40099.63 85.6
5

7

2000

41041.99 | 178.3 |41041.99|101.6
42253.87 | 395.0 |42254.43|141.8
10 | 43304.00 828.5 |43304.00 190.5
20 | 43851.18 | 3729.9 |43860.09 | 280.6
nh |42491.12| 864.5 |42491.12|193.7
Average | 53349.70 | 527.7 | 53350.28 | 160.8

Finally, Table4 shows the results for R3. Again, the performance is similar
than in the case of R1 and R2. As seen in the Table, the cases where vy is 1 or the
number of facilities is small, BC-Benders returns the best value in a shorter time
than MsILS. In all the other cases it seems to be a limitation for the algorithm.
When this situation happens our proposal shines, and MsILS is able to reach a
better results in a shorter time. The instance where we improve the state of the
art can be seen with the following configuration I = 1000, J = 200,y = 3.
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Table 4. Comparison between BC-Benders and MsILS for R3. In this set f = 2000
for all the instances. Best values for the metrics are highlighted with bold.

Instance BC-Benders MsILS

1 J |y |Cost CPU(s) | Cost CPU(s)

800 100 |1 |105658.10| 35.8 |105658.10 | 280.1
2 1130863.87| 65.9 |130863.87  394.8
3 1142928.31 | 119.7 |142928.31 561.5

nh | 137478.80 92.6 |137488.92| 579.3
115828.71 63.7 |115831.47| 5924
140123.73 | 403.4 | 140123.73 | 811.2
151499.70 | 2464.5 |151499.70  953.1
nh | 145946.18 | 3233.3 | 145946.18 | 1199.2
800 200 |1 |116529.11| 169.2 |116529.11 | 9174
141522.83 | 2764.1 |141522.83 1397.0
3 | 152755.87|7200.0 |152755.87 1822.8
nh | 147439.31 | 5386.8 | 147439.31 1874.0
1000 | 100 |1 |150424.50| 40.2 |150424.50 270.7
182178.91| 58.1 |182178.91| 405.8
3 1196973.75| 95.1 |196973.75| 494.2
nh | 188693.30 | 91.1 |188693.30| 539.5
1000 [150 |1 |155644.48| 69.3 |155644.48 | 7184
2 |187760.49 | 616.8 |187760.49 | 1150.8
3 1202301.40|7200.0 |202301.40 1590.4
nh | 195306.86 | 1399.5 | 195306.86  1349.8
1000 [200 |1 |161635.27 | 870.9 | 161355.47 | 1100.3
2 1193401.57|7200.0 |193401.57 |1764.1
207445.43 |7200.0 |207518.14 | 2313.3
nh | 200238.63 | 7200.0 | 200238.63 | 2232.5
Average 160440.80 | 2251.7 | 160432.70 | 1054.7

800 |150

N =

5 Conclusions and Future Work

The Facility Location problem with Limited Choice rule has been previously
studied by means of the combination of an exact method with some heuristic
help. In this paper, we propose the first metaheuristic approach to this com-
plex problem by means of an Iterated Local Search method. To this aim, we
have defined a constructive procedure, a best-improvement local search and a
perturbation method able to efficiently traverse the space of solutions.
Considering this approach as a preliminary work on this problem, we obtained
similar results than the state of the art in terms of objective function values,
reaching the same number of best solutions as the previous work on the studied
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instances and obtaining a new best result. Moreover, our proposal is able to
obtain these results spending, on average, 44% of the time spent by the state-
of-the-art method using the same experimental machine.

Currently, our efforts are focused on improving the results by applying more

complex algorithms and different neighborhood explorations.
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Abstract. The partial consolidated tree bagging (PCTBagging) was
presented as a multiple classifier that, based on a parameter, the consol-
idation percentage, can exploit more the possibilities of the inner ensem-
bles, and obtain higher levels of interpretability, or can exploit more the
possibilities of the ensembles, and obtain higher discriminant capacity.
Thus, at the extreme values, with a consolidation percentage of 100% it
obtains a consolidated tree (CTC algorithm) and with 0% consolidation
it obtains a Bagging. For intermediate values, the consolidated tree is
collapsed to the number of internal nodes corresponding to the percent-
age value, selecting the biggest possible nodes. In this paper we propose
a strategy to directly develop the partial consolidated tree, i.e. without
the need to build the complete consolidated tree and, in addition, we
explore up to 4 other different criteria, besides the size of the nodes, to
decide which will be the next node to be developed in the partial consol-
idated tree: Pre-order, Gain ratio, Gain ratio x Size, and, Level by level.
The results show that the use of different criteria affects the discriminant
capacity of the classifier for the same level of interpretability, and that
this effect is greater the higher the percentage of consolidation is.

Keywords: Comprehensible classifiers - Consolidation - Ensembles

1 Introduction

Nowadays artificial intelligence is present in multiple contexts of our lives. To
a large extent this has been possible thanks to the great advances made in the
area of machine learning, specifically in the field of deep neural networks or
Deep Learning. These algorithms build classifiers with high reliability in their
predictions but do not provide an explanation as to why they have generated that
particular output for the input provided making them not suitable for certain
domains. Because of this, great efforts are being made to obtain classifiers with
explanatory capabilities [1,10,11].

Rule induction algorithms, such as decision trees or rule sets, are an alterna-
tive to produce models that are interpretable by humans [5]. Multiple proposals
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have been carried out to improve the predictive capacity of this type of classi-
fiers, most of them based on the combination of multiple classifiers (‘ensembles’)
obtained as a result of a resampling process of the original sample. One of the
best known and most widely used ensembles is Bagging, and, as Leo Breiman
said in [4], when we combine 50 decision trees via voting to make a predic-
tion: “What one gains is increased accuracy. What one loses, with the trees, is
a simple and interpretable structure”. In this regard, in [13] an algorithm was
proposed, the consolidated tree construction (CTC) algorithm, which introduces
the techniques used by Bagging to generate the ensemble in the construction of
the decision tree itself (which gave rise to the term ‘inner ensembles’). In this
case, based on a set of samples, the algorithm is able to build a single tree, and
therefore, it does not lose the explanatory capacity. Although CTC algorithm
performs better than simple decision trees [14], it does not reach the prediction
level of Bagging [12].

Recently, a hybrid approach between CTC and Bagging was proposed, the
PCTBagging [9]. This algorithm has a parameter, the consolidation percentage,
which allows the user to indicate the number of internal nodes (the ones that
will give the explanation) to be consolidated. This will be the partially consoli-
dated tree (PCT), which will have a structure common to all the trees associated
with Bagging. From this point onwards, all these trees are developed indepen-
dently as in Bagging. In this way, when the consolidation percentage is 0%, a
Bagging ensemble is obtained and when it is 100%, a CTC tree. The paper
shows that this parameter gives the user the option to search for the desired
trade-off between interpretability and discriminant capacity. An implementation
of this algorithm can be found as an official package of the popular WEKA
framework [6], J48PartiallyConsolidated! 2.

In this algorithm, a complete consolidated tree is first built to calculate,
according to the value of the consolidation percentage parameter specified by
the user, the number of internal nodes in the tree that should be maintained
for all the trees in the inner ensemble. Following with the example of the paper
(Fig. 1), if the complete consolidated tree has 10 internal nodes and the value of
the consolidation percentage is 60%, 6 internal nodes will be kept and the rest
will be removed. But, one question arises in this process, which 6 nodes will be
kept and which ones will be removed? In [9] the criterion used was the size of
the nodes, i.e., the number of cases they contain. In this way, starting from the
root node (which contains all the cases of the sample), all the internal nodes are
ordered from largest to smallest and the 6 largest nodes will be the ones to keep
as part of the explanation of the final classifier and, the rest will be collapsed in
the consolidated tree. From this point on, Bagging will be applied, maintaining
the 60% of all trees identical to that of the consolidated tree.

This work improves and extends the PCTBagging algorithm making more
efficient the construction of the partially consolidated trees, and, including more
criteria in the process of selecting the inner nodes to be consolidated. On the

! https://weka.sourceforge.io/packageMetaData/J48PartiallyConsolidated/
2 We are trying to update this package with the proposal of this paper.


https://weka.sourceforge.io/packageMetaData/J48PartiallyConsolidated/

154 J. M. Pérez et al.

one hand, from a practical point of view, the strategy for the construction of the
partially consolidated tree is very laborious in terms of computational cost and
time, since it is always necessary to first, construct the complete consolidated
tree to know the number of internal nodes it contains and then, apply the consol-
idation percentage. However, a much more practical use of this algorithm would
be to indicate a concrete value of the number of internal nodes that we want to
obtain as an explanation of our classifier, independently of the number of nodes
that the complete consolidated tree would have, and to build the consolidated
tree only up to the specified number of nodes. In many cases, a partial tree of as
few as 5 internal nodes may provide sufficient explanation for the user’s interests.
Even one might be sufficient in some contexts.

The first contribution of this work is, precisely, to change the way to express
the number of nodes to be consolidated in the CTC algorithm. The new version
will allow to express this value as an absolute value, instead of as a percentage.
This change implies switching from a recursive implementation to an iterative
implementation of the function that builds the consolidated tree.

On the other hand, since the consolidated tree developed in this algorithm
is partial, as is the case in the PART algorithm [7], the decision of which is the
next node to be developed is of vital importance. The new proposal includes
several criteria, in addition to the node size, that could be more adequate to
the specific data used to induce the consolidated tree. The inclusion of this new
degree of freedom in the construction of the partial consolidated tree may mean
that the classifiers generated could have a clearer and more stable explanation,
and a higher predictive capacity than that achieved by the node size criterion.

In this work 4 new criteria, in addition to Size, are proposed to decide which
will be the next node to be developed in the consolidated tree: Pre-order, Gain
ratio, Gain ratio X Size, and, Level by level. To evaluate the performance of this
new proposal, a set of experiments were performed on 33 two-class-imbalanced
dataset extracted from the KEEL repository. The results were compared from 3
points of view using a 5-fold cross-validation methodology executed 20 times (20
x 5CV): discriminating capacity, the complexity of the explanation provided,
and the computational cost of building the classifiers.

The rest of the paper is organized as follows. Section 2 details the related
work. Section 3 explains the Driven PCTBagging version proposed in this paper.
Section 4 defines the experimental methodology. Section 5 lays out the obtained
results. Finally, conclusions are drawn in Sect. 6.

2 Related Work on PCTBagging

This section, briefly describes the learning algorithms that serve as the basis for
partially consolidated tree bagging algorithm.

In order to build a (partially or not) consolidated tree, we first need an
algorithm for building a decision tree. The first algorithm to be consolidated
was the well-known C4.5 decision tree induction algorithm [15] which has been
widely used as a base algorithm in countless proposals for building multiple
classifier systems [2-4].
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‘Bootstrap aggregating’ (Bagging) [4] was proposed as an ensemble aggre-
gating multiple C4.5 decision trees (although any other base algorithm can be
used), independently created from bootstrap samples. It is in the process of clas-
sifying a new case that all classifiers are involved in order to finally assign it the
most voted class.

The CTC algorithm [13,14] was designed to obtain the predictive capacity
of an ensemble built based on a set of samples such as Bagging, but without
losing the explanation of the classification, i.e. creating a tree that agglutinates
the information of all the samples. In this case, the voting process, instead of
being carried out in the classification phase, occurs every time it is necessary
to decide which will be the predictor variable that will divide the current node
during the construction of the tree.

The variable that splits a node in a consolidated tree is the variable that has
been chosen the most times to split the same node in each of the trees associated
to the sample set. In the CTC this same variable will split the consolidated tree
and all the trees associated to the sample set. In this way, when the construction
process is finished, all the trees will have the same structure. In PCTBagging [9],
the idea is to start building the consolidated tree as in the CTC, but only up to a
certain node. At this point, the construction of the consolidated tree is stopped,
leaving it as a partial tree, and the rest of the trees associated to the samples con-
tinue to be constructed independently, applying C4.5 to each one, as is done in
Bagging. Hence the partially consolidated tree bagging. Thus we obtain an expla-
nation of the classification with the partially consolidated tree and the classifica-
tion process of new cases is performed with the rest of the trees as in Bagging.

3 Driven PCTBagging

The original strategy for the construction of PCTBagging consists of first con-
structing a complete consolidated tree, then collapsing the tree until a specific
number of internal nodes, and from that point onwards applying Bagging. The
number of nodes is determined by a percentage value with respect to the total
number of nodes of the complete consolidated tree (the consolidation percentage).
However, we can use different criteria to ‘drive’ the construction of such a partial
tree, giving priority to the development of one child node over another. In the orig-
inal PCTBagging the node size was used. In this paper we propose 4 new criteria,
in addition to size, to drive the development of the partial consolidated tree:

— Size: Node size or number of cases belonging to the node. This is the original
criterion in PCTBagging, but in this case the implementation of the function
that develops the tree is iterative instead of recursive.

— Gain ratio: In this case it is proposed to use the value of the same criterion
(split function) used by C4.5 to choose the candidate variable that will split a
node, the gain ratio. In the PART and BFPART rule induction algorithms [7],
this criterion is also used to decide which is the next node to develop in the
partial tree that will compose each rule.
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— Gain ratio x Size: Sometimes, very small nodes obtain very high gain ratio
values and, however, very large nodes obtain very low values. Being two inter-
esting aspects in the construction of a tree, a combination of both via multi-
plication could be a good heuristic to explore.

— Pre-order: Most decision tree construction algorithms such as C4.5 develop
the tree by traversing it in pre-order, i.e., descending as far as possible through
the first child node until it is no longer possible, then moving on to the sibling
node and so on until the whole tree has been completed. Normally, the order
of the child nodes depends only on how the description of the values taken
by the variable that divides the node has been done.

— Level by level: Instead of indicating how many nodes we want to develop and
deciding which is the next node to develop at each step, another possibility is
to indicate the number of levels we want to develop. Instead of developing in
depth, we develop all the child nodes of each level up to the indicated level.

4 Experimental Methodology

The experiments were performed with the databases of one of the KEEL repos-
itory contexts used in the works [5] and [9], specifically 33 two-class datasets
representing the problem of class imbalance (with a proportion of minority class
examples between 0.77% (min) and 35.51% (max), 17.61% on average, detailed
description in additional material®). Due to the size of the minority class, a 5-
fold cross-validation methodology was used 20 times (20 x 5CV) to estimate the
generalization capacity of the classifiers, as well as other metrics.

The main objective of this paper is to analyse how the criteria used to choose
the next node to be developed in the partial consolidated tree affects the perfor-
mance of the final classifier. We want to analyse how the discriminant capacity
changes if we have chosen for example 5 internal nodes driven by size or if they
have been chosen by gain ratio.

We want to try with different values of the number of nodes used to con-
solidate the partial tree, but we do not know a priori how many nodes the
consolidated tree obtained for each dataset will have. For this reason, we have
added an option in the Driven PCTBagging implementation where the number
of internal nodes of the partial consolidated tree can also be indicated as a per-
centage of the total number of nodes of the complete consolidated tree, just as
in the original PCTBagging [9].

This will allow us to do the same scanning of values for all datasets (regardless
of the size of their trees) in percent, from 0 to 100%, so that the results of the
33 datasets are comparable.

The analysis of the results, therefore, will be similar to that done in [9], i.e.,
based on the percentage of consolidation. However, in this work the range of
values sampled for a given dataset is much larger than in [9]. In both works
the final trees associated with the PCTBagging are pruned (default option in

3 http://www.aldapa.eus/res/2024/DrivenPCTBag
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C4.5) but, however, there is a notable difference in the construction of the pre-
vious consolidated tree: in [9] it is also pruned whereas in the present work it is
unpruned. This implies that the scanning from 0% to 100% reaches up to 36.4
internal nodes (on average for the 33 datasets), when in [9] it reached only 8
nodes (also on average). In other words, this work explores a range of values 4
times wider.

We compare the results of the 5 versions of Driven PCTBagging as the con-
solidation percentage varies in addition to its direct competitors (pruned and
unpruned versions): C4.5, CTC and Bagging. Regarding the resampling strat-
egy for these algorithms, we have chosen the best one for each of them based
on what we know. We used 50 bootstrap samples for Bagging (widely accepted
value [3]). However, for CTC and PCTBagging, we use balanced subsamples
where the number of subsamples is determined by the distribution of classes
in the dataset (based on the coverage concept defined in [8]). The number of
subsamples for the 33 data sets ranges from 6 to 585, with a mean of 56 and a
median of 23.

Being the datasets used unbalanced we evaluated the performance of the
classifiers based on the area under the ROC curve (AUC). However, we are
also interested in metrics that focus on the accuracy obtained for single classes,
mainly in the minority class, such as balanced accuracy and sensitivity (or True
Positive Rate).

The complexity of the explanation provided is measured with the number
of internal nodes within the decision trees what is straightforward for C4.5 and
CTC. For the case of PCTBagging we will also measure the number of nodes of
the partial consolidated tree (like in [9]). However, in this work we have tried to
estimate the complexity of the set of trees that constitute the multiple classifier
in Bagging and in PCTBagging. In particular, we counted the number of nodes
of all the decision trees of the multiple classifier and calculated the average value.

Finally, the computational cost is defined as the time taken to build the
classifiers (elapsed time training), measured in seconds.

5 Experimental Results

In order to better understand the experiment performed, we will first show the
results related to the structural complexity of the classifiers built. Figure 1 shows
the average value of the number of internal nodes for the 33 datasets obtained
for each of the compared algorithms. The results associated with each dataset
for each algorithm can be found in the tables of the additional material website
(See footnote 3).

As can be seen in the figure, there are 6 horizontal lines that correspond to
the C4.5, CTC and Bagging algorithms (pruned(continuous lines) and unpruned
(dash doted lines) versions), for which the consolidation percentage parameter
does not affect. The rest of the curves (lines) correspond to results of the PCT-
Bagging variants: on the one hand, the continuous lines on the diagonal of the
figure ranging from 0 nodes (0%) to 36.4 (100%) that correspond to the partial
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Fig. 1. Average values of the number of internal nodes for the 33 datasets

consolidated tree values (as expected, all of them coincide in their values and,
therefore, all appear one on top of the other in the figure. Their names have
been removed from the legend due to space problems) and, on the other hand,
the dashed lines starting from 7.22 (0%) and varying up to 36.4 (100%), which
correspond to the average value of the number of internal nodes of all the trees
of the PCTBagging ensemble (marked with (Avg) in the legend).

The ‘Level by level’” variant of PCTBagging requires further explanation. The
number of levels to be developed is indicated based on a percentage value with
respect to the total number of levels in the consolidated tree. In order to show
the results of this variant together with the other variants where the results vary
according to the percentage of consolidated nodes (not levels), for each value of
the percentage of levels we have counted the number of nodes that the partial
tree has and calculated the percentage that this value represents with respect
to the total number of nodes in the tree. For example, for the 33 datasets, the
consolidated trees with 10% of the levels partially developed have on average
1.03 internal nodes, what corresponds to 2.83% of the nodes of the tree. When
developed up to 20% of the levels, they have 2.91 nodes, i.e. 7.99% of the total
nodes and for 30 % of the levels, 16.91 % of the nodes, and so on. These values
have been highlighted in Fig. 1 with a dotted line from the x-axis to the triangle
symbol that identifies the PCT-LevelByLevel in the figure.

As can be seen in Fig.1, CTC is the algorithm that obtains the simplest
trees (8.07 on average), followed by C4.5 (10.17) and then Bagging (13.41). The
partially consolidated trees of all PCTBagging variants range from 0 to 36.4, just
the size of the CTC Unpruned trees. Finally, the average size of the PCTBagging
ensemble trees, for each consolidation percentage value, does not vary much
for the 5 PCTBagging criteria used. When the consolidation percentage is 0%,
the mean value of the ensemble trees is 7.22, very close to that of the CTC
pruned. Recall here that all the trees in the PCTBagging ensemble are pruned
in this work. As the consolidation percentage increases, the average number
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Fig. 2. Average AUC values for the 33 datasets

of nodes of the ensemble trees of all the PCTBagging gets closer to the size
of the partial consolidated tree of the same PCTBagging. Finally, when the
consolidation percentage is 100%, the pruned trees associated with the ensemble
do not grow larger than the CTC Unpruned itself, as can be seen in the upper
left corner of Fig. 1.

Regarding the discriminant capacity of the compared classifiers, Fig. 2 shows
the mean AUC values obtained for the 33 datasets. The best values are obtained
by Bagging (more so for Unpruned) whereas the worst values are obtained by
C4.5 (pruned and unpruned). The pruned CTC has a good result as a simple
decision tree and the 5 variants of PCTBagging vary from the result of the
Unpruned CTC (100%) to almost the result of Bagging (0%). All PCTBag-
ging variants with a consolidation percentage below 50% perform better than
CTC. We have to remember here that Bagging is constructed with 50 bootstrap
samples and, however, all PCTBagging variants (as well as CTC itself) are con-
structed with balanced subsamples, where the number of samples used depends
on the proportion of cases of the minority class of each dataset. We believe that
this resampling is key for obtaining good results with CTC and PCTBagging in
contexts of unbalanced datasets, and it makes the results in terms of accuracy
of the minority class (True Positive Rate) increase notably. The average TPR
values of C4.5 and Bagging (pruned and unpruned) range between 64.46 and
66.64, while those of CTC and PCTBagging vary from 78.49 to 87.21 (see the
additional material website (See footnote 3) for details).

Regarding the difference in results for PCTBagging variants, for the same
value of consolidation percentage, i.e., for the same level of interpretability, Fig. 2
shows that when the consolidation percentage is low no major differences appear
but from 40% onwards they become bigger to finally converge at 100%. The
larger the partially consolidated tree, the more it affects the criteria used to
determine the next node to develop. Curiously, for values greater than 50% of
consolidation, the variant that obtains the highest discriminant capacity (based
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on AUC) is the one that uses the size of the nodes, i.e. the original variant
of PCTBagging. For values below 40%, the Pre-order criterion obtains small
improvements in its favor.

Finally, we would like to briefly mention the computational cost of the algo-
rithms measured as the construction time of the classifiers. On average for the
33 datasets, the construction time of C4.5 is 10 ms, for CTC 40 ms and for
Bagging 190 ms. The PCTBagging (without building the complete consolidated
tree) varies from 20 ms for 0% consolidation percentage to 50 ms, with hardly
any difference between the analyzed criteria.

6 Conclusions and Further Work

The consolidated tree construction (CTC) algorithm was proposed as a strategy
for obtaining a decision tree using techniques from ensembles as Bagging but
without losing interpretability. In order to increase the discriminant capacity
of this classifier, at the sacrifice of interpretability, the partial consolidated tree
Bagging (PCTBagging), allows the user to indicate a percentage of the number of
internal nodes of the consolidated tree to be built (this will provide the explana-
tion of the classification), from which the trees of the ensemble will be developed
independently as in Bagging (obtaining a greater discriminant capacity). To do
this, however, the complete consolidated tree had to be constructed first and
then the tree had to be pruned or collapsed to the number of nodes indicated
by the consolidation percentage parameter. In this work we propose to build the
partial consolidated tree directly, based on the number of nodes to consolidate
as an absolute value, without the need to build the complete consolidated tree,
and then apply Bagging. In addition, we have analyzed the effect of using up to
5 different criteria for choosing the next node to develop in the partially con-
solidated tree. The results show that for the same level of interpretability, the
discriminant capacity changes depending on the criterion used. The differences
are more noticeable from values higher than 30% of consolidated nodes, being the
Size criterion the one that obtains the best AUC values. The gain ratio criterion
is the one that obtains the worst values for the same level of interpretability.
As future work, we would like to analyze the behavior of PCTBagging with
bootstrap samples as used by Bagging (instead of balanced subsamples) and
compare its efficiency on both unbalanced and standard datasets. Another line
of work we want to explore is to use other ensembles, such as boosting or ran-
dom forest, instead of bagging, to be applied after the construction of the partial
consolidated tree and give rise to PCTEnsembles.
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Abstract. Nowadays, colorectal cancer is one of the most common can-
cers, and early detection would greatly help improve patient survival.
The current methods used by physicians to detect it are based on the
visual detection of polyps in colonoscopy, a task that can be tackled
by means of semantic segmentation methods. However, the amount of
data necessary to train deep learning models for these problems is a
barrier for their adoption. In this work, we study the application of dif-
ferent semi-supervised learning techniques to this problem when we have
a small amount of annotated data. In this study, we have used the Kvasir-
SEG data set, taking only 60 and 120 annotated images and studying
the behaviour of the Data Distillation, Model Distillation, and Data &
Model distillation methods in both cases, using 10 different architectures.
The results show that as we increase the number of initially annotated
data, most models obtained better results, but two of them performed
worse in the baseline case. Furthermore, we can conclude that the Data
Distillation method increases the performance of the models a 48.6%
and 30.6% on average using 60 and 120 annotated images respectively.
Finally, using only 12% of the annotated data and applying Data Dis-
tillation, the results obtained are not very far from those obtained by
training the models with the fully annotated dataset. For all these rea-
sons, we conclude that the Data Distillation method is a good tool in
semantic segmentation problems when the number of initially annotated
images is small.

Keywords: Semantic Segmentation - Semi-Supervised Learning -
Distillation methods - Gastrointestinal disease

1 Introduction

Cancer is the main cause of death in the world, with almost 10 million deaths in
2020 [22]. It is estimated that one in five inhabitants of the planet suffers from
it at some point in their life and it is expected that more than 30 new million
people will be affected by this disease by 2040 [22]. Among all the types of cancer
that exist, colorectal cancer is one of the most important, being the second most
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common in women and the third most common among men [21]. One of the
most important indicators of colorectal cancer is the existence of polyps, which
are an abnormal growth of mucous membrane tissue that lines the inside of the
gastrointestinal tract and, sometimes, can be cancerous. Early detection of these
polyps has a huge impact on the survival of people suffering this type of cancer,
so it is essential to detect and remove these polyps at an early stage [8].

The gold standard for detecting these polyps is colonoscopy [17]. In fact,
polyps are detected for almost 50% of 50-year-olds who undergo this procedure.
However, a colonoscopy is a visual test that is tedious, time-consuming, requires
expert knowledge, and is subject to clinician bias and inter-observer variation. In
addition, several studies manifest that between 14% and 30% of polyps are not
detected using this procedure [24]. Therefore, the use of different techniques that
allow the automatic detection of polyps at an early stage can play a crucial role
in the prevention of colorectal cancer and patients’ survival. This polyp detection
can be seen as a semantic segmentation problem, which consists of assigning each
pixel in the image a predefined label [7], in this case polyp or background.

Currently, deep learning methods are the state of the art approach to address
semantic segmentation problems in medicine; for instance, deep cascade neural
networks have been used to segment gliomas in the brain from MRI images [4],
Soulami et al. used a U-Net model to segment mammograms [20], and, finally,
Mei et al. and Wu et al. do a survey of polyps segmentation in [14] and [25] respec-
tively. However, one of the main barriers to successfully apply these deep learning
methods is the need of a large amount of annotated data. This annotation pro-
cess means a considerable effort for experts. A solution proposed in the literature
to deal with this challenge is the use of semi-supervised methods that allow us to
extract knowledge from annotated and unannotated data, reducing the amount
of annotated data necessary to train these models [27]. Among semi-supervised
methods, distillation methods are a well known technique widely applied in clas-
sification problems [12]; however, its application in the context of semantic seg-
mentation is not straightforward. In some works, distillation techniques have
been used for semantic segmentation problems, for instance, in [1] Amirkhani et
al. applied a teacher-student approach via multi teacher knowledge distillation;
You et al. [26] developed a framework that employs unsupervised training using
Contrastive Voxel-Wise Representation Distillation to increase the performance
of models in semantic segmentation problems; a knowledge distillation method
using a novel loss term for solving unpaired multi-modal segmentation was devel-
oped in [5]; and a pixel-wise similarity distillation module that utilises residual
attention maps to capture more detailed spatial dependencies across multiple
layers was proposed in [6]. In most of these papers, a teacher-student-based app-
roach is used, in which a large model, teacher, is trained on a large dataset and
its knowledge is distilled to a smaller model, student, on the target problem.
However, there are not many examples where two semi-supervised techniques
(data distillation and model distillation) widely used for image classification are
applied to deal with semantic segmentation problems.

In this paper, we conduct a study of different distillation methods applied to
the context of polyp segmentation. In particular, the contribution of this work is
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threefold. First, we study the performance of several state-of-the-art segmenta-
tion models when applied to polyp segmentation working with a small amount
of images. Second, we study three semi-supervised learning techniques based on
the distillation method to analyse the improvement that can be achieved for
polyp segmentation. Finally, all the code associated with this project has been
publicly released in GitHub' so the proposed methods can be applied to other
contexts.

The rest of the paper is organised as follows: in Sect. 2, we describe the bio-
logical and computational materials and methods employed in our work. Subse-
quently, in Sect. 3, the results of the experiments are presented and discussed.
The paper ends with a section with the final conclusions and the further work.

2 DMaterials and Methods

2.1 Dataset

As we have explained in the introduction, the objective of this work is to test
the performance of distillation techniques when applied to the semantic seg-
mentation of polyps. To this aim, we have selected the widely used Kvasir-SEG
dataset [13].

The Kvasir-SEG dataset has 1,000 colonoscopy images with polyps, from the
Kvasir-V2 dataset [16], see Fig. 1. These images range in size from 332 x 487 to
1920 x 1072 pixels, and images are encoded using JPG compression. For their
annotation, a team was formed with an engineer and a doctor who manually
outlined the margins of all the polyps in the 1,000 images. The annotations were
subsequently reviewed by an experienced gastroenterologist. These annotations
were exported to a 1-bit colour depth image, with the polyp in white and the
background in black, see Fig. 1. This data is organised into two folders: one for
the images and another for the corresponding masks, each data sharing the name
and encoding (JPG).

In order to evaluate the different methods we have randomly selected 20
images that form our test set. With the remaining 980 images, we have conducted
two experiments. In the first experiment, we have randomly picked 60 images
that form our training set, having a typical split of 75-25 train-validation, leav-
ing the remaining 920 images unlabelled and used for applying semi-supervised
learning methods. In the second experiment, we have proceed in the same way
but randomly picking 120 images for training, having a split of 85-15 train-
validation.

2.2 Base Training Procedure

We have studied the behaviour of 10 different semantic segmentation networks,
see Tablel. All the networks used in our experiments are implemented in
Pytorch [15], and have been trained thanks to the functionality of the FastAlI
library [10] using a GPU Nvidia RTX 2080 Ti with 11 GB RAM.

! https://github.com/adines/polyp-semi-seg.
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Fig. 1. Example of an image of the Kvasir-SEG dataset on the left and its respective
mask on the right. The black colour on the mask represents the background and the
white colour represents the segmented polyp.

Table 1. Segmentation architectures and backbones used int his work along with their
FLOPS and parameters.

Architecture | Backbone | FLOPS (G) | Parameters (M)
CGNet CGNet 1.4 0.5
DeepLabV3+ | ResNet50 | 14.8 28.7
DenseASPP | ResNet50 | 14.1 29.1
FPENet FPENet |0.3 0.1
HRNet hrnet_w48 | 36.6 65.8
LEDNet ResNet50 | 2.5 2.3
MANet, ResNet50 |29.1 147.4
OCNet ResNet50 | 16.9 35.9
PAN ResNet50 | 13.6 24.3
U-Net ResNet50 | 48.5 13.4

In order to train the models, we have used the transfer-learning method pre-
sented in [10]. This is a two-stage procedure that starts from a model pretrained,
and can be summarised as follows. In the first stage, we replace the head of the
model (that is, the layers that give us the classification of each pixel of the
image), with a new head adapted to the number of classes of each particular
dataset. Then, we train these new layers (the rest of the layers stay frozen)
with the data of each particular dataset for two epochs. In the second stage,
we unfreeze the whole model and retrain all the layers of the model with the
new data for twenty epochs. In order to find a suitable learning rate for both
the first and second stages, we select the learning rate that decreases the loss
to the minimum possible value using the algorithm presented in [19]. Moreover,
we employ early stopping based on monitoring the Dice coefficient, and data
augmentation [18] (using flips, rotations, zooms and lighting transformations) to
prevent overfitting.
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2.3 Distillation Methods

In this work, we have analysed different semi-supervised methods based in dis-
tillation [23]. In particular, we will compare three different methods: Data Dis-
tillation, Model Distillation, and Data & Model Distillation; these methods are
based on the notions of self-training and distillation.

Self-training is a basic approach that (1) defines a base model that is trained
on labelled data, (2) uses the model to predict labels for unlabelled data, and,
finally, (3) retrains the model with the most confident predictions produced
in (2); thus, enlarging the labelled training set. In a variant of self-training
called distillation [9], a big model is used for (1) and (2), whereas a faster and
smaller model than the model trained in (1) is employed in (3). Data and model
distillation are also two forms of self-training. In the case of Data Distillation [11]
(1) a base model is trained, (2) this model is used to label new images using
multiple transformations of each image, and (3) a new model is trained in both,
the initial labelled images and the automatically annotated images in (2), see
Fig. 2. In the case of Model Distillation [2] (1) several models are trained in the
initial annotated images, (2) these model are ensembled to label new images,
and (3) a new model is trained in both, the initial labelled images and the
automatically annotated images in (2), see Fig.3. Both techniques can also be
combined in a technique called Data & Model Distillation [11], see Fig.4. In
order to train both the base models used in the semi-supervised methods and
the target models obtained from Step (3), we have used the two-phase training
procedure explained in the previous section.
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From the proposed distillation methods, we have conducted the following
semi-supervised learning experiments. First of all, we have tested the perfor-
mance of the aforementioned semantic segmentation networks when the number
of annotated data is scarce. In the second experiment, we have applied Data
Distillation by taking as base model the best model obtained in the previous
approach and using 5 different transformations (horizontal flips, vertical flips,
horizontal and vertical flips, blurring and gamma correction). In the third experi-
ment, we have used a combination of the three models with the best performance
in the first approach; that is, we applied Model Distillation. The fourth exper-
iment uses Data & Model distillation; that is a mixture of the previous two
approaches, based on the three best models of the first approach and the 5 trans-
formations used in the Data Distillation. Finally, we have tested the performance
of the networks using the full annotated data set, to see what is the maximum
performance that could be obtained with each network. These experiments have
been compared using the Dice coefficient [3] that is defined as follows:

2|ANB
Dice score (A, B) = A||—|—|B||

where A and B are the ground truth and the predicted area respectively.

3 Results

In this section, we show the results obtained in the different experiments. We
have carried out the first block of experiments using only 60 annotated images
as a training set and, leaving the rest of the images unlabelled to evaluate the
distillation methods. In view of these experiments, see Table2, we can confirm
that the models are not accurate when applying plain training with a small
dataset of images, being HRNet the only model that achieved a Dice score over
65%. We focus now on the results obtained by the different distillation methods.
We can conclude that the Data Distillation method increases the performance of
most models greatly (48.6% on average). In particular, the U-Net architecture
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increased its performance a 183.5% reaching a dice score of 73.95%; this fact
is due to the large size of the network and the need for a greater number of
data for its training. On the contrary, the Model Distillation and Data & Model
Distillation approaches did not improve the results of the models, worsening
the performance of the models in almost all cases. This may be because, by
combining the predictions of 3 base models, which have a low Dice score (HRNet
65.87, CGNet 57.63 and MANet 56.35); the annotations obtained are not correct
and worsen the performance of the new trained models.

In the second set of experiments, we have worked with 120 annotated images
as a training set, twice as many as in the previous case, to check whether increas-
ing the number of initially annotated images also improves the performance of
the models and distillation methods. As we can see in Table 3, if we increase
the number of initially annotated images, the base performance of the models
improves in almost all cases, with the exception of DenseASPP and FPENet.
Furthermore, the same pattern is repeated as in the previous case, obtaining
good results in the case of the Data Distillation method, but not for the Model
Distillation and Model & Data Distillation methods. Namely, with the Data Dis-
tillation method, an improvement of 30.6% on average with respect to the base
training is again obtained. The best results are again obtained using the U-Net
architecture and the Data Distillation method.

Table 2. Dice coefficient for each architecture and each distillation method, using 60
annotated images. Best result is highlighted in bold face.

Model Baseline | Data Dist. | Model Dist. | Data-Model Dist.
CGNet, 57.63 73.34 14.9 37.42
DeepLab 44.58 68.5 37.37 34.01
DenseASPP | 46.94 70.45 0 0
FPENet 46.98 61.88 39.52 44.27
HRNet 65.87 | 66.62 14.5 3.22
LEDNet 38.47 69.05 29.8 17.75
MANet 56.35 70.71 0 0
OCNet 42.67 67.47 29.98 3.13
PAN 44.72 33.83 7.49 9.12
U-Net 26.08 73.95 43.27 0.8
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Table 3. Dice coefficient for each architecture and each distillation method, using 120
annotated images. Best result is highlighted in bold face.

Model Baseline | Data Dist. | Model Dist. | Data-Model Dist.
CGNet 58.51 74.89 44.11 51.88
DeepLab 50.61 79.3 41.8 42.95
DenseASPP | 41.23 74.83 41.79 36.06
FPENet 38.63 66.97 31.55 42.38
HRNet 70.11 72.14 46.13 21.12
LEDNet 39.88 50.77 4.45 17.99
MANet 60.18 70.74 43.07 3.6
OCNet 44.94 68.95 6.72 5.4
PAN 59.45 37.01 0.01 9.2
U-Net 76.98 79.45 36.2 34.56

Finally, we have compared the performance of the methods studied in the
first two experiments with respect to training the models with the fully anno-
tated dataset. Specifically, in Table4, we show the best result obtained by each
model in each of the experiment blocks compared to the value obtained when
training such a network with the fully annotated dataset. In view of these results,
we can conclude that in most cases as we increase the number of images initially
annotated, we obtain better results, with increases of up to 15.8% in the best
case. Furthermore, in many cases the result obtained with 12.24% of the anno-
tated dataset, 120 images, is close to the result obtained when training the same
model with the fully annotated dataset.

Table 4. Comparison of the best results obtained with 60 annotated images, 120
annotated images and the fully annotated dataset (980 images). Best result highlighted
in bold face.

Model 60 Images | 120 Images | Full

CGNet 73.34 74.89 89.32
DeepLab 68.5 79.3 86.84
DenseASPP | 70.45 74.83 72.32
FPENet 61.88 66.97 78.81
HRNet 66.62 72.14 72.43
LEDNet 69.05 50.77 47.36
MANet 70.71 70.74 65.22
OCNet 67.47 68.95 86.25
PAN 44.72 59.45 36.06
U-Net 73.95 79.45 89.33
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4 Conclusions and Further Work

In this work, we have studied the application of different distillation techniques;
namely, Data Distillation and Model Distillation techniques, to the semantic
segmentation of polyps. Firstly, we have verified that as we increase the number
of initially annotated data, the performance of the models is improved. Secondly,
we have shown that the Data Distillation method serves to improve the initial
models by increasing the performance of the models by an average of 48.6% with
respect to the baseline training when using 60 annotated images, and by 30.6%
when using 120. Finally, we can conclude that using only a 12% of the annotated
data and applying Data Distillation, the results obtained are close from those
obtained by training the models with the fully annotated dataset, and even
in some cases improving them. For all these reasons, we can conclude that the
Data Distillation method is a good tool in semantic segmentation problems when
the number of initially annotated images is scarce, as occurs in many problems
in the biomedical field. On the contrary, the results obtained with the Model
Distillation and Data & Model Distillation methods show that these methods
are not useful in this context.

In the future, we want to study how semi-supervised methods can help in
other semantic segmentation problems where annotated data is scarce. In addi-
tion, we want to create a tool that allows users to use these semi-supervised
methods in a simple way.
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Abstract. E-commerce has become an essential aspect of modern life,
providing consumers globally with convenience and accessibility. How-
ever, the high volume of short and noisy product descriptions in text
streams of massive e-commerce platforms translates into an increased
number of clusters, presenting challenges for standard model-based
stream clustering algorithms. Standard LDA-based methods often lead
to clusters dominated by single elements, effectively failing to man-
age datasets with varied cluster sizes. Our proposed Community-Based
Topic Modeling with Contextual Outlier Handling (CB-TMCOH) algo-
rithm introduces an approach to outlier detection in text data using
transformer models for similarity calculations and graph-based cluster-
ing. This method efficiently separates outliers and improves clustering
in large text datasets, demonstrating its utility not only in e-commerce
applications but also proving effective for news and tweets datasets.

Keywords: Short Text Stream Clustering - Contextual Outliers - Bert

1 Introduction

The surge in online shopping has spotlighted the critical role of product descrip-
tions in e-commerce platforms, where clear and informative descriptions sig-
nificantly influence consumer decisions and enhance user experience. However,
the vast and diverse nature of these descriptions, often generated by numer-
ous users across various marketplaces, introduces a significant challenge. These
user-generated descriptions are not standardized and frequently include abbrevi-
ations, leading to a complex array of data that requires sophisticated handling.

Clustering is a pivotal technique in managing product descriptions, serving
multiple purposes such as product recommendation, efficient product grouping
for search engines, and fraud detection systems. Among the clustering methods,
Latent Dirichlet Allocation (LDA) [1-4] has gained traction for unsupervised
clustering tasks.

Guided by the Brazilian NF-e Project, which manages unstructured, noisy,
short-text data in e-commerce environments, Andrade et al. [5] proposed the
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Topic Model with Contextual Outlier Handling (TMCOH), which enhanced the
application of LDA for clustering, with a focus on contextual outlier detection.
It utilizes pre-trained DistilBert embeddings to enhance its clustering capability.
However, their evaluations indicate that leveraging this pre-trained model does
not yield significant comparative improvements compared to TFIDF.

We introduce CB-TMCOH, a novel approach based on TMCOH, which
employs community cluster formation to address contextual outliers. By group-
ing such outliers based on contextual similarities, we enhance outlier detection
and management using fine-tuned DistilBert embeddings for similarity analysis.

This paper is organized as follows. We review related work in Sect. 2, present
our method in Sect. 3, and detail our experimental study and dataset in Sect. 4.
We report the results of our experimental study in Sect. 5 and conclude the paper
with suggestions for future research directions in Sect. 6.

2 Related Work

In the realm of clustering short text streams, two prominent areas of study
emerge similarity-based and model-based approaches. Similarity-based cluster-
ing hinges on pairwise similarities, while model-based clustering relies on statis-
tical models that define data distribution.

Recent advances, incorporating pre-trained language models like BERT [6]
coupled with clustering algorithms such as HDBSCAN [7], have showcased
promise in text clustering tasks. BERT generates contextual embeddings, allow-
ing deeper context understanding and language structure modeling [8]. These
embeddings serve as inputs for clustering algorithms. Studie [9] has demonstrated
the superiority of combining BERT embeddings and HDBSCAN for short text
clustering over traditional methods.

Latent Dirichlet Allocation (LDA) [10] is a model-based stream clustering
technique that has inspired numerous extensions to address challenges related
to topic evolution, semantic representation, and the dynamic nature of text
streams. Initially, models like DCT [11] aimed to simplify topic assignments by
assigning a single topic to each document but lacked adaptability to changing
topic counts. In response, MSTREAM [4] emerged, managing topic counts by
discarding outdated batch documents and adapting to evolving topics. However,
MSTREAM’s reliance on single-term document representation limited its ability
to navigate semantic spaces effectively, impacting cluster purity. DCSS [3] and
FASTSTREAM |[2] marked significant milestones by demonstrating superior sta-
bility and adaptability and introducing efficiency improvements, respectively.

Recent models like OSDM [1] and OSGM [12] introduced evolving term
co-occurrence matrices to capture dynamic semantic representation, present-
ing innovative approaches to understanding term relationships. Despite these
advancements, challenges in managing cluster quality and performance persist
due to data scale. Kumar et al. [13] continue with EINDM, incorporating a
context-enhanced Dirichlet approach for improved clustering accuracy, leverag-
ing window-based semantic term representations and episodic inference.
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Andrade et al. [5] introduced the TMCOH method to handle contextual out-
liers and large datasets. It integrates the Dirichlet process with contextual outlier
detection, building upon the MSTREAM model. While it excels at processing
smaller clusters and contextual outliers, incorporating BERT embeddings yielded
limited benefits.

3 Owur Proposal

In response to the limitation of TMCOH [5], we propose a new approach that
leverages the capabilities of pre-trained BERT models beyond mere embeddings.
We introduce the CB-TMCOH, a new method of detecting outliers in text data
using pairwise similarity measurements. As illustrated in Fig. 1, it operates by
taking a random sample from a collection of documents and applying the one-
pass DPMM [14] clustering method to assign initial clusters to the documents
in the sample. It then employs a combination of transformer-based similarity
evaluation and graph-based clustering techniques to identify clusters in a corpus
of documents.
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Fig.1. CB-TMCOH Method.

Algorithm 1 presents the CB-TMCOH. Initially, it compares all documents
pairwise to calculate similarity scores using a pre-trained transformer model.
These scores are then used to construct a graph, where each document represents
a node, and edges signify document similarity. The Louvain algorithm is applied
to this graph to detect clusters or communities, with a threshold determining
which pairs of documents are connected by edges. Resulting clusters are assigned
new labels, augmented by pre-existing ones to ensure uniqueness. Our method
can filter out outliers by labelling clusters that appear only once, effectively
tagging them as outliers. The algorithm concludes by providing updated cluster
labels for each document, facilitating grouping similar texts while concurrently
identifying outliers.

For sentence similarity evaluation, the CB-TMCOH method repurposes the
DistilBERT model, originally developed for general NLP tasks, to specialize
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Algorithm 1: CB-TMCOH - based on MSTREAM [4]

Input : Zl’ - documents, cs;ze - threshold for cluster size, bs;.e - initial batch size, thr -
similarity threshold

Output : Z - cluster assignments for documents

begin

1 g
2 while |d| > 0 do
— —
3 dy = Sample bg;,e from d
— 5
a Remove d; from d
5 Z = MSTREAM(dVZ) // cluster assignments for documents in bach ¢
6 for each cluster z € zZ; do
7 if |2]| < ¢csize then
8 for each document d € z do
9 ‘ Append d to d
10 end
11 Remove z from z;
12 else
13 simScores = PAIRWISESIMILARITY (2)
14 Zr, © = COMMUNITYVALIDATION(z, simScores, thr)
15 for each document d € © do
16 Append d to d
17 Remove d from z;
18 end
19 Remove z from z;
20 Append z; to z;
21 end
22 end
23 bsize = ADAPTATIVEBATCHSIZE()
24 Append 7, to Z
25 end
_
26 return 7
27 end

in sentence similarity classification. We adapted DistilBERT, which was not
initially designed for direct sentence similarity assessment, by training it on
triplets of sentences labelled with their similarity. Through fine-tuning, Distil-
BERT learned to discern semantic similarities and differences between sentences.
This effectively transformed it into a sentence similarity classifier, showcasing
the adaptability of transformer-based models for specialized tasks like sentence
similarity analysis in NLP.

4 Experimental Study

In this experimental study, we investigate the impact of integrating a BERT-
based similarity classifier on the efficacy of cluster formation using Latent Dirich-
let Allocation (LDA) methods and community analysis through the Louvain
algorithm. Our focus is on evaluating the performance of the CB-TMCOH
method and understanding how a finely tuned similarity classifier influences
community formation.

4.1 The Datasets

We used diverse real-world short text datasets listed in Table 1.
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Algorithm 2: COMMUNITY VALIDATION

Input : z - clusters, simScores - similarity scores, thr - the threshold for similarity
Output : z; - refined clusters, © - indices of outlier sentences
1 begin
2 G = EmptyGraph()
3 Add documents in z as nodes to G
4 for every pair (s1, s2) of z do
5 if simScores(s1, s2) > thr then
6 | Add edge between sl and s2 to G
7 end
8 end
9 z; = LouvainCommunityDetection(G)
10 T =
11 for each cluster z in z,. do
12 if |z| == 1 then
13 Append z to T
14 Remove z from Zz,
15 end
16 end
17 return z, 0
18 end

Namely, the two datasets referred to in Andrade et al. [5] concerning the
Brazilian NF-e Project They contain product descriptions that concisely sum-
marise invoice items, while NCM (Nomenclatura Comum do Mercosul) catego-
rize products for customs purposes. NCM codes are represented in two formats:

— NCM4: the first 4 digits of the NCM code, giving a broad product category.
— NCMS: the full 8-digit code, offering detailed classification information.

From public datasets, we utilized four real-world short text datasets, com-
prising two primary datasets and their temporal variants, as follows:

— Tweets: tweets from 269 queries from the TREC 2011-2015' microblog track.

— News: news headlines organized into 152 clusters and collect by [15].

— Tweets-T and News-T: temporal variants for the time-sensitive nature of
topics created by ordering the original datasets by topic, divided into 16
segments, and shuffled independently.

4.2 Experimental Setup

We explored various techniques and methods to assess their effectiveness in clus-
tering, focusing on LDA methods. In our case study, we evaluated clustering
performance using hyper-parameters outlined in Table 2.

We assessed results using standard metrics: Homogeneity (H), Completeness
(C), Normalized Mutual Information (NMI), and Purity (P). H measures clus-
ter purity, while C assesses class representation within clusters. NMI provides a
score reflecting the similarity between true and assigned labels. P evaluates clus-
tering quality based on dominant class proportion. Additionally, we used AIC to
evaluate tradeoff between the Homogeneity (H) and the number of clusters (K),

! http://trec.nist.gov/data/microblog.html.
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Table 1. Characteristics of the datasets, where D represents the number of documents,
K the number of clusters, V the size of the vocabulary, and “Avg Len” the average
length of the documents.

Dataset | D K %4 Avg Len
NCM4 475,565 | 706 | 3,076,252 | 6.47
NCMS8 475,565 | 2,404 | 3,076,252 | 6.47
News 11,109 | 152 | 8,110 6.23
News-T 11,109 | 147 8,110 6.23
Tweets |30,322 269 |12,301 7.97
Tweets-T | 30,322 | 265 |12,301 7.97

Table 2. Clustering Methods and Hyper-parameters

Method Hyper-parameters

MSTREAM |a = 0.07, 8 = 0.002, iterations = 1

DCSS a = 0.07, 8 = 0.002

OSDM a=0.04, =5e"*

EINDM a=0.04, =51 A=6e"% I'=—1, p=60, ¢» = 500
TMCOH Csize = 2, @ = 0.07, 8 = 0.002, bsi-e = 1000
CB-TMCOH | ¢size = 2, @ = 0.07, 8 = 0.002, bsi-. = 1000

as [16], balancing model fit and complexity for better analysis. We also report
the number of clusters (k) and the number of true labels (kTrue).

Our experimental protocol for the CB-TMCOH method employed different
strategies tailored to each dataset to ensure optimal performance. Specifically,
for the NCM4 and NCMS8 datasets, a similarity classifier was trained on 20 mil-
lion instances. A classifier similarity threshold of 0.9. For other datasets such as
News, News-T, Tweets, and Tweets-T, the similarity classifier was trained with 1
million instances. A higher classifier DistilBERT similarity threshold of 0.99 was
employed to delineate communities. For the models MSTREAM, DCSS, OSDM,
and EINDM, the selection of parameters such as a (document-topic density), 3
(topic-word density), A (decay value), I' (feature threshold), p (episodic mem-
ory), and 9 (episodic memory batch) is based on the recommendations provided
by their respective authors.

5 Results

5.1 NCM4 and NCMS8 Datasets

In our evaluation of clustering methods across datasets, we observed varied per-
formance among different LDA approaches (Table 3).

Cluster Formation: According to Fig.2, MSTREAM consistently generates a
notable number of single-element clusters, particularly evident in the NCM4
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Table 3. Performance measures obtained per dataset and by the LDA method.

Dataset | Method H C NMI | P AIC k kTrue
NCM4 | TMCOH 0.831 |0.773 | 0.801 | 0.602 | —0.678 119 |121
DCSS 0.337 [0.552 [0.413 | 0.224 | —0.660 |110 |214

CB-TMCOH 0.910|0.7770.838 | 0.796 | —0.637 | 151 |117
FASTSTREAM 0.703 | 0.626 |0.662 |0.499 | —0.335 | 379 | 214
MSTREAM 0.969 |0.690 | 0.807 |0.917 0.174 779 | 214

OSDM 0.545 | 0.513 |0.528 |0.502 | 2.131 2671 | 706
NCMS8 | TMCOH 0.839 |0.860 0.849 |0.565 | —0.678 120 |181
DCSS 0.372 |0.705 |0.481 |0.201 | —0.658 | 110 | 387

CB-TMCOH 0.914 | 0.849 | 0.880|0.783 | —0.636 | 152 |166
FASTSTREAM 0.731 | 0.750 |0.740 |0.481 | —0.337 | 378 |387
MSTREAM 0.968 | 0.796 | 0.873 | 0.899 0.175 779 | 387
OSDM 0.566 |0.597 |0.581 |0.423 |2.135 2663 | 2404

and NCM8 datasets. This suggests a tendency towards fragmented clustering.
In contrast, CB-TMCOH achieves a more balanced performance, effectively mit-
igating overly fragmented clusters while maintaining reasonable cluster purity.
However, it tends to form smaller clusters.
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Fig. 2. Comparison of cluster sizes by True Label and clustering methods for NCM4
and NCMS8 datasets at all batches.

Model Evaluation and Performance Comparison: AIC analysis highlights CB-
TMCOH and TMCOH’s superior efficiency compared to MSTREAM, indicating
better optimization of cluster numbers without sacrificing model complexity.
This underscores their ability to capture data structure effectively while avoiding
overfitting. Additionally, CB-TMCOH outperforms existing LDA methods like
TMCOH and FASTSTREAM, particularly regarding Completeness and Purity.
This demonstrates its effectiveness in grouping similar elements while ensuring
class exclusivity within clusters.

Overall Analysis: Our proposal exhibits enhanced performance over TMCOH,
showcasing a better balance of NMI and purity. However, it forms smaller
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clusters than TMCOH, indicating a nuanced clustering behaviour favouring more
cohesive groupings. CB-TMCOH maintains balanced performance across differ-
ent datasets, even in more complex clustering scenarios like the NCMS8 dataset.
This underscores its versatility and effectiveness across varied data structures.
In summary, our discussion highlights the strengths of CB-TMCOH in achieving
balanced and effective clustering outcomes across diverse datasets while acknowl-
edging its preference for smaller, more cohesive clusters. Integrating model eval-
uation with performance comparisons provides a comprehensive understanding
of CB-TMCOH’s capabilities and limitations.

5.2 News and Tweets Datasets

In this section, we analyze the clustering performance on News and Tweets
datasets, focusing on the CB-TMCOH method and its comparison with other
established LDA methods. The evaluation is consolidated into a table that offers
a view of performance metrics across these datasets.

Table 4 serves as the basis for comparing the our method against others like
DCSS, OSDM, MSTREAM, and EINDM across the News, News-T, Tweets, and
Tweets-T datasets.

Table 4. Performance comparison of various methods on different datasets

Database | Method H C NMI | Purity | AIC k kTrue
News CB-TMCOH | 0.953 | 0.867 | 0.907 | 0.895 | —0.987 | 145 |93
DCSS 0.910 |0.840 |0.873 | 0.812 | —0.680 |226 |137
OSDM 0.884 |10.823 |0.852 |0.808 | —0.414 | 292 | 152
MSTREAM |0.971 0.781 |0.866 |0.937 | —0.015 | 393 | 135
EINDM 0.917 10.782 |0.844 |0.854 |2.303 999 | 152
News-T | CB-TMCOH | 0.953 |0.871/0.910|0.897 | —1.063|148 |95
DCSS 0.912 |0.841 |0.875 | 0.819 | —0.723 |224 | 135
OSDM 0.874 |0.827 [0.850 | 0.794 | —0.419 |286 |151
MSTREAM |0.971 |0.779 | 0.865 |0.935 | 0.076 394 | 136
EINDM 0.951 |0.793 |0.865 |0.922 |2.245 870 | 152
Tweets CB-TMCOH | 0.920 |0.9220.918 |0.832 | —0.762 | 106 |92
DCSS 0.890 |1 0.869 |0.879 |0.762 | —0.606 | 231 |205
OSDM 0.891 |0.856 |0.873 1 0.830 |—0.378 |418 |264
MSTREAM |0.975|0.789 | 0.872 | 0.936 | —0.229 | 536 | 204
EINDM 0.953 |0.759 |0.845 | 0.917 |2.388 2680 | 269
Tweets-T | CB-TMCOH | 0.920 1 0.918|0.916 | 0.827 | —0.798 | 110 |95
DCSS 0.892 |0.870 |0.880 |0.766 | —0.627 |231 | 203
OSDM 0.893 |1 0.859 |0.876 |0.838 | —0.368 | 418 |259
MSTREAM |0.975|0.790 | 0.872 | 0.935 | —0.203 | 534 | 204
EINDM 0.973 |0.769 |0.859 | 0.953 |2.376 2398 | 269
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AIC: The AIC values highlight the CB-TMCOH efficiency across News and
Tweets datasets. Notably, it exhibits the lowest AIC scores, indicating an optimal
balance between data fit and model simplicity.

Batch versus Online: The analysis of AIC values and the number of clusters
reveals that while batch methods like CB-TMCOH, DCSS, and MSTREAM
show greater efficiency for batch data, as seen through lower AIC values, online
methods such as EINDM form a larger number of clusters with higher AICs
when considering the entire dataset. This distinction does not merely suggest
inefficiency on the part of online methods but highlights their capability to adapt
and respond to the full scope of continuously evolving data. Thus, when selecting
between batch and online methods, it’s crucial to weigh model efficiency within
batch data against the broader adaptability and responsiveness to the whole
dataset offered by online methods.

Overall Analysis: In the News dataset, CB-TMCOH achieves notable scores,
with an NMI of 0.907 and a Purity of 0.895, indicating its effective clustering
performance. This method excels in these metrics and demonstrates robustness
across different datasets, as evidenced by its performance in the Tweets dataset,
where it achieves an NMI of 0.918 and a Purity of 0.832.

Moreover, the table extends the analysis to include a comparison with addi-
tional LDA methods, revealing that our approach consistently performs well. It
demonstrates competitive or superior performance in NMI and Purity metrics,
particularly standing out in the News-T dataset with an NMI of 0.910 and a
Purity of 0.897. This suggests CB-TMCOH’s capability in clustering, matching
or surpassing other methods in all metrics.

6 Conclusions

The CB-TMCOH algorithm, an evolution of the previously proposed TMCOH
algorithm, effectively employs pre-trained BERT models for enhanced text data
clustering. The Louvain algorithm innovatively detects outliers through pairwise
similarity measurements and graph-based community detection. This method
efficiently handles dynamic and short content datasets, outperforming existing
LDA methods.

Our method excels in clustering complex datasets, especially in prod-
uct descriptions, compared to more straightforward news and tweet data. Its
advanced outlier detection and community identification capabilities are par-
ticularly effective in navigating the nuanced language of product descriptions,
showcasing its potential in detailed data analysis applications like e-commerce
and targeted marketing.

Acknowledgments. The authors wish to clarify that the first author received support
from Amazonas State Government/Brazil for this research project.
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Abstract. Machine learning techniques have recently transformed the
way we analyze competitive games. However, accurately detecting the
impact of different insights on match outcomes remains a challenge.
This study focuses on League of Legends, a popular multiplayer online
battle arena game known for its strategic depth and teamwork require-
ments. We aim to understand how various actions and strategies influ-
ence match results, using a dataset from professional tournaments. Fac-
tors like “building damage”, “total gold”, and “assists” are analyzed
as predictors. We employ tree-based and linear models to predict out-
comes, supplemented by SHapley Additive exPlanations for explaining
both local and global model outcomes. Our article offers a generalizable
match analysis approach, compares explainable methods, and delves into
key determinants of victory. The results, showcasing a remarkable 98.8%
accuracy with the top-performing model, provide strong support for our
conclusions, underlining their reliability.

Keywords: Performance analysis * esports - feature importance *
explainable machine learning

1 Introduction

League of Legends (LoL), a multiplayer online battle arena (MOBA) game devel-
oped by Riot Games', has become the cornerstone of competitive gaming. The
game involves two teams of five players, each aiming to destroy the opposing
Nexus, located in their base. Players choose from various Champions, catego-
rized into roles like tanks, damage dealers, and supports, reflecting the diverse
positions found in traditional sports. The gameplay takes place on the “Sum-
moner’s Rift” map, where strategic teamwork is crucial. As the game progresses,
Champions grow stronger and unlock new abilities, emphasizing the importance

of evolving strategies and team plays.

! https://www.riotgames.com.
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The impact of LolL on esports is profound, with a large global audience
and professional leagues worldwide, likening it to traditional sports in terms of
structure, sponsorship, and player development. The strategic depth and team
dynamics of the game resemble those in traditional sports, where success relies
on well-coordinated team strategies and continuous skill development. The pro-
fessional ecosystem in Lo, featuring players, coaches, analysts, and fans, mirrors
that of traditional sports, requiring similar physical and mental skills. The major
tournaments attract large audiences and significant financial stakes, highlighting
its broad appeal and economic influence in the sports world.

Victory in LoL relies on a blend of strategic execution, individual skill, and
team coordination, where success is achieved by leveraging team strengths and
exploiting the weaknesses of opponents from champion selection through in-game
strategies. Crucial elements include resource management, control of key map
objectives, and balancing aggressive tactics with strategic caution. Analyzing
player performance to identify strengths and weaknesses is vital in refining team
strategies and maintaining a competitive edge. This continual adaptation and
understanding of various factors play a fundamental role in determining match
outcomes in the dynamic environment of professional LoL [5].

In our study to identify key factors affecting outcomes in LoL, advanced
machine learning techniques such as SHAP [9] (SHapley Additive exPlanations),
tree-based models, and linear models are being utilized. SHAP is instrumental in
providing local interpretability by valuing the impact of each feature on specific
predictions, offering detailed insights into player behaviors and in-game dynam-
ics. Concurrently, tree-based models like Random Forests and Gradient Boosting
Machines analyze the global importance of features across matches to identify
consistent trends. Linear models complement these by establishing direct rela-
tionships between features and outcomes, providing clear, interpretable insights.
This integrated approach, combining local and global perspectives with linear
analysis, is designed to thoroughly uncover decisive factors in the game.

In summary, the main contributions of this paper are the following:

— A generalizable methodology for match analysis in the context of LoL.

— An extensive comparative of well-known explainable methods including a
hyperparameter optimization process.

— Consistent analysis of the key aspects that determine the victory or defeat
from global to local explanations using SHAP.

The paper is structured as follows. Section 1 introduces LoL and its impact
on esports, setting the stage for the machine learning analysis of game outcomes.
Section 2 discusses comparative studies between esports and traditional sports,
along with methodologies in esports analytics. Section 3 details the methodology,
including dataset, models, experimental setup, evaluation metrics, and analysis
workflow. Section4 delves into results, analyzing global factors’ influence, role
importance, and specific game scenarios, showcasing model effectiveness and
strategic insights. Conclusions are drawn in Sect. 5.
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2 Related Work

When exploring the relationship between esports and traditional sports, com-
parative studies have become increasingly important. These analyses explore
how traditional sports strategies, team dynamics, and performance metrics are
mirrored or differ in the esports arena, particularly in games like LoL. This
research area offers valuable information on the evolving nature of competitive
gaming and its place within the broader context of sports. In [8], a Bayesian
state-space model is introduced to differentiate team talent from randomness
across sports, providing new metrics for assessing team strength and competi-
tiveness. A framework for the evaluation of soccer players is introduced in [1],
which includes a language to describe individual actions and a method to value
these actions based on the impact and context of the game, thus enhancing the
assessment of the total offensive and defensive contributions of a player. Per-
formance indicators that differentiate winning and losing teams are identified
in [4] in both regular season and playoff basketball games, while [7] builds and
compares methods to predict the outcomes of basketball games too.

In the rapidly evolving field of esports analytics, a growing body of research is
dedicated to understanding and improving various aspects of competitive gam-
ing. In MOBA esports analytics, diverse methodologies have emerged. One study
highlights the significant impact of the “Carry” role in LoL on team performance
using logistic regression [3]. Another explores the prediction of wins in real time
in professional Dota2 matches, achieving significant accuracy with machine learn-
ing models [6]. A third study in LoL focuses on predicting match outcomes based
on the experience of the players with selected champions, using a deep neural
network to reveal the importance of individual champion skill [2].

In esports analytics for other genres, one study introduces a comprehensive
framework for player evaluation in Counter-Strike: Global Offensive, a tacti-
cal shooter, utilizing advanced data models and graph measures [12]. Another
explores the use of multi-agent reinforcement learning in StarCraft II, with the
AlphaStar agent achieving the highest level, showcasing the potential of Al in
complex gaming environments [11].

3 Methodology

In this section, we detail the methodology adopted for our analysis of LoL
matches, structured into five key subsections: Dataset, Models, Experimental
Settings, Evaluation Metrics, and Workflow. Initially, in Sect. 3.1, we delve into
the specifics of the dataset we have gathered. This is followed by Sect. 3.2, where
we detail the analytical models employed. Subsequently, Sect.3.3 covers our
experimental setup, including the data preparation strategies and the division
process to train and test the models. Section 3.4 outlines the metrics we have
chosen for assessing the performance of our models. Lastly, Sect. 3.5 provides a
comprehensive overview of our data processing workflow, illustrating the step-
by-step approach taken in our analysis.



Explaining LoL. Competitive Success: A Machine Learning Analysis 187

3.1 Dataset

The dataset for this study was sourced through the public Riot API, encompass-
ing both regional and international LoL tournaments from 2019 to the present.
Each match in the dataset provides comprehensive details, including the partic-
ipating teams, key statistics such as match start time, duration, winning team,
total kills, and captured structures. Additionally, the dataset offers in-depth
player-specific data, such as the position played by each player along with their
main performance metrics.

Teams start on either the Blue side (bottom left corner) or the Red side
(top right corner), with slight map differences affecting strategies and objective
control. The game features five main roles: Top Laners, often durable fighters or
tanks, hold the isolated top lane; Mid Laners, typically high-damage or control
mages, occupy the central lane with access to the whole map; Junglers roam
the space between lanes, securing neutral objectives and assisting lanes; Bot
Laners, which usually focus on dealing physical damage from the bot lane; and
Supports, paired with Bot Laners, provide utility through healing, vision, and
crowd control.

The dataset is balanced, showing an even split of match outcomes between the
Blue and Red sides, ensuring unbiased analysis and model training. It includes
the five main roles (Top, Mid, Jungle, Bot, and Support), providing a thorough
coverage of the game dynamics and player strategies for in-depth analysis.

3.2 Models

Some of the most common and high-quality models used during experimentation
have been selected from simpler to complex ones.

Decision trees (DT) are a fundamental algorithm in machine learning that is
intuitive to understand and interpret. The hyperparameters selected to optimize
are: maximum depth [1, 100], splitter [best or random], and criterion [entropy,
log loss, or gini].

Random Forest (RF) is an ensemble learning method that constructs multi-
ple decision trees trained on a random subset of features and aggregates their
predictions. The hyperparameters selected to optimize are: Number of estimators
[10, 500], maximum depth [1, 100], and criterion [entropy, log loss, or ginil.

SGD is an iterative optimization algorithm commonly used to train machine
learning models which, in our case, is a linear model. The hyperparameters
selected to optimize are: loss function [hinge, log loss, huber, or squared hinge],
penalty [11 or 12], and regularization factor [0.001, 1].

A perceptron is a single-layer neural network with binary output (0 or 1) that
is used for binary classification tasks. The hyperparameters selected to optimize
are: penalty [I1 or 12], regularization factor [0.001, 1], and maximum iterations
[5, 50].

XGBoost is an optimized gradient boosting library that builds an ensemble
of weak learners sequentially. The hyperparameters selected to optimize are:
Number of estimators [10, 500] and maximum depth [1, 100].
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3.3 Experimental Settings

The dataset was divided, with 80% randomly selected for training and the
remaining 20% allocated for testing. To prepare the data for analysis, the statis-
tics of each player were transformed into differential values compared to their
corresponding opponent in the same position. The data were then normalized
using the MinMax scaling method. Furthermore, a stratified k-fold validation
approach was used in the training set, with k set as 5, to ensure that each fold
is a good representative of the entire dataset, providing a more reliable and
unbiased evaluation of the performance. This method is particularly useful for
maintaining the proportion of samples for each class, which is crucial in datasets
with unbalanced class distributions.

3.4 Evaluation Metrics

To assess the quality of the models, we have chosen efficacy and efficiency metrics.

We chose accuracy as our efficacy metric for its simplicity and direct reflec-
tion of model performance, given our balanced dataset. Training time, measured
in minutes, was selected to evaluate efficiency, considering the practical need
for frequent model updates in esports analytics. These metrics offer a succinct
evaluation of model effectiveness and computational demands.

3.5 Hyperparameter Optimization

To finalize the methodology, we summarize the optimization process aimed at
obtaining the best models.

We have chosen Bayesian optimization [10], a widely used method to optimize
hyperparameters. This choice is motivated by its recent remarkable results in
the literature and its proven performance. Bayesian optimization constructs a
probabilistic surrogate model of the objective function and iteratively selects the
next point for evaluation by balancing exploration and exploitation. In our case,
we have selected the upper confidence bound acquisition function, with a value
of A of 2.576, known for its generally good performance.

For each dataset and model, the optimization process begins by sampling
combinations of hyperparameters from distributions specified in Sect. 3.2. Subse-
quently, a model is created, fitted, and evaluated for each fold using the sampled
hyperparameters. Subsequently, the efficacy metrics are calculated and averaged
across folds, and the top configuration is selected for each model. Finally, the
best models are evaluated on the test set, and the Shapley values are obtained.

4 Results

In this section, the results of the analysis are divided into four sections. Firstly,
Sect. 4.1 summarizes the efficacy and efficiency obtained from the best models.
Section 4.2 evaluates the most important factors that influence games. Second,
Sect. 4.3 evaluates the importance of every role. Finally, Sect.4.4 shows two
specific examples in which the games were unbalanced and balanced, respectively.
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4.1 Best Models

Table 1 presents the optimal metrics achieved by each model in terms of accuracy
and time to fitting. Our methodology utilizes a stratified k-fold approach for
evaluation, hence the inclusion of standard deviations across the folds for each
metric.

Table 1. Efficacy and efficiency metrics for the best models. Note that the standard
deviation of the k-fold evaluation is reported between parenthesis.

Model Accuracy (%) | Fit time (m)
XGBoost 98.8 (£ 0.2) |1.35 (£ 0.03)
Random Forest | 98.5 (£ 0.2) |9.47 (£ 0.14)
SGD 98.1 (£ 0.2) |0.05 (£ 0.01)
Decision tree | 96.5 (£ 0.5) |2.30 (£ 0.12)
Perceptron | 80.8 (£ 12.7) | 0.08 (& 0.03)

The XGBoost model performs best, boasting an impressive approximate
accuracy of 99%, with a standard deviation of 0.2%. This suggests consistent
results in different folds. Although the random forest model demonstrates simi-
lar efficacy, its fit time is significantly longer, approximately seven times that of
the XGBoost model.

Both the SGD and DT models achieve commendable results, showcasing com-
petitive efficiency. Interestingly, despite both being tree-based methods, the DT
model takes longer to train compared to XGBoost. On the contrary, the Percep-
tron yields the least favorable results with the highest variance. This suggests
sensitivity to hyperparameters, which makes it unsuitable for this particular
problem.

4.2 Global Analysis

Figure 1 illustrates the significance of the top 15 features after applying the
methodology, organized by their average Shapley values. Each feature is labeled
with the game position it references, shown in parentheses. The color and inten-
sity of the points represent their values, while their position on the x-axis reflects
the Shapley value. Negative Shapley values indicate a contribution to the blue
team, whereas positive values denote a contribution to the red team.

Globally, we can categorize features into two types: those that contribute
positively to their team and those that have a negative impact. For example,
a team member who inflicts more damage to buildings or accumulates higher
total gold is likely to perform well, while a high number of deaths suggests
poorer performance.
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Fig. 1. Top global feature importances for the best models on the test set.

Specifically, damage to buildings and total gold appear to be the most influ-
ential features, reflecting a summary of player performance. It is noteworthy that
player assists seem to carry more weight than kills, suggesting a game emphasis
on strategic plays benefiting the team rather than individual advantages.

It is important to recognize that the impact of features is not consistent across
the board. For example, in Damage to buildings (bot), there are instances of
high values with positive impacts and vice versa. This suggests that the impact
is contingent on the performance of other team members, indicating that good
individual performance may not necessarily lead to victory.

As the best method used was a tree-based model, Fig. 2 shows the importance
of the features based on the information gained. In this context, the most influ-
ential features are Assists and the total gold of the support. Generally, the most
critical features align closely with those in Fig. 1, albeit with a different ranking.
It is crucial to note that while this importance is related, it is not identical to
Shapely values.

4.3 Role Analysis

In this section the influence of every position is studied. For that purpose, the
influence calculated by the Shapley values for every sample of every position in
the test set has been averaged.
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Fig. 2. Top global feature importances based on the importance gain of the XGBoost
model.
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Fig. 3. Top global feature importances based on the averaged Shapley importance by
role.

Figure3 shows a bar plot with the average value and its 95% confidence
interval is represented as an error bar. We can observe that the most important
position in this case is the “bot” lane. This is the expected result, as this role
usually is in charge of causing most of the damage in the fights and determining
the results. The mid and top positions have a similar importance as they also
have an important role in the fights causing damage or being the tank. Lastly, the
jungle and support positions seem to be less relevant to determine the victory.

4.4 Local Analysis

In this case, the analysis is performed in two specific matches from the test
set. Specifically, an unbalanced and a balanced match are shown in Fig.4. The
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unbalanced match studies a scenario where the importance sum of the most
important features is the maximum, while the balanced one considers the
minimum.

Fig. 4. Shapley values for unbalanced (left) and balanced (right) games.

In the unbalanced game on the left figure, it seems that the most common
features are total gold and damage to buildings as expected. However, the most
important role in this case was the “top” lane with a gold difference of 4041
compared to its opponent. This differs from the general analysis performed pre-
viously, where the role of “bot” was more important.

Even though we were looking for a game where the influence of the most
important features were minimal in the balanced game, these features still appear
but with remarkably less importance. However, the combination of many other
features has a great impact on the game for the red team. This seems to indicate
that, in difficult games, the features that usually have less importance increase
their impact on the result of the match.

5 Conclusions and Future Works

In this work, the key factors that influence the outcomes in League of Legends
(LoL) matches are analyzed using advanced machine learning techniques. Using
a dataset from LoL tournaments and several well-known models, the study ana-
lyzes the results of matches, identifies influential factors, and assesses the impor-
tance of the role.

The results show that the XGBoost model performs best, achieving an
approximate accuracy 99%, with features such as damage to buildings and total
gold emerging as crucial determinants of match outcomes. Role analysis reveals
that positions such as “bot” (Bottom lane) have a significant impact, underscor-
ing the importance of strategic positioning and performance.

Future work will explore how success factors evolve over the years and impact
outcomes at various game stages. We also plan to create a dynamic, fair ELO
system, refining team and player performance assessment by incorporating new
metrics and adjusting for key factors.
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Abstract. Unsupervised time series anomaly detection is a common
tasks in many real world problems, in which the normal/anomaly labels
are extremely unbalanced. In this work, we propose to use three genera-
tive models (namely, a basic autoencoder, a transformer autoencoder
and a diffusion model) for a reconstruction-based anomaly detection
pipeline applied to failure detection in wind turbine operation time series.
Our experiments show that the transformer autoencoder yields the most
accurate reconstructions of the original time series, whereas the diffu-
sion model is not able to obtain good reconstructions. The reconstruc-
tion error, which is used as an anomaly score, seems to follow different
distributions for the anomalies and for the normal data in 2 of the 3
models, which is confirmed by our quantitative evaluation. The trans-
former autoencoder is the best performing generative model, achieving
a AUC score of 0.98 in the detection of the anomalies. However, the
same result is obtained by standard (i.e. non-generative) outlier detec-
tion algorithms, exposing that although the anomalies in this problem
are sequence anomalies — with a temporal nature —, they can be effec-
tively modeled and detected as point outliers.

Keywords: Time series - Anomaly detection + Generative models -
Reconstruction - Wind Turbine

1 Introduction

Time series data mining [1] is a increasing research topic due to the vast amount
of temporal data collected everyday in a diversity of application domains. Some
examples of real-world time series include the evolution of a market in finance,
the monitoring of vital sings of a patient in the medical domain, or measurements
taken by sensors from a industrial process or asset [2].

Time series data mining involves various tasks aimed at extracting meaning-
ful patterns, trends, and insights from sequential data points over time. The most
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popular tasks include time series forecasting [3], classification [4], clustering [5]
and anomaly detection [6]. This work focuses on time series anomaly detection
(hereafter referred to as TSAD), defined as the task of identifying patterns in
time series data that significantly deviate from their expected normal behavior.

TSAD is a challenging task that nowadays generates great interest among
researchers and practitioners due to the complexity of the task itself and the
variety of strategies proposed to tackle it effectively. First it is important to note
that the concept of anomaly can be broadly defined in time series data. As such,
anomalies can be categorized into multiple groups depending on several charac-
teristics: regarding the nature of the anomaly, they can be semantic anomalies
or non-contextual anomalies. For instance, in the renowned NYC taxi demand
dataset studied in [7], semantic anomalies are defined as the increase of taxi
demand in particular days such as thanksgiving or Christmas. Non-contextual
anomalies refer to those that do not take into account information from external
sources and only consider a data-driven perspective. Depending of the length
of the anomaly we may encounter point anomalies, sequence anomalies or time
series anomalies. Point anomalies refer to single outlier points that do not follow
the normal distribution of the data. Sequence anomalies are specific for time
series and refer to patterns or subseries that do not conform to the statistical
pattern of the time series. In the case of time series anomalies, the time series as
a whole is identified as an anomaly, that hence can only be detected when the
input data consist of multivariate time series.

One of the most popular applications of TSAD is failure detection in remote
systems that are subject to minimal or even null human supervision. In this
setting, it becomes paramount to devise data-based pipelines to automatically
identify failures from data, so that on-site inspections of the faulty asset can
be performed. This is the case of wind turbines, which are often installed in
remote areas due to their wind regime and its potential to produce wind energy.
However, the distant location of wind turbine deployments often comes along
with the necessity to endow these installations with the capability to diagnose
their operation autonomously, so that maintenance and repair visits are only
scheduled when needed.

In the above context, this work addresses a sequence anomaly detection prob-
lem formulated over wind turbine real-world time series for the detection of over-
heating failures. The main contribution of the study is the exploration of mod-
ern deep generative models for the detection of these anomalies in an unsuper-
vised learning fashion. To this end, we thoroughly describe these models, and show
experimentally that the reconstruction error is a reliable indicator of the anomaly
score needed to make a decision on their anomalous nature. We further com-
pare these models and other non-generative outlier detection techniques in terms
of detection performance, concluding that even if we deal with sequence-based
anomalies, they can be effectively modeled as point outliers by non-generative
approaches, achieving higher detection scores than their generative counterparts.
Our results suggest that further study is needed towards mapping the statisti-
cal characteristics of the anomaly to be detected and the effectiveness of TSAD
choices. The rest of this work is organized as follows: in Sect. 2 we provide a short
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background on wind turbine failure detection and time series anomaly detection.
Then, Sect.3 presents the methodology followed in our experiments. Section 4
presents and discusses the results of our experiments. Finally, Sect. 5 draws con-
clusions and some research lines departing from our findings.

2 Background

In this section, we provide a brief introduction to TSAD (Sect. 2.1), followed by
a comment on some relevant works related to the detection of failures in wind
turbines (Sect.2.2). Finally, we cast the contribution of this paper within the
reviewed literature.

2.1 Anomaly Detection in Time Series

TSAD is a long-standing research topic in the literature, in which a plethora
of different approaches have been contributed to solve this problem. In gen-
eral, TSAD methods can be grouped into statistics-based, classification-based,
forecasting-based and reconstruction-based methods [16].

On one hand, statistics-based methods are classical unsupervised learning
approaches that define an anomaly as a value that significantly deviates from the
normal distribution of the data. Methods that follow this first strategy include
techniques hinging on time series decomposition or extreme value theory [17].
Since anomaly data is usually very scarce, supervised methods would require spe-
cific methods for extremely unbalance data. As such, classification-based meth-
ods often rely on a semi-supervised approach, in which the normal distribution
of the data is learnt with a one-class classifier, so that anything that deviates
from this learned distribution is considered an anomaly. An example that follows
this methodology is the One-Class SVM (OCSVM). Forecasting-based methods,
instead, rely on the assumption that the error of the prediction made by a fore-
casting method in an anomalous point is higher that the error of the prediction in
a normal point. A example is the proposal by Pena et. al in [18], where ARIMA
forecasters are used for anomaly detection. Lastly, reconstruction-based method,
mostly employ deep neural networks that learn to reconstruct inputs for anomaly
detection. In those approaches, the network is learnt over the normal time series,
assuming that the reconstruction error would be higher for the anomalies than
for the normal points. The most popular reconstruction-based TSAD methods
include autoencoders (AE) [19], while generative networks such as generative
adversarial networks (GAN) [20] have also been satisfactorily applied, mostly
over well-known synthetic benchmarks.

2.2 Failure Detection in Wind Turbines

Predictive maintenance is one of the most relevant tasks in the wind energy
sector due to the high cost of unplanned downtimes and the reparation of some
assets. The increased monitoring of all components in a wind turbine and the
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proliferation of sensors in these assets have resulted in a great amount of collected
data. As a result, Al methods for predictive maintenance and failure diagnosis
have progressively become prevalent in real-world setups [8].

From the algorithmic perspective, the author of [9] states that almost 60%
of methods proposed in the literature use classification, while the rest rely on
regression. In the specific task of failure detection, most of the proposed methods
employ statistical o classical approaches [10] such as PCA or wavelet transform
[11], or standard classification models [12]. More recently, deep learning based
methods have been proposed for failure detection problems [14]. Most of these
methods employ a forecasting based approach for the detection of failures [15].
To the best of our knowledge, only a single work has proposed a reconstruction-
based approach for gearbox failure detection [13]. Failure detection in wind tur-
bines has not been approached yet with modern generative Al methods.

Contribution: This work explores, for the first time in the literature, the use of
modern generative models for reconstruction-based time series anomaly detec-
tion for wind turbines overheating failure diagnosis. A second differential aspect
of our work w.r.t. related literature is the comparison of such generative mod-
els against other non-reconstruction based anomaly detectors. As shown by our
results, the relatively better performance of non-generative anomaly detectors
serves as a catalyst for future research towards establishing a connection between
the nature of the anomaly to be detected and the adequacy of one TSAD app-
roach or another.

3 Methodology

The methodology used in this work to detect the failures in wind turbine time
series is based on the reconstruction error. This is an unsupervised approach, in
which the distribution of normal time series is learned by using deep generative
neural networks. Specifically, we first split the time series in sub-sequences by
sliding window. Then, the distribution of normal time series is characterized
by training a generative model using only windows that contain non-anomalous
data. Lastly, the reconstruction error is computed for some time series in the test
set that contains anomalies and normal data. Our hypothesis is that anomalies
should yield larger reconstruction errors than normal sub-sequences.

In particular, three deep generative models are considered is this work: a
basic autoencoder (BAE), a transformer autoencoder (TAE), and a diffusion
model (DM):

— BAE: The basic autoencoder aims at compressing the input data into a
low-dimensional latent space, and at decoding this representation back to the
original space. The BAE is composed of an encoder with two one-dimensional
convolutional layers with ReLLU activation and dropout, and a decoder with
the same structure but with transposed convolutional layers. It is trained to
minimize the Mean Squared Error (MSE) distance between the original time
series and their reconstructions.
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— TAE: The transformer autoencoder is a variant of BAE that uses the Trans-
former architecture instead of conventional neural networks. In this case, the
architecture begins with a linear layer, followed by a positional encoding layer.
The encoder consists of a transformer encoder layer, and the resulting encoded
memory is then summarized by taking the mean along the time dimension.
The decoder utilizes a similar structure with a transformer decoder layer.

— DM: Diffusion models are the most novel generative networks, having gained
great momentum in the current landscape of text-to-image modeling. These
networks successively add Gaussian perturbations to the input data, until
the input becomes pure Gaussian noise. Then, a denoising neural network
recovers the original data by inverting the noise process back to the original
input. The denoising network is a U-Net with classic ResNet blocks and a
weight standardized convolutional layer.

4 Experimental Setup and Results

This section provides a detailed description of the dataset employed (Sect. 4.1),
the experimentation setup (Sect. 4.2), and the presentation and discussion of the
obtained results (Sect.4.3). All the source code and experimentation details are
available at Gitlab!.

4.1 Dataset

Our dataset is extracted from the SCADA data of a real-world 2MW wind
turbine. It comprises a longitudinal 3-dimensional time series, where the three
dimensions refer to average value of three parameters measured in a wind tur-
bine: wind speed, mechanical torque in the generator shaft and nacelle tem-
perature. They are 10-minutely measurements of 5years between 2016 and
2021, containing some missing data. The distribution of normality and failure
points is extremely unbalanced, with only 15 anomaly sequences. These anomaly
sequences are of different lengths, from 50 min to 6 h.

4.2 Experimental Evaluation

For the experimentation, the data is first partitioned to yield train and test par-
titions taking into account the temporal nature of the data (i.e. by sequence, not
by point). Moreover, the split should be in such a way that in the train partition
there are only non-anomalous points, while in the test set there are normality
and anomaly points. Lastly, the train set should be significantly larger than
the test set. Taking into account all these restrictions, we define the partition
manually, taking for the test the 15 anomaly sequences and one month forward
and one month backward of each anomaly. Thus, we obtained a partition such
that the train partition contains 115,462 measurements, while the test contains
59,875 measurements (including the 15 anomalous sequences).

! https://git.code.tecnalia.com/amaia.abanda/berezia_anomaly _diffusion.
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The evaluation metric employed to measure the performance of the different
methods is the Area Under the Receiver Operating Characteristic curve (AUC).
This is the area under the ROC curve, a representation of the trade-off between
true positive rate (sensitivity) and false positive rate (1-specificity) at various
threshold settings. A higher AUC value, closer to 1, indicates better discrimina-
tion, while an AUC of 0.5 suggests performance comparable to random chance.
The AUC metric is particularly useful when dealing with imbalanced datasets
or when the specific choice of the classification threshold is not critical. Hence,
given a reconstruction error for each point, the ROC is computed for different
thresholds in the reconstruction error to compute the AUC.

To avoid any bias in the comparison, the hyper-parameter of the models
have been tuned. The hyper-parameters to be optimized in the case of the BAE
and TAE are: the batch size in the set (32,64,128), the window size in the set
(60,120, 240) and the learning rate within (le —7,1e — 5, 1le — 3). In the case of
the DM, we have also optimized the noise steps and denosing steps within the
values (20, 50,100). We have set the maximum number of epochs to 1000, but
with a early stopping if the loss does not improve in the last 50 epochs. We have
performed a random hyper-parameter search, selecting for each model the best
configuration, namely: for the BAE a learning rate of le-5, a window size of 120
and a batch size of 32; for the TAE, a learning rate of le-5, a window size of 120
and a batch size of 128; and in the case of DM, a learning rate of le-3, window
size of 240, batch size of 64, 50 noise steps, and 100 denoising steps.

4.3 Results and Discussion

Each model has a different reconstruction strategy, which may lead to difference
anomaly detection performance scores. To delve into this, we first discuss on
Fig. 1, which shows some examples of the reconstruction errors reported by the
considered models in a particular instance of the test set (in the three dimen-
sions). It can be observed that the model that most accurately reconstructs
the time series is TAE, followed by BAE. DM fails to achieve accurately recon-
structed versions of the depicted time series which, as is next presented, gives
rise to poor detection statistics.

The following step in our discussion on our experiments consists of visualizing
the distribution of the reconstruction error of the normal points and the anomaly
points in the test set (Fig. 2). In these plots we notice that, in the case of BAE and
TAE, the distribution of the reconstruction error in the anomalies is centered
in the right tail of the distribution of the normal points. This suggests that
the anomalous points follow a different distribution, and hence should be easily
identified. In the case of DM, instead, the distribution of the error in the anomaly
points seems to follow the same distribution as the normal points, so in line with
our previous intuition, we can expect DM to perform worse when isolating the
anomalies from the data corresponding to the regular operation of the asset.

Lastly, we have performed 10 repetitions of each method with its best hyper-
parameter configuration in order to account for the randomness of their training
procedure. In order to have a comparative with other types of anomaly detection
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Fig. 1. Reconstruction error reported by the BAE (top row), TAE (middle row) and
DM (bottom row) for the three dimensions of a time series in the test set.

methods, we have performed the same experimentation with some benchmark
outlier detection algorithms [21]: Histogram-base Outlier Detection (HBOS),
Cluster-based Local Outlier Factor (CLOF), Isolation Forest (IFORST) and
One-Class SVM (OCSVM). Table1 shows the mean AUC and the standard
deviation (between parenthesis) of each model with the best configuration. As
expected, among the generative models TAE is the best performing model, fol-
lowed by BAE. As expected, DM obtains the worst performance within all the
considered methods. Interestingly, the benchmark methods attain very compet-
itive results, since all outperform DM, while 3 out of 4 outperform two of the
generative models.

With the aim of visualizing in detail the behavior of each model, Fig. 3 dis-
plays the mean and standard deviation of the ROC curves among 10 repetitions.
The dark line indicates the mean ROC value over 10 repetitions, while the shaded
region denotes the standard deviation. The curves of HBOS and OCSVM are not
shadowed because they are deterministic and, thus, their results do not variate
among iterations.
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Fig. 3. ROC curves for the proposed models.

It can be seen that although some methods obtain similar AUC scores, the
curves are different. TAE is the model that reaches the best false positive and
true positive ratio (in the upper left corner). In the same manner, the curves
show that HBOS works better for the false positive rate region than BAE, while
BAE achieves better true positive rates than OCSVM. Benchmark models do
not consider the temporal information since they consider each tuple of points
(Torque average, nacelle temperature, wind speed) independently. In this way,
the good performance of these models indicate that, in this problem, it is nec-
essary to consider the anomalies neither as temporal nor as sequence-based, but
rather as point anomalies.

5 Conclusions and Future Work

In this work, we have explored modern generative models for a reconstruction-
based anomaly detection in wind turbine operation. The anomalies refer to
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overheating failure in the wind turbine, and as often in real-world problems,
the dataset is highly unbalanced. In this context, an unsupervised reconstruc-
tion based approach is specially suitable, since the model is learned using only
normal data. Specifically, three generative models have been considered: a Basic
AutoEncoder (BAE), a Transformer AutoEncoder (TAE) and a Diffusion Model
(DM). The underlying idea of the proposed approach is that, since the genera-
tive model learns the normal distribution of the data, the reconstruction error
should be higher in anomaly points than in normal points.

The results show that TAE and BAE can accurately reconstruct the origi-
nal time series, while DM does not obtain accurate reconstructions of the input
data. Our experiments validate our hypothesis: different reconstruction error
distributions for the anomalies are obtained by BAE and TAE, while for the
DM the anomalies and normal points seems to follow the same distribution. The
discussed experimentation results also conclude that the generative model that
obtains the best anomaly detection performance is TAE, followed by BAE and
lastly DM. However, TAE obtains the same AUC score than some benchmark
outlier detection algorithms. Since these baselines do not consider any tempo-
ral information when detecting anomalies, the main conclusion drawn from our
study is that it is not strictly necessary to consider the anomalies of this specific
real-world problem as temporal anomalies. In other words, even if the anomalies
are known to be sequence anomalies, the experimentation show that they can
be modeled as point outliers, since the temporal information provided within
the generative models does not improve the performance obtained by simpler
benchmark techniques.

In this context, an interesting future direction of research could be to study
the matching between each type of anomaly and the anomaly detection strategy
that suits best to accurately detect it. In this sense, having a proxy that helps
the user to choose a model given a anomaly detection dataset could be very
useful for real-world applications.
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Abstract. Human action monitoring is a tool that could help improve
performance and efficiency in industrial assembly. Monitoring actions is
a very complicated task to solve due to the complexity of the tasks to
be classified added to the lack of data within the sector. Human action
monitoring in the industrial environment is a complex problem to per-
form due to the difficulty of differentiating very complex tasks. Current
methods are able to solve the problem of simple tasks while having diffi-
culties during task transitions. Our approach aims to solve the problem
of action classification in the industrial domain using deep learning mod-
els. By creating a multi-label classification model, we obtain a multi-label
accuracy of 94.48% on a set of 12 tasks in the assembly of an industrial
tool. The lessons learned in this work can serve as a basis for the con-
struction of deep learning models for classifying complex actions in real
time of industrial assembling tasks.

Keywords: Human monitoring - Deep Learning + Image
classification - Multi-label classification

1 Introduction

Human action recognition is an active field that has considerably growth in
the last few years thanks to the advancements in deep learning methods [12,
16], and the wide-spread usage of low-cost video cameras [10]. Human action
recognition has applications in many areas including video-surveillance, safety
and smart home security, ambient assisted living and health-care. The field of
assembly task recognition in industrial environments could also benefit from
human action recognition tasks to improve efficiency, effectiveness, and safety,
as well as enhance cooperation between humans and cobots [1,5,14]; however,
research in this field is limited due to the lack of public datasets, the similarity
of the tasks that are studied and the complexity of these tasks that often require
the manipulation of parts and tools.
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In the literature, we can find several projects that aim to address the com-
plexities of recognizing actions in the dynamic environments of task recognition
in industrial environments. One notable project by Wang et al. used a CNN
to directly predict actions from individual frames; however, a drawback of this
approach is that it does not take into account temporal information and the
absence of consideration for transitions between actions, as it relies on a sin-
gle label per frame during training [15]. Another approach, proposed by Zhang
et al., focused on mitigating the issue of action transitions by employing a bi-
stream CNN; but, their method omits a preliminary step to extract the person’s
skeleton, which could introduce noise in action recognition [18]. Finally, Lee et
al. presented a compelling idea by collecting skeletons over multiple frames to
generate an RGB image for action recognition; despite its innovativeness, the
approach’s reliance on a single label during network training poses challenges
in predicting action transitions [6]. The limitations of these works underscore
the need for more robust methods that consider both temporal dynamics and
accurate feature extraction for enhanced action recognition in industrial settings.

To address the limitations identified in existing approaches for task recogni-
tion in manufacturing, a multi-label approach from videos emerges as a crucial
solution. While prior projects have made noteworthy attempts using CNNs to
predict actions directly from individual frames, in this paper we propose an
approach based on a multi-label classification of a sequence of frames from an
assembly task. In particular, the contributions of this paper are:

— We propose a methodology to convert a sequence of frames to a single image
based on the positions of the skeleton of a worker in an assembly task.

— From the aforementioned images, we conduct a study of several multi-class
and multi-label models to classify the action (or actions) conducted on the
sequence of frames associated with the image.

— Finally, we publicly release all the code and models in https://github.com/
ManuGar/Multi-label classification.

The rest of this paper is organized as follows. In the next section, we present
the dataset of videos from an assembly task used for our experiments, the method
used to convert a sequence of frames from those videos into images, and the
training process used to train the multi-class and multi-label models from those
images. Subsequently, we analyse the results obtain by those models. The paper
ends with the conclusions and further work.

2 Materials and Methods

In our work, we have used the Human Action Multi-Modal Monitoring in Manu-
facturing (HA4M) dataset [2], a collection of multi-modal data relative to actions
performed by different subjects building an Epicyclic Gear Train (EGT). The
assembly of an EGT involves three phases (Fig.1): first, Blocks 1 and 2 are
assembled separately and then they are combined. The EGT is made up of a
total of 13 components: eight components to build Block 1, four components to
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build Block 2, and a cover to assemble Block 1 and Block 2. Finally, two screws
fix the two blocks with an Allen key, thus obtaining the EGT. In Fig. 1, the two
supports used to facilitate the assembly of each block are also shown. The total
number of actions to build the EGT is 12; namely, there are four actions for
building Block 1: pick up/place carrier (action 1), pick up/place gear bearings
(action 2), pick up/place planet gears (action 3) and pick up/place carrier shaft
(action 4); four actions for building block 2: pick up/place sun shaft (action 5),
pick up/place sun gear (action 6), pick up/place sun gear bearing (action 7)
and pick up/place ring bear (action 8); and four actions for assembling the two
blocks and completing the EGT: pick up block 2 and place it on block 1 (action
9), pick up/place cover (action 10), pick up/place screw and pick up allen key
(action 11), turn both screws, return allen key and the EGT (action 12). Some
actions are performed several times as there are more components of the same
type to be assembled: actions 2 and 3 are executed three times, whereas action
11 is repeated twice. Finally, a “don’t care” action has been added to include
transitions or unexpected events such as the loss of a component during the
assembly process.

Block 1 Block 2
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Planet Gear ° u Allen Key
fing Bear Bt J
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Fig. 1. Components of the EGT that is built on the HA4M dataset.
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The dataset consists of 217 videos where one person appears assembling the
EGT (note that only a person appears per video) and each frame of the dataset
is annotated with one of the 12 actions previously explained. The dataset divided
into 80% for training and 20% for testing in such a way that the same person
cannot be in both sets simultaneously. The acquisition of the videos was carried
out with a depth camera, specifically a Microsoft Azure Kinect, which allows
simultaneous acquisition of RGB and depth images, and also automatically gen-
erates the skeleton associated with the person who appears in the recording.
Using the skeletons provided in the dataset, we propose a method to construct
an RGB image from a sequence of frames based on the approach proposed on the
Skepxels project [7]; the main difference with that approach is that our method
focuses on the top part of the body since the bottom part of the worker is covered
by a table (see Fig.2) and therefore such information can be ignored.
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Fig. 2. Frames of two different scenarios in the HA4M dataset.

In order to convert a sequence of frames from the H4AM dataset to an image,
we proceed as follows. Given a sequence of frames Fy, ..., F,, (where n > 1), and
So, - - -,9, the skeletons associated respectively with each frame, we build an
RGB image of size n x 45 where the i-th row of the image corresponds with
the skeleton S;, and each column represent a joint of the skeleton. Joints are a
set of key points from the skeleton (see Fig. 3) that serve to represent a specific
body part storing its three-dimensional coordinates (X, Y, Z). In our case, after
normalizing the spatial coordinates to the range between 0 and 255, they are
used to represent a pixel value in the RGB colour space. As we have previously
mentioned, only the joints from the upper body provide relevant information for
our problem, and to build the row associated with a skeleton; namely, they will
be traversed in a specific order to keep information about which joints are more
related to each other. Given the skeleton S;, the route of the joints will begin
at the naval spine; it will reach the neck, go through the left arm, return to the
neck, head and finally the right arm. With this route there are some joints that
appear several times but that are necessary to give us information about what
other joints they are related to. Once the tour has been completed, we obtain a
list of 45 3D points that form the i-th row of the image.

It is worth noting that the proposed method can be applied to sequences of
frames of any length; therefore, a study was conducted to determine the number
of frames to use in order to build the images. The study consisted of calculat-
ing the mean and mode of the frames it takes for the tasks to be performed.
The results obtained were 77 frames for the mean and 38 frames for the mode.
Another parameter to consider when translating videos into images is the stride;
that is, the number of frames that will be skipped to generate the next image.
In other words, if the first image represents from frame 0 to 76, using a stride
of 20 frames, the second image will represent from frame 19 to 96; and so on.
Based on this study, we have built two different datasets. The former consist of
images containing 77 frames and the latter contains 38 frames per image; in both
of them, we have used a stride of 20 frames. In order to annotate the images,
we consider two versions per each dataset: a multi-class dataset and a multi-
label dataset. In the multi-class dataset, each image is annotated with the class
associated with the majority of frames that form it; whereas, in the multi-label
dataset, each image is annotated with the set of classes associated with all the
frames that were used to build it. Finally, the division of the dataset is given
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Fig. 3. Figure of the skeleton and joints captured by the Microsoft Azure Kinect
camera.

by the original division from the source dataset having 80% of the images (7543
images in 77 frames dataset and 25112 images in 38 frames dataset) for training
and 20% for testing (2783 images on 77 frames dataset and 7726 images on 38
frames dataset).

From the generated dataset, we have trained several multi-class and multi-
label models. In both cases, we have used 5 convolutional architectures:
Hrnetw [13], ResnetRS [4], Convnext [8], Resnest [17], and EfficientNet [9]. All
models are implemented in Pytorch and have been trained using the function-
ality of the Fastai and Timm libraries on an Nvidia RTX 2080 Ti GPU. The
heads of these architectures have been adapted respectively to the multi-class and
multi-label task (the difference between these approaches is that in multi-class
classification, the prediction is about a problem with several different classes;
whereas the multi-label classification refers to the fact that images can belong
to more than one class). In order to train the models, we have used the transfer-
learning method presented in [3]. This is a two-stage procedure that starts from
a model pretrained in the ImageNet challenge, and can be summarised as fol-
lows. In the first stage, we replaced the head of the model (that is, the layers
that give us the classification of the images), with a new head adapted to the
number of classes of the dataset. Then, we trained these new layers (the rest of
the layers stayed frozen) with the data of each particular dataset for two epochs.
In the second stage, we unfreezed the whole model and retrained all the lay-
ers of the model with the new data for 300 epochs. In order to find a suitable
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learning rate for both the first and second stage, we used cyclical learning rates
for optimisation [11]. Moreover, we employed early stopping based on monitor-
ing the accuracy. Finally, in order to evaluate the models, we used the accuracy
and F'l-score for evaluating both the multi-class and multi-label models. All the
code used for training these models is available at the project webpage.

3 Results

In this section, we explain the results obtained with the two versions of the
dataset and for the multi-class and multi-label tasks. We start by analysing the
results obtained for the multi-class classification problem for both the 77 frames
dataset and the 38 frames dataset, see Table 1. For the 77 frames dataset, the
models exhibit varying levels of performance being ResnetRS the model that
consistently outperforms the rest in both frame settings in terms of accuracy
(77.97%) and F1 score (73.37%); the Hrnet model also performs quite well,
showing competitive results. A more fine-grained analysis of the errors produced
by the ResnetRS model can be seen in the associated confusion matrix, see Fig. 4.
From such a confusion matrix, we can notice that the model is able to distinguish
among the majority of the classes; however, the model gets confused with tasks
pick up/place Screw and pick up Allen key (action 11), and turn both screws
(action 12); two really similar actions.

If we focus now on the reduction from 77 frames to 38 frames, this generally
means a slight increase in the accuracy for most models; the exception is the
ResnetRS model that experiences a significant drop in accuracy from 77.97% to
63.23%. The increment in the results might happen due to the fact that an image
coming from 38 frames usually contain 1 action; whereas images coming from 77
frames are generated from frames representing multiple actions. Hence, in this
context when working with a multi-class setting is usually better to work with
images generated from less frames even if this means a longer training process
since more images are generated.

Table 1. Results for the multi-class classification task.

77 Frames 38 Frames
Accuracy | F1 score | Accuracy | F1 score
ResnetRS | 77.97 73.37 |63.23 65.03
Convnext | 67.37 61.87 68.42 63.04
EfficientNet | 66.37 58.77 68.96 64.57
Resnest 67.19 62.63 69.07 64.87
Hrnet 68.95 63.79 69.47 65.11

Focusing now on the multi-label problem, we analyze the results obtained,
see Table 2. For the 77 frames dataset, the models obtain similar results in terms
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Fig. 4. Confusion matrix for multi-class classification problem. Left. Results with
ResnetRS model on the dataset of 77 frames per image. Right. Results with Hrnet
model on the dataset of 38 frames per image.

of multi-label accuracy, with Hrnet being the model with the best accuracy
(94.48%). However, we see a variation in performance in the F1 score metric.
The model with the highest F1 score is Resnest (67.11%). The rest of the models,
except for Convnext (56.32%), also obtain good performance in this metric. A
more fine-grained analysis of the errors produced by the Hrnet model can be
seen in the associated task prediction process, see Fig.5. We can see that the
model is able to clearly distinguish the shorter tasks. However, it starts to have
more difficulty in predicting the longer tasks (pick up block 2 and place it on
block 1 (action 9), pick up/place cover (action 10), pick up/place screw and pick
up allen key (action 11), turn both screws, return allen key and the EGT (action
12)).

Table 2. Results for multi-label classification

77 Frames 38 Frames
Accuracy | F1 score | Accuracy | F1 score
ResnetRS |94.31 65.81 52.36 61.32
Convnext | 93.52 56.32 47.75 57.13
EfficientNet | 94.06 63.45 51.25 60.94
Resnest 94.42 67.11 55.92 66.29
Hrnet 94.48 66.46 53.02 65.23

Regarding the 38 frames dataset, we see that the results decrease both in
multi-label accuracy and F1 score. In the case of accuracy, the reduction is
notable, going from 94.48% in Hrnet to 55.92% in Resnest. In terms of F1 score,
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e

Fig. 5. Task prediction process performed throughout the video of a part assembly.

we also appreciate a slight decrease in the results, except for Convnext which
improves from 56.32% to 57.13%. In this case, it can be seen that the mod-
els trained on the 38 frames dataset have not been able to correctly learn to
differentiate between tasks or the transitions between them.

4 Conclusions and Further Work

In this paper, we have addressed the problem of assembly task classification in
the industrial domain using two different approaches, one based on multi-class
classification and the other in multi-label classification; as far as we are aware,
this is the first time that the multi-label approach has been used for human mon-
itoring of assembly tasks. In order to use state-of-the-art classification models
in our context, we have proposed an approach to convert a sequence of skeleton
frames into an image based on the position of the joints of the skeletons. The
results achieved with our methods show that it is interesting to use the multi-
label approach because the models are able to obtain more temporal information,
which helps them in predicting the transition between tasks. Hence, this work is
a step towards the development of models that can predict the action that are
conducting the workers so a cobot might help them.

As future work, we have to study the possibility of providing more informa-
tion to the models so that they are able to differentiate those tasks that are
similar. Additionally, it would also be interesting to develop explainability mod-
els to provide users with more information about what is being done. Finally,
we are interested in implementing our models in a real scenario, for this we want
to provide more information about the execution time. In this way we can check
the performance of the models to make modifications to the models so that they
work in real time.
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Abstract. Embryo selection is an indispensable step to ensure the suc-
cess of in vitro fertilization. There are two techniques to perform embryo
selection: preimplantation genetic screening and embryo morphological
grading. However, even with these techniques, the embryo implantation
probability is barely 65% making extremely difficult to evaluate their
implantation potential. This is mainly due to the lack of markers, and
the subjectivity associated with experience, judgment, and training of the
embryologists. Computer vision and deep learning methods can help to
automatically identify those markers with methods such as the segmenta-
tion of the embryo structures to offer detailed, quantitative, and objective
assessments; and with that, information to predict the pregnancy outcome
of embryos. In this paper, we present different methods capable of seg-
menting the components of an embryo (namely, the Trophectoderm, the
Inner Cell Mass and the Zona Pellucida) with Dice scores ranging from
0.85 to 0.89, and openly release the code so that anyone can use it and
replicate the results. These models are a first step towards a more objec-
tive evaluation of the embryos’ implantation potential.

Keywords: In vitro fertilization - Blastocyst segmentation - Semantic
Segmentation

1 Introduction

Infertility is a problem worldwide that affects between 10 and 15% of all cou-
ples, and both men and women [10]. In vitro fertilization (IVF) is an effective
solution which keeps on growing despite the negative trend in the birth rate [10].
Given the importance of this technique, a great research effort has resulted in
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

A. Alonso-Betanzos et al. (Eds.): CAEPIA 2024, LNAI 14640, pp. 213-222, 2024.
https://doi.org/10.1007/978-3-031-62799-6_22


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62799-6_22&domain=pdf
http://orcid.org/0000-0002-1457-4270
http://orcid.org/0000-0003-2564-6038
http://orcid.org/0000-0001-8741-6452
http://orcid.org/0000-0003-4775-1306
https://doi.org/10.1007/978-3-031-62799-6_22

214 M. Villota et al.

enormous advances in both IVF techniques and procedures. However, there are
still many unknowns in this field, such as, the embryo selection [5,25]. In such a
process, several eggs are fertilized to compensate for the fact that not all embryos
develop with implantation potential [5], and they are cultured until they reach
the blastocyst stage (5 or 6" day after fertilization). The blastocyst is the first
morphologically differentiated state of the embryo, wherein cellular structures
are arranged in four regions: the Zona Pellucida (ZP), the Trophectoderm (TE),
which surrounds the Blastocoel (BC) and the Inner Cell Mass (ICM) [20] (see
Fig.1).

Fig. 1. Blastocyst Structure

Once the fertilized eggs reach the blastocyst stage, there are two techniques
for selecting which embryos will be implanted. The former is known as Preim-
plantation Genetic Screening (PGS), an excellent method for predicting non-
implanting embryos [17]. However, the use of this technology remains low due to
its cost [17] and its invasive nature — cells are taken from the embryo at a very
early stage and it is possible that cells with important genetic material are col-
lected, making the embryo unimplantable. Therefore, when using this technique,
it is extremely important to avoid cells from the ICM because they will be the
cells of the embryo’s body [19]. Due to these reasons, the current standard for
embryo selection is embryo morphological grading, a technique based on visual
inspection of morphological characteristics and development rate of blastocyst
structures [5]. Unfortunately, the criteria employed in embryo morphological
grading are not clearly established, and they are based on experience, judgment,
and training of the embryologists; making this process completely subjective.

This lack of knowledge has a strong impact on the success of the process, since
the probability of pregnancy of an embryo with the best characteristics barely
exceeds 65%. These data are less encouraging when considering the success of
the pregnancy (only 50% of the embryos considered as excellent end with a
birth). These probabilities are even lower when considering embryos of poorer
quality [25]. Hence, it is necessary to search for a quantitative and objective
evaluation procedure for embryo selection in order to increase the probability
of success. Computer vision methods can help towards that aim. A first step
to reach such goal is the automatic identification of different structures of a
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blastocyst stage embryo in order to obtain detailed information of the embryo
and thus be able to perform a quantitative analysis; and this is the goal of this
paper. In particular, the contribution of this work is threefold.

— To analyze several image processing algorithms and deep learning methods
to segment different structures of a blastocyst stage embryo.

— To replicate state-of-the-art works for the segmentation of different structures
of a blastocyst stage embryo whose code was not publicly released.

— To open-source all our code at https://github.com/mavillot/Blastocyst-Seg;
so, it can help in embryo selection research.

2 Related Work

Despite the importance and growing influence of IVF, the research works that try
to make more objective this process are not very numerous and can be divided
into two distinct lines of research: one through image processing techniques, and
the more recent one using Deep Learning models.

The works on image processing techniques use classical algorithms such as
active contour models [11], textures [16], watershed segmentation [21], the level-
set method [4] or ellipse fitting methods [24]. In those algorithms, different
thresholds and parameters are manually fixed, making generalization to images
with different properties possible but very costly since it is a matter of finding
parameters that work with these new properties. Another disadvantage of those
algorithms is that there is not a single method able to perform simultaneous
detection of multiple structures; and, therefore, for each structure there is a
different procedure.

A recent approach to deal with the drawbacks of the classical image pro-
cessing methods, is the usage of convolutional neural network. In [3], five binary
images were generated per blastocyst image and they propose a neural network
that classifies each pixel into these 5 classes (ZP, TE, ICM, BC and background)
according to a feature vector. In [1], a multiscale aggregation semantic segmen-
tation network was trained for segmenting all the components of a blastocyst.
In [12], a deep Hierarchical Neural Network for segmenting the ZP was proposed.
Hua Wang [22] used the I2C module for segmenting the ZP, TE and ICM. A two
layer feedforward backpropagation neural network was trained using the derived
features of discrete cosine transform coefficients in [8]. Harun implemented a
deep neural network based on the Residual Dilated U-Net for segmenting the
TE and ICM [6] and Kheradmand et. al proposed a Fully Convolutional Net-
work to segment the ICM [7]. Finally, [18] proposed a segmentation of the TE
using a Retinex algorithm. As a summary of the results achieved in these works,
most of use the dataset from [24] for training, reaching performances that range
from 0.64 to 0.74 in the Jaccard index for the ZP structure, from 0.59 to 0.85 for
the TE, and from 0.48 to 0.89 for the ICM structure. Among their limitations,
we can mention the absence of code and models to replicate the results (except
for [1]), also most of the studies do not segment all the blastocysts’ components
but just focus on only one or two structures, and, finally, they have been trained
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with the only public database (except for [3]) so they suffer from the domain-
shift problem. In this work, we address the former two limitations, whereas the
latter remains as further work.

3 Materials and Methods

In this section, we present both the dataset and computational methods used in
our work.

3.1 Data Source

As in most studies available in the literature on the segmentation of blastocyst
structures, we have employed the dataset presented in [24]. This database con-
sists of 249 images of blastocyst stage embryos manually annotated by experts
from the Pacific Centre for Reproductive Medicine (PCRM) in Canada. The
annotations consist of the segmentation of three different regions (ZP, TE, ICM)
of the blastocyst, a classification of the degree of TE and ICM, and also the out-
come of implantation. This dataset does not present any split, therefore, each
paper performs a different training-test division; but usually, a division of 85%
for training and 15% for test is conducted [6,13], and the same percentages are
used in our work.

From such a dataset, and following the two existing lines of research, we
have performed blastocyst segmentation using both image processing methods
and deep learning methods.

3.2 Proposal Description

First of all, we have replicated the image processing pipeline proposed in [16,24]
using Python as programming language, and publicly released the code. Here,
we briefly provide an overview of the method. Specific details can be found in
the original paper, and our implementation in our GitHub repository. The pro-
posed method is unsupervised since it does not require a training process, and
consists of three different procedures (one per structure). For the ZP, the points
of the inner and outer contour of the ZP are obtained by performing different
operations on the image, including phase congruency in 6 orientations, convex
hull, Canny edges and Watershed segmentation; subsequently, those points are
fit by least squares to an ellipse for the inner contour of the ZP and another for
the outer contour. Once both ellipses have been calculated, the ZP is perfectly
delimited as the region between the inner ellipse and the outer ellipse. For the TE
and ICM structures, the first steps of the segmentation procedure are common.
Namely, the image is divided into small regions using the Watershed segmen-
tation algorithm, and then the segmented regions are classified based on their
texture into two classes: textured or smooth. Biologically, TE always appears
at the edge of the blastocyst and ICM in a more central position; therefore,
textured regions adjacent to the inner edge of ZP are associated with TE and
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textured regions in the center are associated with ICM. These regions will form
the seeds to segment TE and ICM. In the case of the TE, all regions that have
low intensity and are connected to the TE seed are aggregated, and the edges
of the formed area are extracted using the edge linking algorithm developed by
Kovesi [9]. For the ICM structure, regions are iteratively added to the ICM seed
if they verify a texture-based similarity condition and a 8-connectivity condition.

In addition, we have analyzed several deep learning architectures for segment-
ing the blastocyst structures. The state-of-the-art results based on this kind of
methods were obtained by an autoencoder architecture proposed by Harun [6]
that is able to segment both the TE and ICM at the same time. However,
neither the code or the models associated with such a work are available. There-
fore, we started by replicating and open-sourcing such an architecture using the
Keras framework — the hyperparameters used to train this models were a 0.05
in dropout, a learning rate of 10™%, and loss function and callbacks that were
proposed in [6].

Moreover, we also trained different models using three standard segmentation
architectures (U-Net [15], Hrnet [23], and DeepLab [2]) implemented in Pytorch.
The three models were trained for 45 epochs using an NVIDIA GeForce RTX
3060 GPU. These three models are trained to segment the three blastocysts’
structures at the same time.

3.3 Experimentation Setup

First, since there is not a pre-defined split of the dataset, we conducted a k-fold
cross-validation [14] (with k& = 10) on the full dataset and using our implementa-
tion of the Harun’s architecture [6] to study whether different train/test set splits
make the results to vary significantly. The second part of our analysis consisted
in studying the mean and standard deviation when evaluating the 10-fold cross
validation on the testing set of all the different architectures — our implementa-
tion of the Harun’s architecture is only evaluated on the TE and ICM structures
since in the original paper did not segment the ZP structure. The next stage of
our study was focused on comparing the best trained model from each family
studied in the previous step with the results presented in the literature; in addi-
tion, we included our implemented image processing pipeline. Finally, both the
image processing pipeline and the deep learning models were evaluated using as
metrics the per pixel accuracy, precision, recall, and specificity, as well as, the
Dice coefficient and Jaccard index.

4 Results and Discussion

In this section, we show the results obtained with the methods explained above.
In Table 1 the 10-fold cross-validation in the full dataset is shown. As we can
see, there are small values for the standard deviation; so, we can conclude that
the division of the dataset does not have an impact on the performance of the
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models; and therefore, for the rest of the study we use a random split of 85% for
training and 15% for testing.

The mean and standard deviation of the 10-fold is displayed in Table 2. The
Hrnet and DeepLab models achieved the best results for the three blastocysts
structures, reaching Dice coefficient values over 0.8 in the three structures.

Table 1. 10-fold cross validation in dataset

Accuracy  Precision Recall Specificity  Dice Coeff Jaccard idx
TE 0.96+0.01 0.79+0.03 0.90=+ 0.05 0.970 £ 0.006 0.72+0.04 0.83 £ 0.03
ICM 0.974+0.01 0.87+0.04 0.74+0.08 0.994 +0.002 0.77 +0.07 0.68 £+ 0.07

However, it is worth noticing that the comparison of our methods with those
presented in the literature is not completely fair, since some of those works use
their own datasets to conduct the validation [7,8,11,18], test on 67% of the
data [12] or train on a private dataset and test on the public dataset [3]; and
none of them provide their code or models; so, here we just report the results
provided in those papers.

We start by comparing the results obtained for the ZP structure and those
presented in the literature [3,8,12] — the results presented in [24] were not
included in our comparison since they use different metrics. As can be seen in
Table 3, our segmentation models are the most accurate with a higher accuracy
and precision; besides, our Hrnet and DeepLab models obtained a higher Jaccard
index, which shows a bigger similarity between the predicted and the ground
truth masks. Nevertheless, none of our models can overcome the recall achieved
in [8]. Tt is also worth noting that all deep learning models achieved better
results than those obtained by the image processing pipeline. Finally, even if
the results obtained by Farias et al. [3] are worse than other approaches, they
trained their models with a different dataset, and validated their model in the
dataset from [24]; so that approach seems to generalize to unseen data.

Regarding the TE structure, there are several works that propose methods
for segmenting this structure, see Table 4. The best results reported in the liter-
ature are those obtained by Harun [6]; however, our replicated version of such a
model was not able to achieve the same results, although it is very competitive
with the others segmentation models. The results obtained by our deep learn-
ing segmentation models are close to those obtained by Harun’s work, and are
better than the rest of the state of the art works. In addition, even if the image
processing pipeline achieved worse results than our deep learning models, it is
competitive with the deep learning models available in the literature.

We finish this part of the study with the ICM. This structure is the most
important of the three structures, since the body of the future fetus will come
out of it; hence, its correct detection is crucial, not only to make a good grading
but also to ensure the integrity of the embryo using PGS. In the PGS procedure,
cells are taken from the embryo to make a biopsy; taking cells belonging to the
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Table 2. 10-fold cross validation in Blastocyst’s structures.

Structure | Model Accuracy Precision | Recall Specificity Dice Coeff Jaccard idx
7P Unet 0.958 £ 0.002 | 0.90 £0.01 |0.77 £0.02 | 0.989 4+ 0.002 | 0.83 +£0.01 |0.72£0.01
Hrnet 0.967 £ 0.001 | 0.93 £ 0.01 | 0.835 + 0.003 | 0.989 & 0.001 | 0.874 £ 0.003 | 0.784 + 0.004
DeepLab |0.967 +0.001 | 0.93 +0.01 | 0.83+0.01 | 0.990 £ 0.001 | 0.873 £ 0.004 | 0.78 + 0.01
TE Unet 0.958 £ 0.003 | 0.84 £0.02 | 0.77£0.02 | 0.98+0.003 |0.79+0.01 |0.67 £ 0.02
Hrnet 0.968 £ 0.001 | 0.89 £0.01 | 0.81 £0.01 | 0.987 4 0.001 | 0.843 £ 0.003 | 0.733 £ 0.004
DeepLab |0.967 +0.001 | 0.89 +0.01 | 0.81+0.01 | 0.987 £ 0.001 | 0.84 £0.01 |0.73+£0.01
Harun [6] | 0.957 £0.002 |0.79 £0.01 | 0.84 £0.04 | 0.972+0.003|0.80 £0.02 | 0.68 £ 0.02
ICM Unet 0.975 £ 0.003 | 0.89 £0.02 | 0.75 £ 0.05 | 0.993 +0.002|0.79 £ 0.03 | 0.69 £ 0.04
Hrnet 0.982 £ 0.001 | 0.90 £0.01 |0.85+£0.02 |0.993 +0.001 | 0.87 +£0.02 | 0.78 £ 0.02
DeepLab |0.982 +0.002 | 0.91 +0.01 | 0.86 +0.02 | 0.992 £ 0.001 | 0.87 £0.01  |0.79 £+ 0.02
Harun [6] | 0.968 + 0.004 | 0.85 + 0.03 | 0.67 +0.08 | 0.994 £+ 0.002 | 0.71 £0.06 |0.61 + 0.06

Table 3. Comparison of our best ZP models with the literature. Best in bold.

Accuracy Precision Recall Specificity Dice Coeff Jaccard idx

Kheradmand et al. [§]  0.92 0.80 0.81 = = 0.64
Red et al. [12] 0.95 0.79 0.91 — — 0.74
Farias et al. [3] 0.94 0.85 0.69 0.98 0.75 —

Image Processing 0.91 0.79 0.62 0.97 0.67 0.53
Unet 0.96 0.90 0.79 0.99 0.84 0.74
Hrnet 0.97 0.93 0.84 0.99 0.89 0.79
DeepLab 0.97 0.93 0.84 0.99 0.88 0.79

ICM could give rise to future viability problems; so, it is necessary that those
cells do not belong to the ICM. This condition makes recall to be the most
important metric to look at when analyzing segmentation models. Among our
models, the best results were obtained with the DeepLab architecture, which is
among the top 3 models in the state of the art.

A visual comparison of the implemented methods is shown in Table6. As a
summary, the results achieved by our models are similar or even better than those
presented in the literature. Moreover, the deep learning approach obtains slightly
better results than our image processing pipeline. However, the image processing
pipeline should not be discarded, since in such approach, when generalizing to
new images, only a parameter adjustment would be necessary; whereas for the
deep learning model it would be necessary to retrain the network with similar
images.
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Table 4. Comparison of our best TE models with the literature. Best in bold.

Accuracy Precision Recall Specificity Dice Coeff Jaccard idx

Saeedi et al. [16] 0.86 0.69 0.89 0.86 0.77 =

Singh et al. [18] 0.87 071 083 - 0.77 0.62
Kheradmand et al. [§] 0.9 0.69 0.80 — 0.74 0.59
Harun et al. [6] 0.98 0.92 0.93 — 0.92 0.85
Farias et al. [3] 0.93 0.80 0.59 0.98 0.67 =

Image Processing 0.91 0.78 0.91 0.91 0.69 0.55
Unet 0.96 0.86 0.79 0.98 0.81 0.69
Hrnet 0.97 0.89 0.82 0.99 0.85 0.74
DeepLab 0.97 0.89 0.82 0.99 0.85 0.74
Harun (replicated) 0.96 0.78 0.88 0.97 0.82 0.71

Table 5. Comparison of our best ICM models with the literature. Best in bold.

Accuracy Precision Recall Specificity Dice Coeff Jaccard idx

Saeedi et al. [16] 0.91 0.77 0.84 0.92 0.79 =

Saeedi et al. [16] with DRLS 0.93 0.84 0.78 0.96 0.83 -

Kheradmand et al. [8] 0.93 0.76 0.56 — 0.64 0.48
Kheradmand et al. [7] 0.96 - - - 0.87 0.77
Rad et al. [11] — 0.79 0.87 = 0.83 0.70
Rad et al. [13] 0.98 0.89 0.92 - 0.90 0.82
Harun et al. [6] 0.99 0.95 0.94 — 0.94 0.89
Farias et al. (3] 0.96 0.87 0.62 0.99 0.67 -

Image Processing 0.93 0.79 0.86 0.95 0.64 0.49
Unet 0.98 0.91 0.81 0.99 0.83 0.74
Hrnet 0.98 0.90 0.87 0.99 0.88 0.80
DeepLab 0.98 0.91 0.88 0.99 0.88 0.80
Harun (replicated) 0.98 0.87 0.88 0.99 0.86 0.77

Table 6. Predictions of the different methods in a test image

Ground Image

Truth Processing Unet Hrnet DeepLab Harun

7P

ICM
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5 Conclusions and Further Work

The automatic identification of the embryo structures is necessary to study their
implantation potential; and it is key to improve embryo selection techniques such
as PGS and embryo morphological grading. The methods available in the liter-
ature to carry out this task do not provide a segmentation of all the structures,
do not indicate how they have divided the dataset, nor do they provide the code
of their models.

In this work, we have studied the importance of the dataset division in train-
ing and test set; and also the consistency of the different model families trained
in our work. Our best model, based on the DeepLab architecture, achieves Dice
scores over (.8 for the segmentation of the Trophectoderm, the Inner Cell Mass,
and the Zona Pellucida. Moreover, we have publicly released the code and the
developed models, so anyone can easily replicate our results and use them for
their own research.

As further work, we want to test our tools with embryo images captured in
different conditions. Moreover, we are interested in obtaining information not
only from the embryo at the blastocyst stage but also from fertilization until
that moment. Thanks to such quantitative information, we will have tools that
help in the prediction of the implantation potential, and serve embryologists to
increase the success rate of in vitro fertilization.
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115225RB-100 funded by MCIN/AEI/10.13039/501100011033, and Agencia de Desar-
rollo Econémico de La Rioja ADER 2022-I-IDI-00015.
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Abstract. This paper contributes with an alternative to the multivari-
ate Analogue Method (AM) version, using a preprocessing stage car-
ried out by an Autoencoder (AE). The proposed method (MvAE-AM)
is applied to reconstruct France’s 2003, Balkans’ 2007 and Russia 2010
mega heat waves. Using divers such as geopotential height of the 500hPA
(Z500), mean sea level pressure (MSL), soil moisture (SM), and poten-
tial evaporation (PEva), the AE extracts the most relevant information
into a smaller univariate latent space. Then, the classic univariate AM is
applied to search for similar situations in the past over the latent space,
with a minimum distance to the heat wave under evaluation. We have
compared the proposed method’s performance with that of a classical
multivariate AM (MvAM), showing that the MvAE-AM approach out-
performs the MvAM in terms of accuracy (+1.1257C), while reducing
the problem’s dimensionality.

Keywords: Extreme climate events - Heat waves - Multivariate
method - Analogue Method

1 Introduction

In recent years, extreme weather events have become much more frequent [1]. In
particular, heat waves have increased in intensity [2] [3] [4] and persistence in an
unprecedented manner [5]. Heat waves have a severe impact on the ecosystem
[6,7], economy [8], increased mortality [9] and health [10], among others, having
regions with greater vulnerability to them [11].

Although the most addressed tasks in heat wave studies are their detection
and prediction [12], attribution and causality analysis have also received signifi-
cant attention in the last years [13]. For these last tasks, the use of the Analogue
Method (AM) [14] is widely extended. It is a technique commonly employed
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for event reconstruction or down-scaling predictions, which has been applied in
the modelling and reconstruction of heat waves [15]. In this work, we focus on
enhancing the attribution methods by using Deep Learning (DL) architectures
such as Autoencoders (AEs) [16]. Specifically, we focus on the AM for multi-
variable data. For n predictor variables, there are two main ways to handle the
multivariate version of an AM: by an n-dimensional search [14], or by an ensem-
ble of the variables [17]. The advantages and drawbacks of both approaches will
be discussed at a later stage.

The rest of the paper has been organised as follows: First, in Sect.2, we
describe the employed methodology and datasets and define in detail the AM and
how we will use the AEs. Then, in Sect. 3, we present and analyse the experiments
performed and the results. Finally, in Sect. 4, we present the conclusions of this
work.

2 Methodology

An essential inquiry requiring clarification is the precise definition of a heat wave.
We take one of the most classic definitions of heat waves [18], which defines a heat
wave as at least 3 consecutive days where the daily maximum temperature, T}, 4.,
outstrips a threshold based on the climatology, A,. For a specific climatology
period, 1981-2010, with a daily window of 31 days, and T, ; as the temperature
Tinaz of day i in the year y, we can define:

2010 d+15

A= U U T (1)
y=1981i=d—15
where the threshold of any day, d, is calculated as the 90th percentile of clima-
tOlOgy, th(d) = Pgo(Ad>.

Following this methodology, we have considered one of the most notorious
heat waves in the last years, which is related to more than 11000 deaths [18§],
namely, the Aug. 2003 mega heat wave in France. Also, in order to com-
pare the goodness of the model, we selected the Aug. 2007 in Balkans and
Aug. 2010 in Russia mega heat waves. Table1 contains all the relevant
information about the specification of these heat waves.

Table 1. Summary information of the heat waves considered.

Heat wave Duration Max. C | Predictor region | Target region
France 2003 |01 Aug. — 19 Aug. | 30.7713 | 32N — 70N 42N — 50N
28W — 30E 6W — 8E
Balkans 2007 | 15 Aug. — 28 Aug. | 32.3720 | 32N — 70N 40N — 52N
8W — 50E 18E — 42E
Russia 2010 |16 Jul. — 19 Aug. | 35.8202 | 32N — 70N 38N — 60N
22E — 80E 40E - 60E
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2.1 Data

The used data is obtained from the ERAS Reanalysis dataset [19] from 1940
to 2022, with a resolution of 2. We have selected different fields as predictor
variables based on the most used ones in the literature:

1. The geopotential height of the 500hPA pressure surface (Z500), as it is known
to be one of the most suitable drivers for heat waves [20] because of the crucial
role of the atmospheric circulation [21].

2. The mean sea level pressure (MSL), as a representative diver of the long-term,

synoptic scale information [22].

The soil moisture (SM), as a predictor of local information [23].

4. The potential evaporation (PEva), [24] as a driver for summer heat waves.

©w

In Fig. 1, we show an anomaly analysis carried out as the difference between
the data throughout the heat wave and the data on the climatology period for
each predictor variable. The region within the boxes corresponds to the predictor
region defined in Table 1. In Fig. 2, we carry out the same analysis for the target
temperature. The boxes corresponds to the target region from Table 1.
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Fig. 1. Predictors anomaly regarding to climatology. The red region corresponds to
France 2003, the green region to Balkans 2007 and the blue region to Russia 2010.
(Color figure online)
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Fig. 2. Temperature anomaly regarding to climatology. The red region corresponds to
France 2003, the green region to Balkans 2007 and the blue region to Russia 2010.
(Color figure online)

2.2 The Multivariate Analogue Method

The Analogue Method is based on the assumption that local state similarities
cause similar effects [25]. Given a dataset of a predictor variable, X, consisting
of spatial maps along a period, a target map for a specific time moment, xp,,,
we can define the Analogue Search as:

T i v
min > znwi —zial” | (2)
i=1

in which z;, is the value of the i-th grid point, of the ¢-th time, xp,,,¢ is the
value of the i-th grid point of the target map, m is the amount of grid point
on the map, and p is an integer value. The objective of the AM is to find the
variable fields with the minimum distance to the target. As can be seen, we
define the distance metric as the Minkowski distance, where p stands for the
order. Euclidean (p = 2) or taxicab (p = 1) typically perform the AM.

As described above, there are two main ways to perform a Multivariate AM.
Given n features (or predictor variables), the first approach is to perform the
Analogue Search (2) in all n dimensions [14]. We can define this Search as:

nxm P

T
min > N — wjal? (3)
j=1

This is the easiest and most used approach, but, in turn, it is a very com-
putationally expensive approach. In addition, the higher the dimensionality, the
higher the noise and the more complicated it is to get analogue states close to
the target.

The second approach is based on building a search ensemble [17]. Thus, n
searches are performed on maps of size m sequentially. Thus, if we have 4 vari-
ables ordered arbitrarily, we will perform 4 searches. We will search for the best
analogues on the first variable (e.g. 5000 analogues), and use them to perform
the next search. For the second variable, we will obtain the nearest analogues,
e.g. 1000, from the previous one. This approach has a lower computational cost
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but a higher time cost. Moreover, it is necessary to set a hierarchy between vari-
ables, which produces a bias in the search. For example, it is not the same to
find the nearest states in Z500 and search in them for the nearest ones in SM
as to do it in the opposite order. For a small number of predictor variables, it
is possible to carry out a correlation analysis or to use prior knowledge about
which variables are most important for the problem. However, it is difficult to
set the hierarchy on a larger scale Even on the small scale, after having set a
hierarchy with correlation analysis or prior knowledge, it is not clear that that
will be the optimal hierarchy. Therefore, in order to avoid self-introduced bias,
we will use the first approach as a reference in this work.

2.3 The MvAE-AM Approach

In addition to the traditional Analogue Method (AM), another approach worth
considering is the utilization of Autoencoders (AE) [16]. AEs are a type of Deep
Learning architecture consisting of 3 parts: an encoder, latent space (or codifi-
cation space), and a decoder. In Fig.3 we can see the general structure of an
AE. This model specializes in reducing the dimensionality of the input data.
The encoder aims to encode the input received in a smaller dimension, while the
decoder aims to reconstruct the input received based on the latent space.

o Q.
()] (]
g :
[*] —» Z P o
] (8) o ]
c (1]
. [ S .
_ Analogue
v method

Fig. 3. MvAE-AM structure.

This approach allows transforming a multivariable problem into a univariate
one. The Multivariate Autoencoder Analogue Method (MvAE-AM) considers
each input predictor variable in a different channel. The encoder applies different
convolutional filters to each channel to gather all the information in a single
latent space. Thus, the AM uses the latent space as a search space. In this way,
there is no need to use any multivariate version of the AM, and we can do the
search by using Eq. (2) with p = 2 (euclidean). The role of the decoder in this
process is only to serve the encoder to train it and to be able to encode the
multichannel information in the best possible way.
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Fig. 4. MvAE-AM architecture.

A detailed scheme of the architecture is shown in Fig. 4. The maps of the
different predictor variables, which are at 2 resolution, have a size of (20 x 30).
The encoder consists of six convolutional layers, the first three with 32 filters
whilst the others have 26 filters. Meanwhile, the decoder has only two transposed
convolutional layers, 16 and 32 filters, respectively.

3 Experiments and Results

In this section, we compare the performance of the MvAM and the proposed
MvAE-AM method for reconstructing the France 2003, Balkans 2007 and Russia
2020 mega heat waves. The MvAM approach works on space with a dimension of
2400 (2400 x 1), as it uses the four predictor variables with size maps (20 x 30).
Alternatively, the MvAE-AM approach encodes the data, hence reducing the
dimensionality to a latent space with a size of 400 (400 x 1).

We carried out 1000 analogue extractions to reconstruct the heat wave. These
analogue extractions correspond to the average over the heat wave days. This
means that, for each day of the heat wave, daily analogues are extracted 1000
times, and then the average is calculated. In Fig.5 the density distribution is
shown for the analogues obtained with each method.

We can obtain some statistics on the density distributions. Table 2 shows the
dimension space, the average difference between analogues and the target in the
space of the predictors, the average temperature difference to the target, the
average temperature of the analogues, and the standard deviation.

To these results, we can add the time cost of each method. The MvAM
method requires 5min 31 s. for France 2003, 6 min 17 s for Balkans 2007 and
10min 48 s for Russia 2010 to run. Meanwhile, the MvAE-AM has required for
France 2003 2 min 26 s for analogue search and 7 min 32 s for training, for Balkans
2007 4min 5 s for analogue search and 14 min 40 s for training, and Russia 2010
5min 52 s for analogue search and 17min 36 s for training. As the MvAE-
AM performs the analogue search in a reduced dimension, this process fasts, but
requires a previous step for training the AE. The use of AE to preprocess the data
may be computationally expensive. However, several advantages can be derived
from their use. There is a reduction of the dimensionality and a simplification
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Fig. 5. Comparison between MvAM and MvAE-AM distributions.

Table 2. Average MVvAE-AM and MvAM results for the studied heat waves.

‘Dim. ‘ Avg. Prd. Diff. | Avg. Temp. Diff. | Avg. Temp. | Std. Temp
France 2003

Target - - - 28.3582 -
MvAM 2400 | 0.0650 1.4455 26.9127 0.3749
MvAE-AM | 128 |0.0083 1.5942 26.7640 0.3682
MvAE-AM | 400 |0.0138 1.3198 27.0384 0.3979
MvAE-AM | 600 |0.0202 1.2363 27.1219 0.3772
Balkans 2007

Target - - - 29.2392 -
MvAM 2400 | 0.0870 1.3507 27.8885 0.4774
MvAE-AM | 128 |0.0112 1.4744 27.7648 0.5114
MvAE-AM | 400 |0.0170 1.2834 27.9558 0.5095
MvAE-AM | 600 |0.0205 1.2583 27.9809 0.5036
Russia 2010

Target - - - 32.6340 -
MvAM 2400 | 0.0218 0.2172 32.4168 0.3627
MvAE-AM | 128 |0.0117 0.2740 32.3600 0.3550
MvAE-AM | 400 |0.1105 0.1126 32.5214 0.3290
MvAE-AM | 600 |0.0297 0.1964 32.4376 0.4423

in the analogue search. Instead of working with a Multivariate version of AM,
the AE allows transforming the multivariable problem into a univariate one. On
the other hand, the reconstruction of the heat wave obtained with MvAE-AM is
closer to the target variable field and more precise than the MvAM one. There
are two key reasons supporting this result: 1) in a smaller dimensional space,
the proximity is better captured, and 2) the AE can obtain and encode the most
relevant information of each predictor variable.
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4 Conclusions

This paper proposes an alternative method to the multivariate versions of the
analogue method (AM). It focuses on the specific task of reconstructing the
France 2003 mega heat wave. With this aim, we have used an AE as a pre-
processing stage, training it to code the multichannel input (one channel per
predictor variable) to a univariate latent space. This latent space becomes the
AM search input. The goodness of the MvAE-AM approach has been proved,
obtaining better reconstructions and drastically reducing the problem’s dimen-
sionality.

This paper opens up two research lines where MvAE-AM can be applied
directly: down-scaling predictions and attribution of extreme events. As for the
first research line, the AM has been applied as a down-scaling technique for
predictions [14]. General Circulation Models (GCMs) are widely used to study
climate change. These GCMs are very accurate at large scales, but at smaller
resolution scales, they have several issues [26]. This is where our method can be
used as a down-scaling technique, looking for analogues to the prediction given
by GCMs and reconstructing the event on a local scale. As for the attribution of
extreme climate events, the second research line, the MvAE-AM, may have a key
role in analysing and assessing climate change [27] and anthropogenic influence.
The AM has been used to perform the attribution task, but in a univariate
context [28]. MvAE-AM facilitates combining several predictor variables and
drivers in the attribution analysis.
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Abstract. Graph Neural Networks (GNNs) are efficient in learning
expressive representations of structured data such as graphs. Recent
studies have been focused on addressing heterophily, a common phe-
nomenon in real-world networks, which challenges the homophilic
assumption that nodes of the same class are more likely to connect, thus
limiting the applicability of conventional GNNs in tasks like node classifi-
cation. However, existing methods designed for dealing with heterophily
still lack effectiveness in some typical heterophilic datasets. Furthermore,
finding the optimal combination of node features and graph topology
under the heterophilic regime is still an open issue. In this paper, we pro-
pose an adaptive GNN architecture for dealing both with homophilic and
heterophilic datasets. This architecture leverages the power of expander
graphs as a means of effective message propagation (the underlying mech-
anism of GNNs). In short, we selectively densify the GNN at different
hierarchical orders and then find the optimal combination of embeddings.
Finally, we test this new approach by performing experiments over dif-
ferent state-of-the-art datasets with a wide range of levels of heterophily
and a wide range of sizes.

Keywords: Graph Neural Networks + Node Classification -
Semi-supervised learning - Structural Learning - Pattern Recognition

1 Introduction

Graph Neural Networks (GNNs) have found extensive applications in various
domains such as social networks [1], traffic networks [2], recommendation sys-
tems, and computer vision [3] owing to their robust ability to process graph-
structured data. They have been successfully adapted for a range of network
analysis tasks, including node classification [4-6], link prediction [7], and graph
classification [8].

Node classification, which involves predicting unknown node labels based
on node embeddings and graph topology, has been effectively addressed using
GNNs and its variants like GCN [4], GAT [5], and GraphSage [9]. These methods
demonstrate the effectiveness of leveraging the principle of aggregation of neigh-
boring nodes, surpassing Multi-Layer Perceptrons (MLP). However, the efficacy
of blind aggregation is contingent under homophily where the shared features
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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and/or class labels among neighbors are similar. Real-world networks sometimes
exhibit an “opposites attract” behavior, leading to heterophily where nodes with
different features and labels tend to be linked [10]. Existing GNNs face limita-
tions in heterophily settings due to the absence of an effective mechanism that
leverages graph structure and node similarity [11]. As a result, they are beaten
by MLPs in some datasets.

Notable examples of GNN architectures addressing the heterophily issue
include CGNN [12], H2GCN [10], and MixHop [13]. Despite these improvements,
shortcomings persist in certain heterophilic datasets, primarily due to the inad-
equate exploitation of graph and node features. This underscores the necessity
for more sophisticated methodologies to address these limitations effectively.

Moreover, it is observed that these techniques often encounter challenges in
adapting to homophilic datasets, as they predominantly prioritize feature-centric
considerations over crucial graph structural information. Furthermore, methods
relying on higher powers of the transition matrix [13,14] exhibit increased density
in larger graphs, leading to diminished accuracy or memory inefficiencies. Hence,
there exists a pressing demand for novel approaches that can reconcile these
challenges and provide robust solutions across diverse network configurations.

In addition, it is widely acknowledged that GNNs frequently experience issues
related to over-smoothing. This phenomenon occurs when the node representa-
tions become excessively similar across multiple layers of the network, leading to
a loss of discriminative information. This occurs due to repeated message passing
and aggregation steps, leading to the blending of node features and ultimately
hindering the model’s ability to distinguish between nodes effectively [6,10]. Dif-
ferent works in the literature tackle this issue by proposing different layers that
preserve initial node embedding [11], but these techniques are out of the scope
of this paper since they focus on limiting information flows instead of selectively
leveraging them. Our work addresses the aforementioned limitations in a princi-
pled way, which in turn provides a more explainable architecture. We summarize
the main contributions of our work as follows:

— We provide insights based on expander graphs to mitigate the problems and
the struggles of information flow over the heterophilic graphs. Expanders are
well suited to improve information flow selectively.

— An effective, sparse, and principled architecture that improves the flow of
information over the graph and is capable of dealing with homophilic and
heterophilic graphs.

— Our proposed method showcases superior performance compared to state-of-
the-art techniques, as confirmed by extensive experiments conducted on 12
diverse benchmark datasets.

— When dealing with large graphs, we sparsify the graph attending both to
feature similarity and high-order topologic information.

This paper is organized as follows. We commence by reviewing the related works,
mostly those focused on Hierarchical or High-Order (HO) GNNs and other signif-
icant models in the State-of-the-Art (SoTA), e.g. LINKX for large graph. Then,
after some formal preliminaries we present our method and justify its archi-
tecture. Finally, we evaluate experimentally the proposed GNN and analyze its
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results in several regimes (homophilic, heterophilic, large graph). We conclude
by summarizing the results and sketching our future work in this field.

2 Related Works

In this section, we address the numerous studies that are actively addressing the
heterophily phenomenon, an unsolved problem in GNNss.

H2GCN [10] is a pioneering research on GNNs representational capabili-
ties in the presence of heterophily. This method integrates ego- and neighbor-
embedding separation, explores high-order neighborhood structures, and syn-
thesizes intermediate representations. Another innovative architecture is GPR-
GNN [15], which integrates an adaptive generalized PageRank approach with
GNNs. This integration aims to alleviate feature over-smoothing, leading to
enhanced performance, particularly in scenarios with varied node label patterns.
Similarly, in GGCN [16] they conducted theoretical analyses on two strategies:
degree corrections and signed messages. Based on these analyses, they proposed
a generalized model, which aims to tackle both heterophily and over-smoothing
issues simultaneously.

The issue of heterophily, which the methods mentioned above primarily
address, represents just one aspect requiring meticulous attention. As a result,
these methods might not perform well on specific datasets with heterophilic char-
acteristics, underscoring the importance of carefully investigating other aspects
of graph datasets that may have been overlooked. Interestingly, simpler models
like MLPs and/or LINK [1] demonstrate strong node classification performance
on these datasets. MLPs rely solely on node features as input and outperform
some general GNNs on heterophilic datasets. Meanwhile, the LINK model, which
conducts logistic regression solely on the graph’s adjacency matrix, surpasses
many existing models on heterophilic datasets. These findings underscore the
importance of delving deeper into the relationship between GNN performance
and the homophily/heterophily property of graphs. In addition, there is a need
to investigate why the exclusive use of node features or network structure can
still provide decent performance on specific datasets.

Recent works have emerged addressing this need that combine node features
with graph representations. For instance, LINKX [1], which extends node feature
MLPs and LINK regression, achieves promising results on heterophilic graphs
and mitigates performance degradation in the minibatch setting.

Mixhop [13] and FSGNN [14] are novel approaches that aggregate the features
from neighbors from different distances (using powers of the transition matrix).
The difference is that FSGNN introduces a novel approach that incorporates
softmax as a regularizer and applies L2-Normalization across GNN layers.

Additionally, advancements in graph neural networks come from different
angles. For instance, Geom-GNN [6] addresses issues such as the loss of discrimi-
native structures and long-range dependencies in existing GNNs. It accomplishes
this by bridging discrete graphs to a continuous geometric space through graph
embedding.
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3 Preliminaries

In this section, we will introduce the notations used and provide vanilla GNNs,
offering background information to enhance understanding.

Notations. In this paper, we denote an undirected graph as G = (V, ), where
V represents the set of nodes and |V| denotes the cardinality of V. The edgeset
£ CV x V is described by a symmetric adjacency matrix A € {0, 1}VIXVI for
unweighted graphs, where A;; = 1 signifies the existence of an edge between
nodes v; and v;. Incorporating self-loops into the graph leads to the formation
of the resultant adjacency matrix denoted as A = A + I, where I denotes the
identity matrix. Nodes features is denoted by a matrix X € RVl x d(© The
diagonal degree matrix D of G,characterized by D;; = d; = > y A;; provides
insights unto the degrees of the node. Furthermore, we introduce the normalized
transition matrix P, defined as D=3 AD"%.

Graph Neural Networks. Graph Neural Networks (GNNs) operate by learn-
ing node representations through the aggregation and transformation of informa-
tion across the graph topology, typically involving three key steps: propagation,
aggregation, and updating. In the [-th layer of a GNN, we represent the node
representations as H) ¢ R‘V‘Xd(l), where d®) is the number of features in this
layer and the i-th row vector h! encapsulates the embedding of node v;. The
initial representation matrix H(® corresponds to the matrix X defined previ-
ously. Specifically, the node embedding of the [-th layer hgl) is obtained as fol-
lows: (1) propagation: ﬁgz) = ¢(l)(h§l_1)); (2) aggregation: iLz(-l) =Uyjen, (ﬁ§l)),(3)
updating: iLEZ) =~0 (ﬁgl), ﬁ§l)). Here, (I represents a differentiable, permutation-
invariant operation such as sum, maz, mean [9]. Additionally, ¢W and 4O rep-
resent differentiable functions commonly implemented using MLPs. A GNN can
be formally defined as follows:

W =o(aff W), ()

Herein, W) is the trainable weight matrix of the {-th layer, and W;l) denotes
its j-th column. The function o denotes a nonlinear activation function, such as
the ReLU function used in this study. Specifically, we adopt the normalized
version of GNNs known as Graph Convolutional Networks (GCN) [4]. GCN is
defined similarly to Eq.1, but with the distinction that instead of using A, we
employ D 2AD"z.

Finally, a row-wise softmax operation is applied to the node embedding h(L)
of the final layer for classification. The loss function £ is formulated as:

L-L 3" CE(softmaz(MLP(h{")), y:), (2)

1Dl &
(z4,y:)ED
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where D represents the dataset, associating the one-hot encoded label y; with
the feature x; for node v;. CE denotes the cross-entropy loss function, evaluating
the disparity between the GNN’s predictions and the true labels.

4 Method

In this section, we explain the technical details of our proposed framework. We
first define what is the high-order component, then we develop the modulated
expansion and, we link our insight of expanders concerning heterophily. Finally,
we explain the proposed architecture HEX-GNN.

The High-Order component. GNN architectures differ in the way they pro-
vide a template for effective message passing since the initial network provided
by the adjacency matrix A of G = (V,€) is (at least) prone to over-smoothing.
In the heterophilic regime, a given node (see the red node 3 in Fig. 1) is typ-
ically surrounded by nodes of different classes (blue ones in this example). As
a result, the levels of its computational graph reflect how far its homologs are.
High-order (HO) or hierarchical networks skip first-order neighbors and jump
towards second (or higher)-order ones to aggregate them directly, thus avoiding
over-smoothing.

In practice, HO networks are implemented by leveraging different powers
P, P2, P3, ..., of the transition matrix P. Pi’; encodes the probability of reaching
node j from 4 in k hops (or levels in the computational graph). In this regard,
HO-GNNs incorporate self-loops A = A + I to the adjacency matrix before
computing P to add a bit of flexibility (inclusive diffusion or laziness in the
random walks). Doing so, for each P* with & > 1, all nodes reached in k hops
or less are retained thus leading to an inclusive exploration.

Second Order Third Order
Input Graph Sparsification Sparsification
Computational Computational Computational
Graph @) @) Graph Graph

Fig. 1. In the Heterophilic Regime, homologs are far away. (Color figure online)

Modulated Expansion. However, the powers P* of the transition matrix tend
to populate the adjacency matrix in a very dense way as follows: If j is very far
from 4, then Pi’;» — 0 but as it is not zero, our experience indicates that this
fact often confounds the MLPs within the GNN neurons and those within the
classification layer. We address the problem as follows:

Firstly, for any pair of edges (i,j) € £ we compute the normalized cosine

similarity Z(X;,X;), where the rows X; and X of the nodes feature matrix X
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are the features of nodes 7 and j (see Fig.2 where each row is incongruent with
the colormap of the corresponding class).

The cosine similarity is used to sparsify P* as follows. We define ]5173 =1
if PZIE > 0 and Z(X;,X;) > €, where € is the mean value of all normalized
similarities. This filter allows us to integrate homologs with potentially small
values of P¥. For instance in Fig. 1, the homolog of node 3 (node 7) can only be
reached with a second-order neighborhood P? (two levels in the computational
graph). Using P2 we only discard non-homologs (nodes 5 and 6) but we do
not reach node 7 until P3. Then, P? not only discards non-homologs but fully
integrates the features of homolog nodes even when Pj} < Pilj for I < k.

Computing Pfj > ¢ does not scale even for £k = 2 and not-too-large but
very dense graphs such as SQUIRREL (see Table 1) which has 198,493 edges and
only 5,201 nodes. These graphs, as well as the large ones in Table 2, with more
than one million edges, require a different treatment. Once we perform the filter
R’; =1if Pi’} > 0 and Z(X;, X;) > €, we retain the 2|€| entries in P* edges with
higher similarities, thus preserving the original number of edges. This second
sparsification is conceptually close to an importance sampling.

Heterophilic Expanders. The above step is called “modulated expansion”
because we follow the principles of ezpander graphs (EGs) [17] [18]. EGs are
graphs with good information propagation properties. They are specifically
designed to break bottlenecks such as the ones emerging from slightly connected
communities. The basic idea of an EG is to design a sparse graph that becomes
selectively dense at bottlenecks thereby minimizing the graph’s diameter (the
length of the shortest path) and ensuring that all nodes are reachable within a
small number of hops. This concept was recently incorporated into the GNN lit-
erature in [19], but the task was exclusively devoted to graph regression. When
adopting this idea to node classification in the heterophilic regime, we have taken
into account that “blind expansion” may usually lead to over-smoothing. This
is why we perform a “modulated” or “selective” expansion, thus sparsifying the
structural template of the GNN when making it better suited to the task at
hand. This idea is close to “graph rewiring” [8] but in the heterophilic regime.

Proposed Architecture. The HEX-GNN (Hierarchical EXpander GNN) is
depicted in Fig.2. We have four GNNs in parallel. The first three ones are fed
by P, P? and P? diffusing the node features. For the sake of simplicity, we do
not display the cosine similarity matrix here. The fourth “branch” is an MLP
in the spirit of LINKX. The result of each GNN is an embedding for each node
and a linear combination (whose coefficients «; € [0, 1] are learned for the sake
of explainability) of the four embeddings is forwarded to the classification MLP.
In the Heterophilic regime, we naturally have a4 =~ 1).

5 Experimental Settings

In this section, we present the datasets that we use to assess our framework.
Additionally, we provide details about the experimental configurations and the
baselines for comparison.
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branch (MLP) complements the
GNNs and it is quite helpful in the Heterophilic Regime.

5.1 Datasets

We assess the effectiveness of our HEX-GNN framework and various state-of-
the-art GNNs on node classification tasks using nine small/medium real-world
datasets. These datasets include ACTOR, CHAMELEON, CITESEER, CORA, COR-
NELL, PUBMED, SQUIRREL, TEXAS, and WISCONSIN, which have been released
by [6]. In addition, we test the effectiveness of our method in large real-world
datasets, such as PENN94, ARXIV- YEAR, and OGBN-ARXIV, released by [1].
All the descriptions about these datasets are to be found in the first rows of the
Tables 1 and 2. Also, we include the edge homophily ratio HOM LEVEL [10],
which represents the proportlon of intra-class edges in the graph, and the aver-
age degree, where d = IVI > v,y A(vi) is determined by summing the in-degree
and out-degree of node v;.

5.2 Settings

Experiments on small, medium, and large-scale datasets are conducted using
PyTorch and PyTorch Geometric (PyG) [20], utilizing a single NVIDIA RTX
4090 with a memory capacity of 24 GB. For all benchmark datasets, we employ
the feature vectors and class labels supplied by PyG. Regarding the small and
medium-scale, we adopt splits (48%/32%/20%) of nodes per class for training,
validation, and testing respectively, as in [6]. Meanwhile, for the large-scale
datasets, we adopted the same splits (50%/25%/25%) as in [1]. For each dataset,
we compute 10000 epochs with an early stopping strategy employed [1]. For more
details, all the configurations and code can be found in our github https://github.
com/AhmedBegggaUA /HEX-GNN. The performance of node classification is
evaluated based on the overall mean accuracy and standard deviation on test
sets across the 10 splits for small, medium-scale, and 5 splits for large-scale
datasets.
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6 Results and Analysis

In this section, we take a close look at nine small-scale real-world datasets
that are commonly used for testing, along with three larger-scale ones. Fol-
lowing our analysis, we thoroughly assess how well HEX-GNN classifies nodes
in these datasets. Then, we compare its performance with 13 SoTA methods
on the smaller/medium datasets and 5 on the larger ones. Table1 gives an
overview of how well different methods perform in classifying nodes across the
nine small/medium-scale benchmarks. We show the average classification accu-
racy alongside the standard deviation from 10 trials. The highest score for each
dataset is highlighted in red, the second-best in blue, and the third-best in vio-
let. Similarly, Table 2 summarizes the node classification performance on three
large-scale benchmarks. For these datasets, we present the average classification

Table 1. Node-classification accuracies. Top three models are coloured by First, Sec-
ond, Third.

Texas Wisconsin | Cornell Actor Squirrel Chameleon | Citeseer Pubmed Cora
Hom level 0.11 0.21 0.30 0.22 0.22 0.23 0.74 0.80 0.81
# Nodes 183 251 183 7,600 5,201 2,277 3,327 19,717 2,708
# Edges 295 466 280 26,752 198,493 31,421 4,676 44,324 5,278
# Features 1,703 1,703 1,703 931 2,089 2,325 3,703 500 1,433
# Classes 5 5 5 5 5 5 7 3 6
MLP 80.81 4 4.75 | 85.29 = 6.40 | 81.89 % 6.40 | 36.53 £ 0.70 | 28.77 £ 1.56 | 46.21 £ 2.99 | 74.02 4 1.90 | 75.69 £ 2.00 | 87.16 £ 0.37
GCN [4] 55.14 £ 5.16 | 51.76 & 3.06 | 60.54 + 5.30 | 27.32 £ 1.10 | 53.43 £ 2.01 | 64.82 & 2.24 | 76.50 4= 1.36 | 88.42 £ 0.50 | 86.98 £ 1.27
GAT [5] 52.16 & 6.63 | 49.41 = 4.09 | 61.89 &+ 5.05 | 27.44 £ 0.89 | 40.72 £ 1.55 | 60.26 & 2.50 | 76.55 4= 1.23 | 87.30 £ 1.10 | 86.33 £ 0.48

GraphSAGE [9] | 82.43 + 6.14 | 81.18 £ 5.56 | 75.95 £ 5.01 | 34.23 + 0.99 | 41.61 £ 0.74 | 58.73 + 1.68 | 76.04 & 1.30 | 88.45 £ 0.50 | 86.90 % 1.04
GPRGNN [15] | 78.38 +4.36 | 82.94 4+ 4.21 | 80.27 + 8.11 | 34.63 £ 1.22 | 31.61 &= 1.24 | 46.58 + 1.71 | 77.13 £ 1.67 | 87.54 + 0.38 | 87.95 + 1.18
H2GCN [10] 84.86 £ 7.23 | 87.65 = 4.89 | 82.70 + 5.28 | 35.70 = 1.00 | 36.48 £ 1.86 | 60.11 & 2.15 | 77.11 4 1.57 | 89.49 £ 0.38 | 87.87 £ 1.20
GOCNIT [21] T77.57 £ 3.83 [ 80.39 &+ 3.40 | 77.86 + 3.79 | 37.44 £+ 1.30 | 38.47 £ 1.58 | 63.86 & 3.04 | 77.33 + 1.48 | 90.15 + 0.43 | 88.37 £ 1.25
Geom-GCN [6] | 66.76 +2.72 | 64.51 & 3.66 | 60.54 £ 3.67 | 31.59 + 1.15 | 38.15 £ 0.92 | 60.00 £ 2.81 | 78.02 4 1.15 | 89.95 £ 0.47 | 85.35 + 1.57
CGNN [12] 71.3544.05 | 74.31 = 7.26 | 66.22 + 7.69 | 35.95 £ 0.86 | 29.24 & 1.09 | 46.89 & 1.66 | 76.91 = 1.81 | 87.70 £ 0.49 | 87.10 £ 1.35
GGCN [16] 84.86 & 4.55 | 86.86 & 3.29 | 85.68 + 6.63 | 37.54 £ 1.56 | 55.17 £ 1.58 | 71.14 & 1.84 | 77.14 = 1.45 | 89.15 £ 0.37 | 87.95 £ 1.05
LINKX [1] 74.60 £ 8.37 | 75.49 £ 5.72 | 77.84 + 5.81 | 36.10 £ 1.55 | 61.81 £ 1.80 | 68.42 & 1.38 | 73.19 4+ 0.99 | 87.86 £ 0.77 | 84.64 £ 1.13
MixHop [13] T7.84+7.73|75.88+£4.90 | 73.51 +6.34 | 32.22 £ 2.34 | 43.80 & 1.48 | 60.50 & 2.53 | 76.26 + 1.33 | 85.31 £ 0.61 | 87.61 £ 0.85
FSGNN [14] 87.30 4 5.29 | 87.84 £ 3.37 | 85.13 + 6.07 | 35.75 £ 0.96 | 74.10 £ 1.89 | 78.27 & 1.28 | 77.40 4= 1.90 | 77.40 £ 1.93 | 87.93 £ 1.00
HEX-GNN 89.45 4 4.26 | 89.60 = 3.16 | 87.30 + 2.11 | 36.68 £ 0.80 | 56.74 £ 0.88 | 71.01 & 1.18 | 77.48 - 1.37 | 89.66 £ 0.35 | 88.69 £ 1.12

Table 2. Node-classification accuracies in large graphs. Top three models are coloured
by First, Second, Third.

Penn94 arXiv-year ogbn-arXiv
Hom level 0.47 0.21 0.66
# Nodes 41,554 169,343 169,343
# Edges 1,362,229 1,166,243 1,166,243
#Features 5 128 128
# Classes 5 5 40
MLP 73.61 +£0.40 | 36.70 £ 0.21 | 55.91 + 0.15
GCN 82.47 +0.27 | 46.02 £ 0.26 | 59.61 £ 0.23
GAT 81.53 + 0.55 | 46.05 4+ 0.51 | 60.27 £ 0.21
MixHop 83.47+0.71 | 51.81 £0.17 | 57.23 £ 0.19
LINKX 84.71 + 0.52 | 56.00 4+ 1.34 | 55.31 £ 0.81
HEX-GNN | 84.73 4+ 0.30 | 48.25 + 0.30 | 63.80 + 0.13
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accuracy with standard deviation from 5 trials, highlighting the top performers
in the same color scheme. From these experimental results, we can draw several
observations and insights.

Homophily Performance. When considering the HoM LEVEL, it is evident
that CORA, CITESEER, and PUBMED exhibit the highest levels of homophily. Our
proposed method demonstrates competitive performance across these graphs,
often outperforming the alternatives. Even when we do not achieve the top spot,
our scores are closely trailing the winner, securing second or third place. Notably,
Higher-Order techniques such as MixHop or FSGNN show significant disparities
from our results.

Heterophily Performance. Considering the level of heterophily, we observe
that WisCONSIN, TExAS, and CORNELL stand out as the most heterophilic
datasets. Remarkably, our method surpasses all others on these three datasets.
However, on the remaining two datasets, Chameleon and Squirrel, we fall short
due to limitations in feature expressiveness [10,12] and the high density of these
graphs. Despite these challenges, our method remains competitive and achieves
notable results.

Large-scale Performance. When examining the heterophily level in large-
scale graphs, we observe significant success with our method on two out of three
datasets: PENN94 and OGBN-ARXIV. Our approach demonstrates its scalability
and effectiveness in handling large graphs, delivering superior performance in
these contexts. Despite the complexities inherent in large-scale datasets, our
method proves robust and capable, emphasizing its scalability and adaptability
across diverse graph sizes.

7 Conclusion and Future Work

In this paper, we have addressed the issues of node classification (mainly) in the
heterophilic regime, by combining high-order mechanism and selective graph
sparsification (Expander Graphs). Our results show that this technique is very
promising when we deal with heterophilic graphs and it is competitive in some
homophilic benchmarks. This suggests that the combination of node features
and graph topology with a sparsification strategy can be a good line to work in,
particularly in very dense graphs where comprehensive analysis is required. It
prompts further exploration into enhancing expressiveness in future works.

Acknowledgement. The authors are funded by the project PID2022-1425160B-100
of the Spanish Government.
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Abstract. The notion of bond in formal concept analysis arose as a
mechanism for aggregating contexts, preserving the main information
of the original ones. This notion can also be fundamental in the inverse
process, that is, in the factorization of contexts, which will allow the com-
putation of the information of a real context from smaller subcontexts
(distributed computing). This paper considers the flexible fuzzy multi-
adjoint framework in order to introduce the first definition of bond in this
setting and presents the first properties and examples of this definition.

Keywords: Formal concept analysis - bonds - multi-adjoint framework

1 Introduction

Ability to efficiently process large amounts of data is essential for extracting
useful information from many of the existing real databases. Formal concept
analysis (FCA) is a relevant mathematical theory for extracting knowledge from
relational databases since its introduction in the eighties [24]. The theory deems
databases as formal contexts [13], that is, as a triple interpreted as a rela-
tion/table between a set of objects and a set of attributes. FCA tools are capable
of manipulating data and extracting relevant information, which is represented
using the algebraic structure of a complete lattice [13]. Several extensions of this
mathematical theory have been introduced in a fuzzy environment [7,9,15], and
theoretical [4,5,20,21] and applied [1,2,22] advances are made on a daily basis.
Among the existing fuzzy extensions, the multi-adjoint framework [3,10,11,19]
is one of the most flexible and versatile, making it ideal for modeling real-world
problems.

Various methods have been developed and utilized in FCA to simplify data
processing, such as factoring and aggregating data tables [6,8,12,16,23]. These
techniques enable the reduction of large tables into smaller ones, known as fac-
tors, from which important information can be extracted. In addition, these
factors can be aggregated without modifying the information present in them.
In particular, we focus on the notion of bond between formal contexts, which
was originally defined in the classical setting [13] and was extended to the fuzzy
framework using residuated lattices [14,17,18]. Bonds allow the aggregation of
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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contexts while preserving the information contained in the concepts generated by
each individual context. This work aims to extend the aforementioned notion to
the multi-adjoint framework and to analyze the conditions that enable obtaining
bonds in a simpler manner.

The paper will introduce in Sect.2 diverse preliminary notions in FCA,
including the crisp notion of bond. In Sect.3, the definition of bond in the
multi-adjoint concept lattice framework will be presented based on intents of
fuzzy objects and extents of fuzzy attributes of the given context. Furthermore,
an illustrative example will be included to display particular cases of bonds and
relations that are not bonds. This section will also be focused on two notable
fuzzy relations: the constantly top and constantly bottom relations, showing that
the first is always a bond and introducing a sufficient condition to ensure that
the second is a bond. This result will also be illustrated with examples. The
paper will finish with diverse conclusions and prospects of future works.

2 Preliminaries

In this preliminaries section, we introduce foundational notions related to FCA.
Throughout this paper, the notation A® will be employed to denote maps from
B to A. Particularly, if A= {1,...,n} we may use n” to denote {1,...,n}%. In
addition, if a map f: A — B takes only one value, b € B, we may write it as
f=b.

We now proceed to define what precisely a context is within the setting of
FCA.

Definition 1. A context is a tuple (O, P, R) such that O and P are non-empty
sets (usually interpreted as objects and properties, respectively) and R is a rela-
tion in O x P.

In addition, the derivation operators T: 29 — 2P and !: 2P — 29 are
defined, for all X € O and A C P, as

X"={acP|(z,a) €R, forall z c X}
At ={z €O (x,a) €R, forall a c A}

A concept is a pair (X, A) satisfying that XT = A and A' = X, where X is
called the extent and A is called the intent.

From now on, we will consider a family of contexts {(O;, P;, R;) }icr, with I a
non-empty set of indices. We will simply denote the derivation operators Tand !
in each context (O;, P;, R;) as 1# and 1" respectively. Moreover, if Ri;j; C O; x P;
is a relation, we define the mappings 17 : 29¢ — 28 and 1" : 285 — 29i ag

X" ={a€ Pj|(z,a) € Ryj, for all z € X}
AV = {x € 0| (z,a) € Ry, for all a € A}
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for all X C O; and A C P;. When we consider X = {z} and A = {a}, we may
use the notation 21 and a'” instead of {x}'% and {a}!”.

Next, the notion of bond is introduced as a method of aggregating contexts
(factors). Bonds allow to construct a new context from factors while preserving
the information they contain. In Sect. 3, we will translate this notion into the
multi-adjoint framework.

Definition 2. Given two different contexts (O;, P;, R;) and (O;, P;, R;), a bond
from (O;, P;, R;) to (Oj, P;, R;) is a relation R;j C O; x P; such that

- :cTU is an intent of (O;, P;, R;) for every object x € O;,
— at” is an extent of (Oy, P;, R;) for every property a € P;.

Now, we will examine this definition more closely through a practical example

Ezample 1. Consider two contexts (O1, P, Ry) and (Oz, Py, Ry) where

O1 = {71, 22}, Py ={ay,az}, Ry = {(x1,a1), (x1, a2), (v2,a2)}
02 = {x3a$4}a P, = {a37a4}’ Ry = {($3,a3), (x4,a4)}

A bond can be visualized by placing the two contexts diagonally, one beneath
the other, and the bond in the top right corner (a bond R;; from (Oj, P}, R;)
to (O;, P;, R;) would be placed in the bottom left), as observed in Table 1. Since
the set of objects and the set of properties are always an extent and an intent of
a context, we are guaranteed that the relation RL = 01 x P5 is a bond. Indeed,
for any * € Oy, 2112 = P is an intent of (Os, P2, Ry) and, for any a € P,
' = 07 is an extent of (O, Py, Ry).

Table 1. Tables showing the relations R; and Ry of Example 1 together with R}, (left
table) and R}, (right table).

o1 [ az |l as | aa | Lar | az || as | as
T1 X X X X T X >
T2 X X Rb o < » R%Q
x3 X 73
X4 X T4 >

We can usually find other non-trivial bonds, such as

R%2 = {(1'1767'3)’ (1'1"7'4)7 (1’270,3)}

For this relation, 71112 = {ag,as} and 25112 = {a3} are intents of (O, Py, R2).
The first one because it is the set of properties P, and the second one because

&312% = 25" = {a3}
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Likewise, agilz = {z1,22} and a4112 = {x1} are extents of (O1, P1, Ry), the first
one for being the set of objects O; and the second one because

1 1
= {al7a2}i = {x1}

However, not all relations in O; x P, are bonds. Consider for 1ir;st&mce the
relation R?, = {(z2,a3)}. This relation is not a bond because az! = = {x5} is
not an extent of (O1, P1, Ry), that is,

1 1
" = apt = {21, 20} # {20}

Another interesting case is the empty relation, Ri, = @. In this case, the
relation R, is not a bond from (O1, Py, Ry) to (Og, Py, Ry) due to

ot = {ay, a0}t = {n} £ @
This means that the empty set is not an extent of (Oy, P, Ry). O

Remark 1. As Example 1 shows, the empty relation is not always an extent
or intent of a context and, therefore, it is not a bond. However, there are
cases where it is actually a bond. Given two different contexts (O;, P;, R;) and
(04, Pj, R;) satisfying that for every object x € O;, there exists a € P; such
that (z,a) ¢ R;, and for every property a’ € P;, there exists ' € O; such that
(',a’) ¢ R, then the empty set is both an extent of (O;, P;, R;) and an intent
of (Oj, Pj, R;). Therefore, these conditions guarantee that the relation Rf-j is a
bond from (O;, P;, R;) to (O;, Pj, R;).

3 Bonds on a Multi-adjoint Framework

In the previous section, we dealt with the classical case, but when considering the

fuzzy scenario, we need to work with a more general notion of context, where an

object can have a truth degree value about whether it has a given attribute. In

particular, we need to recall the fundamentals of the multi-adjoint framework in

order to define a bond between contexts associated with a multi-adjoint frame.
First, let us remember what a multi-adjoint framework is.

Definition 3. A multi-adjoint framework is a tuple (Li,L2,Q,&1,-..,&n)
where (L1,=1,11,T1) and (L2, <o, 1o, To) are complete lattices, (Q,<) is a
poset and (&, /%, &) is an adjoint triple with respect to Ly, Ly and Q, for all
ke{l,...,n}.

Throughout this section, a multi-adjoint framework (Li, Lo, @, &1,--.,&n)
will be fixed. Once a multi-adjoint frame has been fixed, the notion of a context
in that frame is defined in the following way.

Definition 4. A context is a tuple (O, P, R, 0), where O is the set of objects, P
is the set of properties, R is a Q-fuzzy relation R: O x P — @Q ando: O X P —
{1,...,n} is a mapping which associates each element in O X P with a specific
adjoint triple.
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The extension of the concept-forming operators are the mappings : LY —
LY and ': LY — LY defined as:

g'(a) = inf{R(z,a) /7 g(z) | x € O}
ft () = inf{R(z,a) \o(z,a) f(7) | a € P}

forall g € LY, f € LY and a € P, z € O. Equivalently, a pair (g, f) is called a
multi-adjoint concept if equalities g' = f and f! = ¢ hold.

In addition, the following notion is related to a specific family of fuzzy subsets
of LT that will play a fundamental role in this work.

Definition 5. For each a € P, the fuzzy subsets of attributes ¢o s € LY defined,

for all s € Ly, as
bus(a) = s ifd=a
“e 11 ifd #a

will be called fuzzy-attributes.

Analogously, the fuzzy-objects are defined in the same way.

Now, we are ready to establish the basis for defining a bond. Hereon, a family
of contexts associated with the frame, {(O;, P;, R;,0;) }icr, will be considered.
Given a Q-fuzzy relation R;; in O; x P; and 0y;: O; x Pj — {1,...,n}, we define

the mappings 1% : LY — ij and V7 ij — LS as

gl (a) = inf{Ry;(z,a) /7@ g(z) | = € O;}
flij (z) = inf{Ri; (z,a) \o,;(2.0) f(a) | @ € Pj}

for each g € LY, f € ij and a € P, x € O;. Note that when we refer to the
context (O;, P;, R;,0;), we will simply denote the concept-forming operators '
and ! as i and ', respectively.

In Definition 2, we described a bond from (O;, P;, R;) to (O;, P;, R;) as arela-
tion R;; in O; x P;, which can also be interpreted as a new context (O;, P;, Rij).
This point of view is fundamental in the following definition of a bond between
contexts associated with a multi-adjoint framework.

Definition 6. Given two different contexts (O;, P;, R;,0;) and (O;, Pj, R;,05),
a multi-adjoint bond from (O;, P;, R;,0;) to (O, P;, Rj,0;) is a context

(0s, Pj, Rij,0i;) such that R;j is a Q-fuzzy relation in O; x Pj and 0;5: O; x P —
{1,...,n} satisfying that

= ¢ui' is an intent of (Oj, Pj, R;,0;), for every object x € O;,
- ¢a,slij is an extent of (O;, P;, R;, 0;), for every property a € P},

where s € L1 and t € Lo.
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Henceforth, we will assume that @ is bounded by a top element T3 and
a bottom element 3. We are particularly interested in studying the contexts
whose relations are all T3 or Lg, that is, R;;j(z,a) = T3, for all (z,a) € O; x P},
or R;j(x,a) = L3, for all (x,a) € O; x P;. We will simply denote these particular
relations as R;'—j and Rfj, respectively. Similar to the classical case, the former
will always be a multi-adjoint bond, but the latter requires further study. Let us
show this fact through an example.

Ezample 2. Consider the multi-adjoint framework ([0, 1]4, [0, 1]4, [0, 1]4, & &, &)
where &¢, and &j, are the discretization of the Godel and Lukasiewicz conjunc-
tors, respectively. Also consider the contexts (O1, P, Ry, 01) and (Osz, P2, Ra, 02),
where the relations Ry, Ry and the maps o1, o2 are defined in Table 2.

Table 2. The relations R1, Re and maps o1, o2 of the contexts (O1, P1, R1,01) and
(O2, P2, R2,02) in Example 2.

RlHal ‘az U1Ha1 ‘az RzHas ‘a4 0'2Ha3‘a4

1 0.5 0.75 X1 &E &*G xrs3 1 0.75 xrs3 &}t &}t
zs [10.25]1 To || &G | && ®a [|0.75]1 24 | &F | &i,

Similar to Example 1, the relation R1T2 together with any map o19: O1 x Py —
{&%, &4} defines a multi-adjoint bond (O1, P2, R]5,012) from (O1, P1, Ry, 01)
to (O, Py, Ry, 02). The reason behind this fact is that the maps g/ : O1 — [0,1]4
and fy : Py — [0,1]4 defined as g =1 and f, = 1 are respectively an extent
of (O1, P1, R1,01) and an intent of (Og, Py, Ra, 03), and moreover, we have that

12
¢m,tT12 = fQT and Qba,sl = gil'

for every # € O1, a € Py and s,t € [0, 1]4.

In addition, other multi-adjoint bonds can be defined between these contexts.
For instance, (O1, P2, R12,012), where o12(z, a) = &§, for all (z,a) € O1 x P,
and Rj s is represented in Table 3.

In fact, if we change the map o712 but maintain the relation, we obtain other
multi-adjoint bonds from (Oy, Py, R1,01) to (O, Py, Ra,09).

Table 3. The relations R}, and R 2 in Example 2.

Los | as || a5 | s Las | as || a5 | s
z1 ] 05 [0.75][ 1 1 . z 05 [0.75] T T075] ,
72 ||0.25] 1 1 Ria 72 ||0.25] 1 1 1 12
z3 1 1 1 ]0.75 3 1 1 1 ]0.75
Ta 1 1 [o75] 1 Ta 1 1 [Jo7s] 1

On the other hand, if we consider the relation Ri, and any map oy 2, we are
going to show that the context (Oy, Py, Riy,012), depicted in Table4, is not a
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Table 4. The relation of the context (O1, P2, Ri,012) of Example 2, which is not a
multi-adjoint bond.

a1 | o || as | as
z1 05 [0 0T 0] .,
z [[025] 1 o [0 |™>2
s O] 0 L [075
zi || 0 | 0 [[0.75] 1

multi-adjoint bond from (O1, P1, R1,01) to (Oz, P2, Ra, 02). Indeed, for z; € O
and all a € P», we have that

Gui1 12 (a) = If{Riy(2,0) /720D ¢y 1 (2) | @ € O}
={0 /7200 Gy 1 (@), 0,722 g (20)}
— {O /0’12(361,&) 1’ 0 /Ulz(xz,a) O} — O

The fuzzy set ¢ml71T1 2 = () is not an intent of (O2, Pa, R, 02), since its closure is

¢m1 1T12L2T2 =0.75 7& 0
Thus (Oy, P2, Ry, 012) is not a multi-adjoint bond. O

Similarly to the classical case (Remark 1), the relation Rf; = 13 does not
always define a multi-adjoint bond from a context (O;, P;, R;,0;) to another
context (Oj, Pj,Rj,0;). This was the case with Example 2. In Remark 1, we
showed a characterization of when the crisp relation Ri, was indeed a bond,
and a similar property can be determined for multi-adjoint bonds under certain
conditions as the following result states.

Theorem 1. Given a multi-adjoint frame (L1, L2, Q, &1, - .., &n) and two dif-
ferent contexts (O;, P;, R;,0;) and (O}, Pj,R;,0;), the context (Oi,Pj,R?j,aij)
is a multi-adjoint bond from (O, P;, R;,0;) to (O;, Pj,R;,05), for any map
oij: O; x Pj — {1,...,n}. Moreover, if the following conditions are satisfied

— There exists a non-empty subset A C {1,...,n} such that conjunctors &
have no-zero divisors, for all X € A.

— For every row in R; and column in R;, there is at least one bottom element.

— The equalities 13 /k To = 17 and 13 N\ T1 = Lo hold, for all k €
{1,...,n}.

then a context (Oi,Pj,Rf‘j,mj), where 0;5(x,a) € A, for all (z,a) € O; X P;, is

a multi-adjoint bond from (O;, P;, R;,0;) to (O}, Pj, R;,0;).

A particular case of Theorem 1 arises when all conjunctors of the frame
have no-zero divisors and the contexts (O;, P;, R;,0;) and (O;, P;, Rj,0;) are
normalized. Recall that a context is normalized if the matrix representation of
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the fuzzy relation has no rows or columns with all values equal to bottom or
with all values different from bottom. The following result outlines this specific
case.

Corollary 1. Given a multi-adjoint frame (L1, L2, Q, &1, .. .,&n) whose con-
junctors &, have no-zero divisors, and two different contexts (O;, P;, R;,0;) and
(0, P;,Rj,0;) which are normalized, we have that the context (O;, P}, Rfj, oij)
is a multi-adjoint bond from (O;, P;, R;, 0;) to (0, P;, R;,0;), for any o;;. Anal-
ogously, the context (O;, P, Rj‘i, 0ji) s a multi-adjoint bond from (O;, Pj, Rj,0;)
to (Oy, P;, Ry, 04), for any oj;.

The above results are illustrated in the following example.

Ezample 3. Going back to Example 2, we showed that (O1, Py, R{5,012) was a
multi-adjoint bond from (O;, Pi, R1,01) to (Os, P2, Ry, 02), for any o74. This
corresponds to the first part of Theorem 1.

Table 5. The relations R1, R2 and maps o1, o2 of the contexts (O1, P1, R1,01) and
(O2, P2, R2,02) in Example 3.

RlHal ‘az U1Ha1 ‘a2 RzHas ‘a4 U2HCL3 ‘a4

z1 1/ 0.25|0 1| &G | && x3 [10.25]0 x3 | &1 | &i,
) 0 0.75 T2 &E &*G T4 0 0.25 T4 &}t &i

Considering the same multi-adjoint frame as in Example 2, let (O1, P1, R1,01)
and (Oq, Py, Ra, 02) be the contexts defined in Table5. Both the frame and the
contexts satisfy the hypotheses of Theorem 1 since, in this case, both adjoint
triples satisfy the equalities on the implications, and the conjunctor &¢ has
no-zero divisors. Additionally, the contexts are normalized, hence every row and
column contains a bottom element. Consequently, the context (Oy, Py, Ri, 012),
where 012(2,a) = &, for all (x,a) € O1 x P, is a multi-adjoint bond. Indeed,
for any ; € O1, a € Py and t € [0,1]4,

Gzit12(a) = inf{Riy /720 gy () | @ € O1}
—inf{0 /5 0,0 /5 th =05 ¢
When t = 0 we have 0 /& t =0 /% 0 =1, and hence ¢,, ;12 = 1. Therefore,
it is an intent of (O, Py, Ra, 02). When t # 0, we obtain that 0 /& ¢t = 0, since

&¢ has no-zero divisors, and therefore, Gu;.6112 = 0. Let us prove that it is an
intent of (O2, Py, Ry, 09). For any a € P,

Gart1212(a) = (£ 12 (a) = (97 )"2(a)
= inf{Ra(x, a) /”2(“"’“) g;(x) | z € O2}
= inf{Rg(l‘g,a) ,/z 1, R2($47a) /f 1}
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where the maps go : Oy — [0,1]4 and f5-: Py — [0, 1] are defined as g, = 1 and
5~ = 0. Considering the values of the relation Ry and, by hypothesis, 0 JE1=0
holds, we obtain that

Gt 12V 12 (a3) = inf{0.25 /7 1,0 /7 1} =0
bt 2V 2 (ag) = inf{0 /7 1,025 /7 1} =0

Therefore, qﬁxi?ﬂ”lzh = ¢y, 1112 = 0, ie., it is an intent of (Og, Pa, Ry, 02).
Similarly, we can show that ¢aj73112, with a; € P, and s € [0, 1]4, are extents of
(O1, P1, Ry, 01).

Now, we will show the importance of the map o712 assigning conjunctors
with no-zero divisors, since otherwise we will obtain that (O1, P, ng,al 2) is
not a multi-adjoint bond. We consider o1 2(x1, a4) = &;, and 012(z, a) = && for
(x,a) # (x1,a4), and we focus on the fuzzy-object ¢, o.5. It is easy to verify
that

G051 2(a3) =0 /5 05=0 and ¢, 05'*%(as) =0} 0.5 =05

This is not an intent of (O, Py, Ry, 02) since ¢p, 051124 12(ag) = 0.25 £ 0.5.
Lastly, if we consider the frame ([0, 1]4, [0,1]4, [0, 1]4, &&, &) and the same
contexts of Table 5, but the map o, associates the product conjunctor &7} instead
of Lukasiewicz conjunctor, then we are under the conditions of Corollary 1.
Therefore, for any map o9, the context (O1, Py, Ri,012) is a multi-adjoint
bond from (Ol,Pl,Rl,O'l) to (OQ,PQ,RQ,O'Q). O

4 Conclusions and Future Work

This paper has studied the notion of bond in the multi-adjoint concept lattice
framework, showing a new mechanism for merging contexts (relational datasets)
without losing relevant information. This definition extends the original one to
the considered flexible framework taking into account that the properties of the
considered operators in the multi-adjoint frame are fundamental for obtaining
a bond. We have studied the two more extreme bonds, the greatest (where the
relation is constantly the top element of the poset), which always exists, and the
(possible) least bond (where the relation is constantly the bottom element of
the poset), whose existence depends on the operators in the given multi-adjoint
frame. We have also illustrated the definition and properties in diverse examples.

In the future, more properties will be studied and an in-depth comparison
will be made with the residuated framework.
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Abstract. This article explores the use of Large Language Models
(LLM) as transformative tools for teaching Artificial Intelligence (AI)
and Robotics concepts at the master’s level. LLMs, exemplified by mod-
els like ChatGPT, present a unique opportunity to revolutionize the
pedagogical landscape by offering advanced capabilities in any service
robot. The study investigates the integration of LLMs in the instruc-
tional framework, through the llama_ros tool, capable of replacing dif-
ferent classic cognitive functions in a transversal project across different
subjects of an official master’s degree. The research presents as an exam-
ple the creation of an LL.M-based chatbot on an open hardware platform
called Mini Pupper. The reader will find how to emphasize the potential
of LLMs to shape their inclusion in bachelor’s or master’s programs.

Keywords: LLM - robotics - llama_ros - chatbot - ROS 2

1 Introduction

Bachelor’s and Master’s degrees in computer science span a wide spectrum of
courses, encompassing subjects such as Path Planning and Navigation, Robot
Perception, and Human-Robot Interaction. Students will also explore the intri-
cacies of Machine Learning for Robotics, delving into algorithms that enable
robots to learn from and adapt to their environment. Ethics in AT and Robotics
is integrated into the curriculum, encouraging students to critically evaluate the
societal implications and ethical considerations associated with these rapidly
advancing technologies. The collaboration between Artificial Intelligence (AT)
and robotics [6] has played a pivotal role in propelling the progress of robotic
systems, granting machines the capability to execute intricate tasks and accli-
mate to diverse surroundings.

Embarking these concepts in a Master’s degree in Robotics and Al represents
an exciting journey into the realm of cutting-edge technology, where students
dig into the convergence of robotics and Al. The students analyze the realm of
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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classic Al, exploring algorithms, and computer vision techniques. A few years
ago, some of these approaches changed for employing machine learning in dif-
ferent components of robot parts, for reaching end-to-end machine learning for
robotics. Nowadays, the community is pushing for introducing in almost every
part of a robot a component based on Large Language Models (LLM) [7]. Thus,
this paper goes through the use of LLMs in a service robot as a part of a traversal
project that runs in the Master’s Degree of Robotics and Al at the University
of Ledén and involves different courses in parallel for two semesters.

1.1 Contribution

This paper provides a comprehensive overview of key AI artifacts utilized in
Robotics and AI master’s degree programs, emphasizing the substitution of tra-
ditional methodologies with LLMs. This exploration aims to shed light on the
evolving landscape of educational tools within these programs and the transfor-
mative impact brought about by integrating LLMs.

On the technical front, our contributions are twofold. Firstly, it introduced
the llama_ros tool', a dedicated solution designed to encapsulate the state-of-
the-art functionalities of llama.cpp which is publicly available on GitHub?. This
package serves as a tool for advancing the capabilities and accessibility of the
llama.cpp framework in ROS 2 [20] context. Secondly, we present a practical
example, showcasing the integration of this package in a project that unifies
multiple courses into a cohesive multi-subject proposal. This practical applica-
tion demonstrates the versatility and practicality of the llama_ros package in
real-world, interdisciplinary scenarios.

2 State of the Art

During the last two years, different researchers have been working on using
advanced Al-based tools, such as ChatGPT [1], to students, emphasizing their
availability for generating original written content to aid academic assessments.
The surge in the adoption of LLMs is particularly exemplified by the popularity
of OpenAT’s ChatGPT [21].

For instance, [3] presents the existing gap in studies examining students’ use
of LLMs as learning tools leading to the primary objective of the paper: con-
ducting an in-depth case study on the application of ChatGPT in engineering
higher education. The objectives encompass investigating whether engineering
students can produce high-quality university essays with LLM assistance, eval-
uating the effectiveness of current LLM identification systems in detecting such
essays, and exploring students’ perceptions of the usefulness and acceptance of
LLMs in learning. In this case, the paper focuses on identifying current parts of
a robot and evaluating the integration of LLMs instead of classic Al solutions.

! https://github.com/mgonzs13/llama_ros.
2 https://github.com/ggerganov/llama.cpp.
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Generative Al tools, notably exemplified by ChatGPT, have witnessed a
surge in popularity and widespread utilization across diverse sectors [2]. As pre-
sented by Aruleba, ChatGPT is recognized by UNESCO as the fastest-growing
app in history [24]. It played a pivotal role in introducing the Generative Al con-
cept to the general public. With its unique features and the ability to engage in
discussions on a myriad of topics, ChatGPT stands out as one of the most pow-
erful AT applications, especially for education [8]. Serving as a chatbot capable of
persuasive conversations, it is employed for various tasks such as essay writing,
literature reviews, paper enhancement, and even computer code generation. Of
course, its use for education is out of doubt.

Wensheng et al. work [10] presents a complete vision of all capacities such as
learning assistance tools, cross-language communications, or personalized learn-
ing experiences among others. However, here it is proposed how to use as a
tool for students and teachers to update the current models and state-of-the-art
engines such as PDDL (Planning Domain Definition Language) [9] or Behavior
Trees, thus, the new changes motivated by the Generative Al should be visited
not only by students but also by teachers and their syllabus. The study presented
here seeks to fit in educational contexts as in [2], emphasizing the prevalent issues
of integrity and loss of knowledge.

3 Materials and Methods

The massive adoption of LLMs has had a significant impact across various sub-
jects in any Master’s Degree program devoted to Robotics and Al In this section,
it is presented the Master and the main subjects involved in this first step.

3.1 Courses

The Master’s Degree in Robotics and Al is taught at the University of Ledn,
Spain. It is organized following a mixed structure of common courses and a set
of subjects focused on specific itineraries, with a total duration of one academic
year, divided into two semesters. The semester is the basic temporal unit and
consists of 30 ECTS credits. Each ECTS credit corresponds to 25h of student
work. To obtain the degree, the student must complete (or have previous studies
recognized for) a total of 60 ECTS credits.

The teachings are structured into two modules: Robotics and AI. These two
modules contain the subjects presented in Tables 1 and 2. In addition to these
courses, the degree has 9 ECTS options for those pupils that seek a more practical
perspective and also the Final Project which has 9 ECTS.

3.2 LLMs Impact

This section performs a concise analysis of the primary subjects impacted by the
integration of LLMs and its possible negative impact on students. Afterwards,
the research transitions into the exploration of practical integration strategies
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Table 1. Courses in AI Module Table 2. Courses in Robotics Module
ECTS | Sem. | Course ECTS | Sem. | Course
3 1 Data Preprocessing 4.5 1 Service Robotics
4.5 1 Artificial Intelligence 4.5 1 Middleware for Software
4.5 1 Computer Vision Design in Robots
4.5 1 Machine Learning 3 2 Human-Robot Interaction
4.5 2 Programming in Distributed Data 3 2 Cognitive Robotics
Environments 3 2 Multi-Agent Systems (Opt)
3 1 Deep Learning 3 2 Trends in Robotics I (Opt)
3 2 Object Recognition 3 2 Trends in Robotics IT
3 2 Machine Learning Applications (Opt)
(Opt)
3 2 Reinforcement Learning (Opt)
3 2 Trends in Deep Learning (Opt)

— Artificial Intelligence: Incorporating LLMs alongside classical AT methods in
an Al course can have both positive and negative effects. Relying solely on
LLMs may limit the depth of understanding of traditional AI concepts such
as machine learning algorithms, vision and robotics. Students might miss out
on foundational knowledge in these areas.

— Computer Vision and Object Recognition: The integration of LLMs in these
two courses, specifically Large Visual Models in the Computer Vision course
could change the practical process for students. The ability of these mod-
els to comprehend linguistic contexts has empowered the interpretation of
images and videos, leading to a deeper level of understanding and visual
analysis. However, students might lose the in-depth understanding of founda-
tional concepts such as image processing, feature extraction, object detection,
and image segmentation, which are crucial for computer vision applications,
as well as classy vision-specific frameworks.

— Service Robotics: The adoption of LLMs has transformed human-robot inter-
action. The robots’ ability to understand and generate natural language
has elevated the quality of communication in personalized services. Stu-
dents explore how LLMs can be used to enhance the understanding of com-
mands, questions, and responses, redefining how robots provide adaptive and
user-centered services. However, LLMs may not inherently address challenges
related to real-world service environments, such as dynamic and unstructured
spaces, which may lead to a narrow focus on language-centric applications or
hinder their ability to design and deploy fundamental algorithms.

— Cognitive Robotics: This course has undergone a significant shift with the
integration of LLMs. Now, robots not only execute tasks but also understand
and generate natural language more intelligently. Students explore how LLMs
can be applied to improve environmental perception and the ability of robots
to interact more contextually and adaptively in complex environments. Rely-
ing solely on LLMs may limit students’ exploration of dedicated cognitive
architectures and models, hindering a comprehensive understanding of cogni-
tive robotics principles, such as classic Deliberative or Reactive approaches,
and avoiding state-of-the-art solutions such as BTs or FSMs.
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— Trends in Robotics: A course with this title has to overview LLMs. Students
analyze how LLMs can forecast and model current trends, providing valuable
insights for anticipating and adapting to the dynamic evolution of robotics.

As a result of these courses, we have the Fig. 1. It presents an overview of a
simple robot with its Application System Structure with the cognitive functions
of a robot, a single presentation of a model employed in the course and the
engines applied.
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<<part>>
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<<model>> <<engine>>
Symbolic Planners popf
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symbolic PDDL

<<engine>>
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Fig. 1. Application System Structure of a robot with models and engines for a robotics
course (it was simplified for the sake of visualization). This structure includes the
following cognitive functions: action selection, perception, reasoning, talk, memory,
explicability and manipulation.

<<model>>

<<engine>>
Visual Large Models -

4 Practical Case

4.1 Project Description

The project takes into account several subjects from both semesters, including
Service Robotics, Middleware, and Artificial Intelligence in the first semester,
and Trends in Robotics IT and Trends in Machine Learning in the second.

During the second semester in the Cognitive Robotics course, Finite State
Machines, such as SMACH [4] and YASMIN [15], were used for performing a
simple task to provide a service robot that can move between a set of points of
interest marked in an apartment. These points of interest are defined a priori in
a pre-loaded file.

Behavior trees are also introduced. Deliberative systems, based on PDDL
[9], are incorporated to execute tasks in a non-deterministic manner, enabling
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the capability to overcome issues that may arise during the typical deployment
of a robot. Additionally, these systems facilitate interaction with humans with
grammar and rule-based NLP is integrated to incorporate dialogue capabilities
and reasoning using PDDL.

The proposal is to introduce the use of LLMs in the different components
grayed in Fig. 1 where it is possible to change action selection and reasoning as
is presented in [14]. Here we describe how to integrate the LLMs in the robot
in the shape of a chatbot in order to provide a level of natural interaction to
students, opening the door to use the robot as their tutor.

Building a ROS-based chatbot for a robot involves integrating various soft-
ware components to enable effective communication and interaction. Here are
the main software components typically used in a ROS-based chatbot for a robot.
First, the Speech Recognition Module processes spoken language and converts
it into text. Popular libraries like PocketSphinx or Google’s Speech Recognition
API were utilized in previous research. Second, the Natural Language Process-
ing (NLP) Engine is essential for understanding and interpreting user input.
Common NLP frameworks include Dialogflow, Rasa NLU, or Wit.ai, enabling
the chatbot to comprehend and extract meaning from natural language. Third,
the Text-to-Speech (TTS) Module converts textual responses generated by the
chatbot into spoken words. Popular TTS engines like Google Text-to-Speech or
Festival can be integrated. Fourth, the dialogue management component which
orchestrates the conversation flow, manages context, user responses, and system
actions. This component ensures a coherent and context-aware interaction.

Previous to the use of LLMs, a knowledge base was required to store infor-
mation that the chatbot could reference during interactions. This may include
data about the robot’s capabilities, environmental information, or responses to
frequently asked questions. At this point, the knowledge base is used for other
components in our proposal and is presented as the “memory” part.

4.2 llama.cpp

llama.cpp, as outlined in the GitHub repository [11], constitutes a project dedi-
cated to executing the LLaMA model utilizing integer quantization on hardware-
constrained machines. This implementation is rooted in plain C/C++ and oper-
ates independently of external dependencies, facilitating the deployment of these
models across diverse platforms, including the potential for GPU acceleration.

Engaging with llama.cpp involves a thoughtful approach to prompt engi-
neering. Drawing inspiration from Microsoft’s methodology [5], adeptly crafting
prompts emerges as a critical aspect in achieving desired outcomes when working
with LLM models. This endeavor demands a blend of creativity and precision,
involving the careful selection of textual prompts to guide the model toward gen-
erating text pertinent to the specified objectives. These prompts are intricately
linked with tokens.

Tokens, the elemental units of text or code, serve as the building blocks for
language processing and generation within LLM Al Depending on the chosen
tokenization method, these units may encompass characters, words, subwords,
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or other text/code segments. Tokens are assigned numerical values or identifiers
and organized into sequences or vectors, functioning as both inputs and outputs
for the model. They represent the foundational elements that convey meaning
in language to the model.

Embeddings, in this context, denote the representations or encodings of
tokens, ranging from sentences to entire documents. These embeddings capture
past event representations generated during the prompting interaction, existing
within a high-dimensional vector space where each dimension corresponds to
a learned linguistic feature. Embeddings play a central role in preserving and
deciphering the meaning and interrelationships within textual data and they act
as the mechanism through which the model discerns and distinguishes between
various tokens or language components.

4.3 llama_ros

During this research for the right integration of llama.cpp in ROS 2 [20] projects,
it is created the tool Llama_ros. The llama_ros tool, detailed in [12], encompasses
a suite of ROS 2 packages designed to integrate llama.cpp [11] into the ROS 2
framework to use quantized [19] LLMs locally while operating efficiently within
their hardware constraints, leveraging both CPU and GPU. This integration
facilitates the utilization of ROS 2 messages for text generation with LLMs,
tokenization of text, and the creation of embeddings from textual data.

To illustrate, the UML class diagram of llama_ros is depicted in Fig. 2. The
primary class, the Llama, encapsulates all the functionalities of the llama.cpp
independently of ROS 2. This class serves as the foundation for the LlamaNode
class, a ROS 2 node that exposes ROS 2 interfaces, enabling the invocation of
the llama.cpp functions from other ROS 2 nodes.

Node

+ name: string
+ namespace: string

+Node(string)

T

Llama .
<<generate response action>>

# model: lama_model LlamaNode LlamaClientNode
sl e tokenize_service: Service + prompt: string

(T N VT llama - generate_ ings_service: Service <<tokenize service>> # action_client: Client
+ Llama (gpt_params) 1 - generate_response_action_server: Server -
+ tokenize(string): vector<token> + LlamaClientNode()
+ detokenize(vector<token>): string + LlamaNode() <<embedding service>> + send_prompt(): void
+ cancel(): void - load_params(gpt_params): void
+ generate_embeddings(string): vector<float> - tokenize(Red, Res): void
+ generate_response(string): vector<completion> - generate_embeddings(Red, Res): void
# eval(): void - generate_response(Goal): void
# sample(): completion - send_t i void

Fig. 2. UML diagram of llama_ros. The diagram includes the Llama class, which wraps
llama.cpp, the LlamaNode class, which presents the ROS 2 interfaces; and the Lla-
maClientNode, which is a node example to use llama_ros.

This tool presents a ROS 2 action server for text generation, alongside two
services dedicated to text tokenization and embedding generation. These ser-
vices prove invaluable when implementing more intricate prompt engineering
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techniques [16,18]. For example, the embedding service facilitates the conver-
sion of text into vectors, allowing the creation of a vector database. Subse-
quently, retrieval functions can be employed to search for vectors similar to a
given text. This capability enhances the precision of prompt crafting by enabling
the retrieval of more accurate prompts based on vector similarity.

4.4 Mini Pupper

Mini Pupper is an economical and open-source quadruped robot inspired by
the Stanford Pupper model. Designed for scientific exploration, it enables the
assembly of a customizable robotic platform with processing capacity for diverse
applications. It has the option of adding lidar or a standard USB camera.

Examining the hardware specifications, Mini Pupper presents the following
dimensions: a compact 210 x 110x165mm frame, a weight of 509g for optimal
portability, a 1000mAh rechargeable battery through micro-USB, a Raspberry
Pi 4B processor for computational robustness, a 240 x 320 ISP LCD screen for
interactive displays, a 5V 1A input charger for efficient recharging, and compat-
ibility with Ubuntu and ROS 2, offering a versatile environment for scientific
exploration and experimentation. Its unassuming design and technical specifica-
tions make it an ideal subject for some practicing course competencies.

4.5 ChatBot Application

The proposed chatbot application is an integrated system within ROS 2, com-
prising speech recognition for human input, LLMs for generating responses, and
text-to-speech for human interaction.

For speech recognition, the chatbot leverages whisper_ros [13], based on whis-
per.cpp®. This implementation utilizes the whisper-large-v3 model [22] from
OpenAl, coupled with Silero VAD [23] for voice activity detection. Conversely,
llama._ros [12] serves the purpose of response generation. This allows flexibility in
selecting LLMs tailored to various domains. Additionally, VITS [17] facilitates
text-to-speech conversion, although alternative models can be integrated.

Finally, by integrating into ROS 2 as a distributed system, the chatbot
enables the execution of LLMs, the Whisper model, and text-to-speech on dedi-
cated machines, while audio functionalities, such as capturing and playing audio,
can be managed on the robot’s main computer, for instance inside the Raspberry
of the Mini Pupper.

5 Discussion and Conclusions
In incorporating LLMs, in local computers thanks to llama_ros, into our
Master’s-level courses on Al and Robotics, we have witnessed both positive

and challenging aspects. The use of LLMs in teaching has proven beneficial in

3 https://github.com/ggerganov /whisper.cpp.
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certain domains. In the context of AI, LLMs offer students an insightful explo-
ration into natural language understanding, generation, and their applications,
providing a hands-on experience with cutting-edge language models. Addition-
ally, the integration of LLMs in Service Robotics has showcased advancements
in human-robot interaction, emphasizing the significance of natural language
communication in service-oriented scenarios.

However, the exclusive reliance on LLMs does present limitations, such as the
potential neglect of foundational concepts, the overemphasis on language-centric
tasks, and the challenges in multi-modal integration, highlighting the need for
a balanced approach. Similarly, in Cognitive Robotics, the broader spectrum of
cognitive capabilities, including perception and reasoning, requires a more com-
prehensive approach beyond language-centric tasks. To ensure a comprehensive
education in Al and Robotics, it is imperative to supplement LLMs with tradi-
tional methods, core algorithms, and practical applications that constitute the
holistic landscape of these fields.

As we move forward, we recommend an integrated approach that leverages
the strengths of LLMs while addressing their limitations. By combining the
advancements offered by LLMs with a well-rounded curriculum encompassing
traditional methods and emerging technologies, we can empower students to
navigate the dynamic landscape of Al and Robotics with a thorough under-
standing of both the foundational principles and the latest innovations.
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1265920B-C21 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way
of making Europe.

References

1. Achiam, J., et al.: GPT-4 technical report. arXiv preprint: arXiv:2303.08774 (2023)

2. Aruleba, K., Sanusi, I.T., Obaido, G., Ogbuokiri, B.: Integrating ChatGPT in a
computer science course: students perceptions and suggestions. arXiv preprint:
arXiv:2402.01640 (2023)

3. Bernabei, M., Colabianchi, S., Falegnami, A., Costantino, F.: Students’ use of large
language models in engineering education: a case study on technology acceptance,
perceptions, efficacy, and detection chances. Comput. Educ.: Artif. Intell. 5, 100172
(2023). https://doi.org/10.1016/j.caeai.2023.100172

4. Bohren, J., Cousins, S.: The SMACH high-level executive. IEEE Robot. Autom.
Mag. 17(4), 18-20 (2011). https://doi.org/10.1109/MRA.2010.938836

5. Bolafios, M., Maeda, J., Buck, A.: Orchestrate your AI with Semantic Kernel.
https://learn.microsoft.com/en-us/semantic-kernel/overview/

6. Brady, M.: Artificial intelligence and robotics. Artif. Intell. 26(1), 79-121 (1985)

7. Chang, Y., et al.: A survey on evaluation of large language models. ACM Trans.
Intell. Syst. Technol. 15, 1-45 (2023)

8. Diego Olite, F.M., Morales Suérez, I.D.R., Vidal Ledo, M.J.: Chat GPT: origen,
evolucién, retos e impactos en la educacién. Educacién Médica Superior 37(2)
(2023)


http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2402.01640
https://doi.org/10.1016/j.caeai.2023.100172
https://doi.org/10.1109/MRA.2010.938836
https://learn.microsoft.com/en-us/semantic-kernel/overview/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

Exploring the Use of LLMs for Teaching AT and Robotics 263

Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. (JAIR) 20, 61-124 (2003). https://doi.org/10.
1613 /jair.1129

Gan, W., Qi, Z., Wu, J., Lin, J.C.W.: Large language models in education: vision
and opportunities. In: 2023 IEEE International Conference on Big Data (BigData),
pp. 4776-4785. IEEE (2023)

Gerganov, G.: GitHub - ggerganov/llama.cpp: Port of Facebook’s LLaMA model
in C/C++ — github.com. https://github.com/ggerganov/llama.cpp (2023)
Gonzélez-Santamarta, M.A.: llama_ros. https://github.com/mgonzs13/llama_ros
(2023)

Gonzdlez-Santamarta, M.A.: whisper_ros. https://github.com/mgonzs13/whisper_
ros (2023)

Gonzélez-Santamarta, M.A., Rodriguez-Lera, F.J., Guerrero-Higueras, AM.,
Matellan-Olivera, V.: Integration of large language models within cognitive archi-
tectures for autonomous robots (2023)

Gonzélez-Santamarta, M.A., Rodriguez-Lera, F.J., Matellan-Olivera, V.,
Ferndndez-Llamas, C.: YASMIN: yet another state machine. In: Tardioli,
D., Matellan, V., Heredia, G., Silva, M.F., Marques, L. (eds.) ROBOT2022: Fifth
Iberian Robotics Conference, pp. 528-539. Springer International Publishing,
Cham (2023). https://doi.org/10.1007/978-3-031-21062-4_-43

Gupta, U.: GPT-InvestAR: enhancing stock investment strategies through annual
report analysis with large language models. arXiv preprint: arXiv:2309.03079
(2023)

Kim, J., Kong, J., Son, J.: Conditional variational autoencoder with adversarial
learning for end-to-end text-to-speech (2021)

Li, N., Kang, B., De Bie, T.: SkillGPT: a RESTful API service for skill
extraction and standardization using a large language model. arXiv preprint:
arXiv:2304.11060 (2023)

Lin, D., Talathi, S., Annapureddy, S.: Fixed point quantization of deep convolu-
tional networks. In: International Conference on Machine Learning, pp. 2849-2858.
PMLR (2016)

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.: Robot operating
system 2: design, architecture, and uses in the wild. Sci. Robot. 7(66), eabm6074
(2022). https://doi.org/10.1126 /scirobotics.abm6074

OpenAl: GPT-4 Technical Report. https://arxiv.org/abs/2303.08774 (2023)
Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.:
Robust speech recognition via large-scale weak supervision (2022). https://doi.
org/10.48550/ARXIV.2212.04356

Team, S.: Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD),
number detector and language classifier. https://github.com/snakers4/silero-vad
(2021)

UNESCO: UNESCO: Governments must quickly regulate Generative Al in
schools (2023). https://www.unesco.org/en/articles/unesco-governments-must-
quickly-regulate-generative-ai-schools


https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://github.com/ggerganov/llama.cpp
https://github.com/mgonzs13/llama_ros
https://github.com/mgonzs13/whisper_ros
https://github.com/mgonzs13/whisper_ros
https://doi.org/10.1007/978-3-031-21062-4_43
http://arxiv.org/abs/2309.03079
http://arxiv.org/abs/2304.11060
https://doi.org/10.1126/scirobotics.abm6074
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/ARXIV.2212.04356
https://doi.org/10.48550/ARXIV.2212.04356
https://github.com/snakers4/silero-vad
https://www.unesco.org/en/articles/unesco-governments-must-quickly-regulate-generative-ai-schools
https://www.unesco.org/en/articles/unesco-governments-must-quickly-regulate-generative-ai-schools

q

Check for
updates

Exploring the Capabilities and Limitations
of Neural Methods in the Maximum Cut

Andoni I. Garmendia®)@®, Josu Ceberio®, and Alexander Mendiburu

University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
{andoni.irazusta, josu.ceberio,alexander.mendiburu}@ehu.eus

Abstract. The use of Neural Networks (NN) within Combinatorial
Optimization (CO) marks a significant shift in the paradigm, moving
towards automatically learning heuristic strategies in deterministic and
local search frameworks. NNs are capable of learning relevant patterns
and symmetries of various CO problems. Despite their potential, the
practical application of NNs in both academic and real-world optimiza-
tion problems has not yet reached the levels of traditional exact solvers
or metaheuristic approaches. This study primarily focuses on the Maxi-
mum Cut problem to investigate the capabilities and limitations of NN
models within the CO domain. We introduce a series of research ques-
tions aimed at examining the generalization capabilities, reliability, and
computational costs associated with these models. Our findings reveal
that: (1) NN models exhibit better modeling capabilities and generaliz-
ability when trained on a diverse set of instances, (2) the model’s level of
uncertainty can act as an indicator of its performance, and (3) employing
a unified representation framework, wherein models concurrently learn
from diverse tasks or instance types offers a significant training-speedup.

Keywords: Combinatorial Optimization - Deep Learning

1 Introduction

Combinatorial Optimization (CO) encompasses a vast array of problems where
the objective is to find the best solution from a finite set of possibilities. These
problems are ubiquitous, spanning fields such as logistics [14] and biology [17].

Historically, CO problems have primarily been addressed using exact meth-
ods or heuristics [9]. Exact methods can yield the optimal solution when allowed
enough time, yet the time needed can exponentially increase as the problem-
complexity grows. Alternatively, heuristics do not ensure the optimal solution
but can often deliver reasonably good solutions quickly. Extending this idea,
metaheuristics offer a more adaptable idea by introducing higher-level frame-
works that guide the search mechanism, positioning them as versatile methods
applicable across various problems.

In recent years, the emergence of deep learning and new neural network
architectures has led to a novel approach to CO problems, termed Neural Com-
binatorial Optimization (NCO) [1,8]. This new paradigm leverages the power of
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neural networks to learn effective heuristics from data, aiming to approximate
solutions for CO problems. The interest of NCO lies in its potential to learn
complex patterns and exploit symmetries from CO instances.

Despite their potential, the performance of NCO methods has not yet
reached the level set by traditional exact solvers, or heuristic and metaheuristic
approaches in both academic research and practical applications. This is, in some
part, due to the challenges that NCO methods face, such as the limited gener-
alizability across varied problem instances, and the considerable computational
resources required for the training of large neural models.

In an effort to investigate these challenges, this study uses the Maximum
Cut problem [4] to assess the adaptability and generalization of NCO models
when faced with changes in graph connectivity and size. We also explore the
uncertainty of these models focusing on those instances where they perform
poorly. Finally, we analyse how the training of these models can be accelerated
using models previously trained for alternative task as initialization.

2 Background and Limitations

NCO is characterized as the application of NNs for solving CO problems in a
standalone, end-to-end fashion. Nonetheless, it’s important to recognize that, as
recent reviews point out [2], the use of NNs in CO extends beyond this frame-
work, incorporating works where NNs are combined with traditional techniques,
such as mixed integer linear programming and genetic algorithms. In the domain
of end-to-end NCO methods, we observe two primary methodologies: Neural
Constructive (NC) and Neural Improvement (NI) methods.

NC methods resemble greedy heuristics by starting with an “empty” solu-
tion and incrementally adding elements based on a learned policy until the
solution reaches completion. In this context, one of the first examples is the
work by Vinyals et al. [16], which trained a pointer network model to replicate
optimal solutions produced by solvers via supervised learning. Bello et al. [1]
later improved upon this with a reinforcement learning-based model that out-
performed the supervised model [16] without requiring pre-computed optimal
solutions. More recently, introduction of the transformer model and its atten-
tion mechanism [15] have introduced further progress to the field [13], with
studies demonstrating significant advances over previous methodologies [1,16]
by leveraging attention-based models in NC applications.

NI methods, in contrast, mirror traditional local search algorithms. Starting
from an initial, possibly random, solution, these methods iteratively refine this
solution based on a learned policy to enhance its quality. The architectural
designs used in NC methods have been adapted for NI implementations. For
instance, Wu et al. [19] designed an attention-based model for routing problems
that selects the item-pair in which apply a local operator, e.g. swap, insert or
2-opt. Expanding on this, da Costa et al. [5] generalized the prior work to select
k-opt operators. Furthermore, Falkner et al. [6] introduced a method aimed at
the job scheduling problem that learns to modulate the local search process
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across three dimensions: solution acceptance, neighborhood selection, and solu-
tion perturbation strategies.

Despite these advancements, NCQO’s practical applicability remains behind
traditional methods like Genetic Algorithms [3] or solvers such as Gurobi [10],
largely due to NCO’s novelty [1,2]. Expected advancements in computational
power and algorithms in the coming years should enhance NCO’s capabilities.
However, to realize this potential, we identify certain critical limitations of cur-
rent NCO methods.

Generalization Challenges. A key limitation of NCO methods is their gen-
eralization ability, , particularly for unseen instances that differ in graph size,
grade, or density from training data. NCO models are typically trained on fixed-
size, randomly generated instances, which may not reflect real-world instance
variations. Adapting NCO models to new instances often involves retraining. In
contrast, traditional solvers are more flexible, adapting to varied problems with
minimal changes.

Training and Computational Costs. The second key limitation pertains to
the costs associated with training. Moreover, if online learning, also known as
Active Search [11], is also used then the computational effort increases dramati-
cally as it requires the model to be fine tuned (additional training) for each new
instance to be solved. The true advantage of NCO systems lies in their ability
to be trained once and then deployed multiple times during inference, thereby
spreading the initial training costs over multiple uses.

Towards Robust NCO Frameworks. Considering the aspects mentioned
above, and acknowledging the No-Free-Lunch theorem, which states that no
model can excel in all scenarios, the focus is still on developing models that
can effectively extract the characteristics of different instances. Such models
should be able to transfer the learned heuristics to various situations, rather
than overfitting on the training data.

As a preliminary work in this direction, in this paper we analyze these aspects
for the Maximum Cut problem, which is described in the following section,
together with the model architecture used.

3 Case Study: NCO for the Maximum Cut

3.1 Maximum Cut Problem

The Maximum Cut (MaxCut) [4] is one of the Karp’s 21 NP-complete prob-
lems [12], which stands out due to its computational complexity and broad
applicability in areas such as circuit design and statistical physics [4].

Given a graph G with nodes V and edges F, the objective in MaxCut involves
partitioning the nodes into two disjoint subsets V7 and V5 such that the number
of edges between these subsets is maximized. The objective function can be
expressed as:

HOEED DTS (1)

(u,v)EE
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where 60,, and 6, are binary variables indicating the subset to which nodes u and
v belong, and ¢ is a function which equals to 1 if 6,, # 6, and 0 otherwise.

3.2 NCO Model

This study uses a state-of-the-art NCO architecture suitable for both construc-
tive and improvement methods. It consists of an encoder-decoder setup, with
the encoder generating latent representations (embeddings) of the optimization
process and the decoder issuing actions to generate MaxCut solutions.

For a given MaxCut instance represented by a graph G, we express the solu-
tion at the current optimization step ¢ as 6;, a vector of |V| elements. Each
element in 6; can be in one of three states: 0 (first subset), 1 (second subset),
or 2 (unassigned), allowing for a unified representation for both NC and NI
methods.

The model’s encoder is a Graph Neural Network (GNN) [7] that processes the
problem instance G and the current solution 6; via node- and edge-features. For
MaxCut, G’s edge-features are defined by an adjacency matrix Y = [yi;]nxn,
where y;; = 1 if nodes ¢ and j are connected and 0 otherwise. Node features
consist of the solution values 6;.

The GNN processes node- and edge-features across L layers, transforming
them into d-dimensional node- and edge-embeddings, h and e, respectively,
through a linear projection. At each layer [, node-embeddings are updated via
Eq.2. Here, fagarEGATE i a permutation-invariant function that aggregates
features from neighboring (N') nodes and edges, using an attention-based func-
tion that computes a weighted average of neighbor embeddings. Additionally,
fuppaTE is a two-layer feed-forward network with SwiGLU activation and RMS
Normalization, used in recent attention-based architectures [15].

141 ! ! ) pl ! j )
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The encoder’s output, a set of node-embeddings from the last layer (hl),
serves as the input to the decoder. Decoders are designed as two-layer feed-
forward networks with SwiGLU activation and RMS Normalization.

We define two decoder types, based on the NCO setting followed: (1) the
constructive decoder and the improvement decoder. Both decoders produce action
probabilities using a Softmax function over node-embeddings. The NC decoder
generates probabilities for assigning unallocated nodes to one of the sets, while
the NI decoder outputs the probabilities for flipping node values.

We train the NCO models using policy-based reinforcement learning [18],
with different reward mechanisms for NC and NI models. The NC model receives
a reward once completing a solution, based on the obtained objective value, while
the NI model is rewarded at each step for any improvement in the objective value.

4 Experiments

This section presents a structured experimental investigation designed to better
understand the limitations and strengths of NCO methods. The exploration is
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structured around four critical Research Questions (RQ), each aimed at exploring
different aspects of NCO models’ performance and adaptability:

— RQ1: How effectively can NCO models acquire representations that are gen-
eralizable to graphs with (A) different connectivity and (B) different sizes?

- RQ2: What is the level of confidence exhibited by NCO models in their
predictions, particularly in instances where their performance is suboptimal?

— RQ3: What strategies can be employed to minimize the training costs asso-
ciated with NCO models?

— RQ4: Between Neural Constructive and Neural Improvement methods, which
approach holds greater potential for solving CO problems?

We have designed a set of experiments to address these questions. Note that
the insights derived from these experiments are specific to the MaxCut problem
and the chosen model architecture. Consequently, not all the findings may be
applicable to other NCO methodologies or problems. Nonetheless, we endeavor
to extract and present conclusions that hold the broadest possible relevance.

4.1 RQI1-A. Generalization to Different Graph Connectivity Levels

= H &
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0.35

Mixed
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Fig. 1. Generalization performance in graphs with different connectivity: Gap % over
the best testing value for (a) Constructive, and (b) Improvement models.

Our analysis divides test graphs into three categories based on connectivity to
assess NCO model adaptability: sparse graphs (between 5% and 15% connec-
tivity), balanced graphs (45%-55%) and dense graphs (85%-95%).

We deployed six models, three models with a constructive decoder and three
with an improvement decoder, each trained exclusively on one of the connectiv-
ity groups. The training dataset involved 64,000 graphs, each with 100 nodes,
distributed across 1,000 episodes with 64 graphs per batch. Furthermore, an
additional model, referred to as the Mixed model, was trained using a diversi-
fied dataset comprising instances from all connectivity ranges, with a training
budget identical to that of the connectivity-specific models.
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We tested each model with 100 unseen graphs from all three connectivity
groups. The results are represented in two heatmaps shown in Fig. 1, with the
connectivity used during training (Y-axis) and testing connectivity (X-axis). The
color of the cells are based on the performance gap percentage relative to the
best-known value for that testing graph category.

Constructive Models. The models trained on sparse graphs exhibited the most
robust performance. Notably, models trained on dense graphs demonstrated
reduced transferability when tested on sparse graphs. Interestingly, models
trained with the mixed dataset obtained the best overall results, performing
better that those trained and tested with the same connectivities: 5 — 15% and
45 — 55%.

Improvement Models. Improvement models had better overall transferability
across different graph connectivity ranges. These models also performed more
effectively when trained on sparse graphs. The mixed model obtained competi-
tive results, comparable to those trained with the same connectivity.

4.2 RQ1-B. Generalization to Different Graph Sizes
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Fig. 2. Generalization performance across graphs with different size: Gap % over the
best testing value for (a) Constructive models, and (b) Improvement models.

In this section, we explore the transferability with varying graph sizes, while
maintaining a constant connectivity of 15%, which is a common value used in
the MaxCut literature [4]. We categorize the graph instances into three size
ranges: small graphs (ranging from 20 to 50 nodes), medium graphs (100-
140) and large graphs (200-250). As done before, we have also trained a
model in a mixed dataset with instance sizes from the three groups.

Contrary to the impact of varying connectivity, models demonstrate better
adaptability when trained and tested on graphs of different sizes for both con-
structive and improvement methods (See Fig. 2). This suggests that size variation
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is less challenging compared to connectivity variation. Moreover, models trained
in the mixed dataset obtained the best results, suggesting that training with a
varied dataset could help in obtaining better overall models.

4.3 RQ2. Confidence Level of NCO Models

Connectivity 5%-15% Conmectivity 45%-55% Connectivity B5%-35% Connectivity 5%-15%

<

Probability of the Seiected Action

(a) Constructive (b) Improvement

Fig. 3. Evolution of the selected actions’ probability throughout the optimization pro-
cess of 100 ER graphs of with 100 nodes and different connectivity.

A critical question is regarding the certainty of the model recommendations,
mainly in scenarios where their performance is suboptimal. It is essential to
understand the uncertainty of these models whether to rely on their decisions or
not. In the experimental setup, we focus on the models that exhibited the most
varied performance in the preceding evaluations, i.e., those trained on dense
graphs with 85%-95% connectivity. The objective is to analyze and compare the
confidence levels these models demonstrate across the three connectivity groups,
which demonstrated very poor (5-15%), average (45-55%) and good (85-95%)
performances.

Figure 3 illustrates the evolution of the action probabilities chosen by both
(a) the constructive and (b) improvement models under different connectivity
scenarios. Intriguingly, there appears to be a correlation between the model’s
certainty, as indicated by the action probabilities, and its performance. As Fig. 3
shows, lower probabilities are observed in instances of poor performance, while
higher probabilities align with improved performance outcomes. This trend sug-
gests that the model’s confidence in its decisions is reflective of its effectiveness
in those specific contexts.

4.4 RQ3. Strategies to Minimize Training Costs

A recurrent challenge in NCO is the considerable computational cost involved in
training models from scratch for each new task. To address this, we investigate
the feasibility and efficiency of reusing encoder weights trained for one task, such
as constructing solutions, as a starting point for another task, like improving
solutions.
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We conduct experiments using ER graphs with 100 nodes with a connectivity
probability of 15%. We consider the two decoders presented in Sect. 3 (construc-
tive decoder and improvement decoder), plus two additional decoders: a decoder
termed Action Values, which predicts the objective value increase when flipping
the value of each individual node, and a decoder named Fitness, which given a

solution, predicts its objective value.

Constructive Improvement
500
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] T
- & 440
= 420 =
] a
- = 420
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Action Values Action Values
400 o
380 Fitness Constructive
Improvement a5 Fitness
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(a)
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Training Epoch

(b)

Fig. 4. Reward obtained throughout training epochs with different encoder-weights
initialization for: (a) Constructive models, and (b) Improvement models.

Our analysis targets the acceleration in training constructive and improve-
ment models through the re-utilization of encoder weights learned from other
NCO tasks. Figure4 illustrates the differences in convergence speeds using vari-
ous encoder initializations.

For training the constructive models, using encoders pre-trained on action-
value and improvement tasks demonstrated a 2.2-fold acceleration in convergence
speed compared to models with randomly initialized encoders, which serves as
our baseline. Intriguingly, encoders pre-trained for predicting the objective value
did not exhibit any notable enhancement in training efficiency. In contrast,
for training improvement models, all three pre-trained encoder initializations
resulted in faster convergence. Encoders pre-trained on action-value prediction,
constructive tasks, and solution objective value achieved a 5.4, 3.9, and 1.4 times
increase in convergence speed, respectively.

These findings give insights about the transferability between distinct NCO
tasks, with a notable observation that encoders trained to predict next-step
action values significantly boost the training efficiency of improvement models.

4.5 RQ4. NC Vs NI

Few studies have directly compared NC and NI approaches in NCO. To our
knowledge, this is the first attempt to develop a flexible framework that can be
used as either an NC or an NI method.
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Table 1. Performance gap relative to the best-known solution and computation times
for different methods applied to the MaxCut problem. Methods were evaluated using
100 ER200 graphs, after training on ER100 graphs.

Method Gap to Best Known (%) | | Time

NC 0.78 0.98 s/instance
NI (Rand. Init., 3|V| steps) | 0.12 3.00s/instance
NI (NC Init., 2|V]| steps) |0.07 2.99 s/instance

In this experiment, we examine how NC and NI methods perform against
each other, looking at both their performance and the time they take. As shown
in Table 1, NI methods can improve the results of NC. Moreover, we also show
that both methods can be applied together, feeding the NI model with solutions
created by the NC model (NC Init.), which leads to even better performance
ratios.

5 Conclusion

In this study, we have explored the capabilities and limitations of NCO models,
using the MaxCut as the case study. We studied how these models perform across
different graph structures and sizes, their confidence levels and reliability, and
how the training times can be reduced. Our analysis highlights the benefit of
training NCO models using a diverse set of graphs. Additionally, we have found
that combining NC and NI methods appears to be a promising strategy.

Looking forward, we suggest avenues for improvement in this domain: (1)
developing varied training datasets or instance generators to improve model
adaptability to real-world scenarios, (2) creating uncertainty-aware frameworks
that assess when retraining the model is necessary, and (3) designing a unified
NC+NI framework that leverages a shared representation, potentially improving
knowledge transfer between different decoders.
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