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Preface 

From Juan J. Cuadrado-Gallego and Yuri Demchenko 

This is the second book of a series that started in 2020 with the publication of the 

first book The Data Science Framework: A View from the EDISON Project. That 

first book was about the EDISON Data Science Framework (EDSF) developed by 

the EDISON project, whose definition of Data Science and Data Scientist as a 

profession that became widely accepted by the academic and professional commu-

nities. Since the publication of the first book, the EDSF has been developed by the 

practitioner community, including EDSF application to new data-related profes-

sions, such as Data Stewardship, and new (reference) educational and training 

courses development. The presented second book provides an important develop-

ment and experience with establishing the theoretical and practical foundation for 

mastering the Data Science that is related to the first Data Science Analytics 

Knowledge Area Group as defined in the EDISON Data Science Body of 

Knowledge. 

The book has been thought to help to start the learning of the techniques and 

algorithms used in data analytics and start dealing with their computational 

implementations. The book is intended to be used, both, as a text book to teach 

the concepts in courses about data analytics at graduate or postgraduate levels and to 

learn the data analytics knowledge by the practitioner readers by themselves. The 

book provides suggestions on how to use it for both purposes. 

As in the first book, we acknowledge initial EU funding for the EDISON project 

(grant number 675419 in 2015–2017), and continuing efforts of the EDISON 

Community Initiative for EDSF maintenance and recent publication of the EDSF 

Release 4 (2022). Additionally, we would also like to acknowledge our universities, 

Universiteit van Amsterdam, Amsterdam, the Netherlands, and the Universidad de 

Alcalá, Madrid, Spain, for their support during the realization of this book. We 

acknowledge the researchers who have helped us in the realization of the book and 

who are coauthors in three of the chapters: Josefa Gomez and Abdelhamid Tayebi, 

from the University of Alcalá, Madrid, Spain. Finally, we want to give our

v



acknowledgment to our editor Paul Drougas for his trust in our proposal, his 

patience, and his help in the production of the book. 

From Juan J. Cuadrado-Gallego 

vi Preface

I want to dedicate this book to my wife Ana and my daughters Ana and Cris. Ganz 

lieben Dank für alles. 

From Yuri Demchenko 

I dedicate this book to my lovely women, my wife Natalia, my daughter 

Anastasia, and my granddaughter Sonia. All of them have an important role in 

what I do, what I write, what I learn, and how I live.
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Introduction to Data Science and Data 

Analytics 

This initial chapter, “Introduction to Data Science and Data Analytics”, presents the 

main concepts related to the subject of the book. As happened in the first book of the 

series, “Introduction to the Data Science Framework: A View from the EDISON 

Project”, the chapter uses the common word about to start all the sections that 

present the introduction to what is Data Analytics in the framework of Data Science. 

The chapter presents a brief introduction to Data Science that can be amplified by 

reading the previous book, an introduction to EDISON, the European Union (EU)-

funded project under which the framework for Data Science, and specifically, the 

Data Analytics body of knowledge treated in this book, was developed. The chapter 

also presents an introduction to Data Analytics from the four different perspectives 

developed in the EDISON project, that is, the Data Analytics competences, its body 

of knowledge, its curriculum, and its related professional profiles. Finally, the 

chapter ends with a last about, in this case, about the book itself, in which the 

contents and structure of the book will be introduced. 

About Data Science 

What is Data Science? 

All the content of this book has been created with the goal of providing the reader the 

foundational knowledge of Data Analytics, and the first notion that must be known is 

that Data Analytics is a part of Data Science. Consequently, to start the study of Data 

Analytics, we define what Data Science is. 

There are multiple definitions of the data science discipline and technology that 

stress/put in the centre one of the four flavours/goals of data analysis:

• Data Analytics is a process of inspecting, transforming, and modelling data with 

the goal of discovering trends, patterns, or relations that describe observable real-

life phenomena and can be used for informed decision-making. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 

J. J. Cuadrado-Gallego, Y. Demchenko, Data Analytics, 

https://doi.org/10.1007/978-3-031-39129-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39129-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-39129-3_1#DOI


2 Introduction to Data Science and Data Analytics

• Data Science involves the systematic study of the structure and behaviour of data 

to understand past and current occurrences and predict the future behaviour of 

those data. Data science is an interdisciplinary field that uses scientific methods, 

processes, algorithms, and systems to extract knowledge and insights from 

structured and unstructured data.

• Machine Learning deals with the development of algorithms, some of which are 

based on statistical models, with the objective that their computational imple-

mentation allows the computer not only to carry out the tasks without supervision 

but also to learn the results for continuous improvement. Within machine learn-

ing, deep learning is the set of predictive methodologies that use artificial neural 

networks to progressively extract higher-level features from unstructured raw 

data. This class of methods is particularly effective for making predictions from 

large amounts of data generated by real-life behavioural processes or sensors. 

Machine learning and deep learning are considered subfields of data science 

focused on specific tasks, whereas data science provides a general methodology 

for working with a wide variety of data using different methods and tools.

• Artificial Intelligence is a machine or application with the capability to autono-

mously execute predictions from data, where prediction is made based on data 

science and analytics methods. 

It is important to clarify the relation of data science to other closely related 

scientific disciplines and technology domains, such as big data, artificial intelli-

gence, machine learning, and statistics. Despite the fact that some authors may refer 

to historical facts mentioning these many years ago, we refer to the current data-

driven technology development that made data science a central component of all 

other data-related and data-driven technology developments. We identify that such 

technology fusion and consolidation took place in 2011–2013 with the advent of 

cloud computing and big data, which also aligned with the US National Institute of 

Standards and Technologies’ (NIST) definition of cloud computing in 2011 and big 

data definition in 2013. 

Big Data serves as a technology platform to allow the data science and analytics 

solutions and applications to work with modern data that are of the big data 3 V 

scale: volume, amount of data processed; velocity, speed of growth of data 

processed; and variety, number of different types of data processed. Big data 

technology platforms include large-scale computation, storage, and network facili-

ties, typically cloud based, such as Hadoop, Spark, NoSQL databases, data lakes, 

and others. 

In the whole digital economy ecosystem, data science integrates all multiple 

components from other scientific and technology domains to drive data-intensive 

research and emerging digital technology development. 

Different proposals can be found in the literature to answer the question stated at 

the beginning of this section, but from the experience of the EDISON Data Science 

Framework development and with the purpose of having a brief/actionable definition 

to answer the question, the authors can give the following answer to the question:



What is Data Science in practice? 

About the EDISON Project and Data Science Framework 3

Data Science is a complex discipline that uses conceptual and mathematical abstractions and 

models, statistical methods, together with modern computational tools to obtain knowledge 

and derive insight from data to (uncover correlations and causations in business data) 

support decision making in scientific research and business activity. (Yuri Demchenko 

and Juan J. Cuadrado-Gallego) 

If we must define data science in only one sentence: 

Science that studies how to obtain knowledge from Data. (Juan J. Cuadrado-Gallego and 

Yuri Demchenko) 

About the EDISON Project and Data Science Framework 

This book is entitled Data Analytics: From the EDISON Project to the Practice, and 

for that reason, as we have done with the concept of Data Science, it is beneficial, 

before going to the knowledge of Data Analytics, to introduce what is the EDISON 

Project and its main result the EDISON Data Science Framework (EDSF). 

The EDISON Project 

The EDISON Project was the EU-funded Horizon 2020 project with Grant 675419, 

which was developed from 2015 until 2017, and its goal was to create the foundation 

for the data science profession in Europe. The EDISON project originated from the 

community initiative started at the Research Data Alliance (RDA), with the creation 

of the RDA Interest Group on Education and Training on Handling Research Data 

(IG-ETHRD) in 2014, and joined experts and practitioners in research data manage-

ment to address the demand for data specialists that would be capable of bringing 

value from data explosion at that time. From its start, in September 2015, the project 

became involved in the European Digital Skills Initiative, which included the whole 

complex of activities addressing the growing demand for digital and data skills in 

Europe. 

During its term, the EDISON project undertook multiple initiatives and organized 

multiple community activities/events and conducted important studies to involve 

data experts and practitioners from academia, research, and industry to define the 

foundation of the new profession of the data scientist. 

The main outcome of the EDISON project was, until the publication of this book, 

the EDISON Data Science Framework (EDSF), which was a product of a wide 

professional community facilitated by the EDISON project. The project published 

EDSF Release 2 as its final deliverable in 2017. Since the project’s end, the EDSF 

has been maintained by the EDISON Community Initiative, coordinated by the 

University of Amsterdam, which involves former project partners and numerous



contributors from academia, research, and industry. EDSF Release 3 was published 

in 2018, and the new EDSF Release 4 was published in 2020 and updated in 2022. 

This book includes all the knowledge included in the last EDSF Release 4. In 

particular, EDSF Release 4 includes recent contributions from the MATES project1 

on digital and data skills for Industry 4.0 and the definition of the Data Stewardship 

and FAIR competences developed in the FAIRsFAIR project.2 

4 Introduction to Data Science and Data Analytics

In addition to the multidimensional definition of the data science profession, the 

EDSF created a comprehensive and effective methodology that can be used for other 

professional domains to address multiple aspects of organizational human resources 

management and capacity building that include competences and skills definition 

and assessment, education and training, customized curriculum design, knowledge 

assessment and certification, individual professional development, and career path 

building. 

The EDISON Data Science Framework (EDSF) 

The EDISON Data Science Framework provides the basis for the definition of the 

data science profession and enables the definition of the other components related to 

data science education, training, organizational role definition and skills manage-

ment, as well as professional certification. 

Figure 1 illustrates the main components of the EDISON Data Science Frame-

work and their interrelations that provide the conceptual basis for the development of 

the data science profession: 

Fig. 1 EDISON Data Science Framework components 

1 Erasmus+ Project MATES (grant number 591889) –https://www.projectmates.eu/ 
2 H2020 Project FAIRsFAIR (grant number 831558) –https://www.fairsfair.eu/

https://www.projectmates.eu/
https://www.fairsfair.eu/
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• Data Science Competence Framework (CF-DS). EDSF Part 1.

• Data Science Body of Knowledge (DS-BoK). EDSF Part 2.

• Data Science Model Curriculum (MC-DS). EDSF Part 3.

• Data Science Professional Profiles and Occupations Taxonomy (DSPP). EDSF 

Part 4. 

The proposed framework provides the basis for other components of the data 

science professional ecosystem (defined and piloted in the EDISON project and 

constituting the project legacy that can be reused and followed by the community), 

such as:

• Data Science Education Environment (DSEE)

• Directory of Education and Training Materials

• Virtual Data Labs (templates)

• Data Science Community Portal (DSCP), which provides community support and 

contains essential community-maintained information about EDSF, code repos-

itory, and tools for curriculum design and competences assessment 

The Competences Framework for Data Science (CF-DS) provides the overall 

basis for the whole EDSF. The core CF-DS includes common competences required 

for the successful work of data scientists in different work environments in industry 

and in research and through the whole career path. The future CF-DS development 

will include coverage of the domain-specific competences and skills and will involve 

domain and subject matter experts. 

The Data Science Body of Knowledge (DS-BoK) defines the knowledge areas for 

building data science curricula that are required to support identified data science 

competences. DS-BoK is organized by knowledge area groups (KAGs) that corre-

spond to the CF-DS competence groups. Each KAG is composed of knowledge 

areas (KAs). Each KA is composed of a number of knowledge units (KUs), which 

are currently the lowest component of the DS-BoK. DS-BoK incorporates best 

practices in computer science and domain-specific bodies of knowledge and includes 

KAs and KUs defined, where possible, based on the classification of computer 

science components taken from other bodies of knowledge and proposes new 

KAs/KUs to incorporate new technologies used in data science and their recent 

developments. 

The Model Curriculum for Data Science (MC-DS) is built based on CF-DS and 

DS-BoK, where learning outcomes (LOs) are defined based on CF-DS competences 

and learning units (LUs) are mapped to knowledge units in DS-BoK. Three mastery, 

or proficiency, levels are defined for each learning outcome to allow for flexible 

curricula development and profiling for different data science professional profiles. 

The proposed learning outcomes are enumerated to have a direct mapping to the 

enumerated competences in CF-DS. 

The Data Science Professional Profiles (DSPP) are defined as an extension to the 

European Skills, Competences, Occupations, and Qualifications (ESCO) taxonomy 

using the ESCO top classification groups. The DSPP definition provides an impor-

tant instrument to define effective organizational structures and roles related to data



science positions (e.g., building data science teams) and can also be used for building 

individual career paths and corresponding competences and skills transferability 

between organizations and sectors. 

6 Introduction to Data Science and Data Analytics

The Data Science Taxonomy and Scientific Disciplines Classification ensures 

consistency between four core components of EDSF: CF-DS, DS-BoK, MC-DS, and 

DSPP. To ensure consistency and linking between EDSF components, all individual 

elements of the framework are enumerated, in particular competences, skills, and 

knowledge topics in CF-DS; knowledge groups, areas, and units in DS-BoK; 

learning outcomes and learning units in MC-DS; and professional profiles in DSPP. 

The EDISON data science professional ecosystem illustrated in Fig. 1 uses core 

EDSF components to specify the potential services that can be offered for the 

professional data science community and provide the basis for the sustainable data 

science competences and skills management by organizations, in particular in 

conditions of emerging Industry 4.0, growing digitalizations and artificial intelli-

gence development. As an example of practical use, CF-DS and DS-BoK can be 

used for individual competences and knowledge benchmarking and play an instru-

mental role in constructing personalized learning paths and professional (up/re) 

skilling programmes based on MC-DS. 

The recent EDSF Release 4 is the result of cooperation and contribution by the 

wide community of academicians, researchers, and practitioners that are practically 

involved in data science and data analytics education and training, competences and 

skills management in organizations, and standardization in the area of competences, 

skills, occupations, and digital technologies. 

The EDSF provides the conceptual basis for the data science profession defini-

tion, targeted education and training, professional certification, organizational capac-

ity building and organization and individual skills management and career 

transferability. 

The EDSF Part 5 document, part of the EDSF2020 Release, defines the EDSF use 

cases and applications:

• Digital competences and data literacy training

• Data science competences analysis and curriculum design

• Assessment of individual and team competences, as well as balanced data science 

team composition

• Development of the tailored curriculum for academic education or professional 

training to bridge the skills gap and staff up/reskilling 

The EDSF Part 5 is intended to provide guidance and the basis for universities, 

training organizations, data management and data steward teams, and practitioners to 

define their data science curricula and course selection, on the one hand, and for 

companies to better define a set of required competences and skills for their specific 

industry domain in their search for data science talents, on the other hand.
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About Data Analytics 

Once we have introduced what Data Science and the EDISON Project are, we will 

introduce extensively in this section what Data Analytics are. We are going to do this 

using the EDISON Data Science Framework, EDSF, defined by the EDISON 

Project. We start with the introduction of the Data Analytics competences defined 

in the EDSF, and from that, we will introduce the Data Analytics Body of Knowl-

edge. Once we know both aspects, we will introduce the Data Analytics Model 

Curriculum to finalize with the Data Analytics professional profiles. We are going to 

use the EDSF to introduce the Data Analytics subject in two ways: first, to use it as a 

way to introduce the main related knowledge, from the definition of the competences 

to the definition of the professional profiles; and second, as the source for that 

knowledge, that is, for example, the data analytics body of knowledge introduced 

later has been obtained from the Data Science Body of Knowledge defined in 

the EDSF. 

Data Analytics Competences 

Before defining the Data Analytics Competences, we will establish what the con-

cepts of Data Science Competences, Skills, and Knowledge are within the frame-

work of the EDISON Project. 

The competences definition in the EDSF has a strong foundation and roots in the 

existing frameworks and best practices that were used for defining the proposed set 

of data science competences and skills. In particular, similar to e-CF 3.0, the CF-DS 

is defined as a three-dimensional model with dimensions: competences, skills, and 

knowledge. The relation between them is illustrated in Fig. 2. 

Fig. 2 Relation between competences, skills, knowledge, and education
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Competences ensure the ability to perform required organizational functions that 

are defined for a specific organizational role that the worker/employee performs in 

the organization. Competences must be supported by knowledge acquired in the 

process of education or training and by specific skills that are acquired/obtained as a 

result of practical activity or previous work in a similar role or profession. Knowl-

edge and skills add to the ability and performance of organizational functions. 

CF-DS adopts a holistic e-CF definition: Competence is a demonstrated ability to 

apply knowledge, skills, and attributes to achieve desirable results in organizational 

or role contexts. CF-DS should work as an enabler for multiple applications that can 

be used by different types of users from individual to organizational; it should 

support common understanding and not mandate specific implementation. 

In the following, the three dimensions of the CF-DS are explained:

• The first dimension of CF-DS is Competences. The following CF-DS five 

competence and skills groups have been identified: 

1. DSDA, Data analytics. This group includes statistical analysis, machine learn-

ing, data mining, business analytics, and others. 

2. DSENG, Data engineering. This group includes software and applications 

engineering, data warehousing, big data infrastructure, and tools. 

3. DSDM, Data management and governance. This group includes data stew-

ardship, curation, and preservation. 

4. DSRMP, Research methods and project management. This group includes 

research methods and project management for research-related professions 

and business process management for business-related professions. 

5. DSDK, Domain-specific knowledge and expertise (subject/scientific domain 

related). Additionally, will be named, indistinctly, business analytics, DSDA. 

This group includes domain-specific knowledge and expertise. 

DSDA, DSENG, and DSDM competence groups constitute the core data 

science competences that actually define the main Data Science Professional 

profiles and roles, including those related to different application domains. 

DSDM and DSRMP competence groups are considered commonly required for 

all Data Science Professional Profiles to ensure effective work with modern data-

driven technologies and in modern data-driven organizations. Data management, 

curation, and preservation competences are already attributed to the existing 

(research) data-related professions such as data stewards, data managers, data 

librarians, data archivists, and others. Data management is an important compo-

nent of the European research area and open data and open access policies. It is 

extensively addressed by the Research Data Alliance (RDA) and supported by 

numerous projects, initiatives, and training programmes. 

DSRMP Knowledge of the research methods and techniques is something that 

makes the data scientist profession different from all previous professions. It 

should also be coupled with basic project management competences and skills. 

The research methods typically include the following stages: 1. design
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experiment; 2. collect data; 3. analyse data; 4. identify patterns; 5. hypothesis 

explanation; 6. test hypothesis. 

The reason of the DSDK (DSBA) Knowledge is based on the fact that an 

important part of the research process is theory building, but this activity is 

attributed to the domain or subject matter researcher. The data scientist 

(or related role) should be aware of domain-related research methods and theory 

as a part of their domain-related knowledge and team or workplace communica-

tions. There are a number of business process operations models depending on 

their purpose, but typically, they contain the following stages that are generally 

similar to those for scientific methods, in particular in collecting and 

processing data: 1. Design; 2. Model/plan; 3. Deploy and execute; 4. Monitor 

and control; 5. Optimize and redesign. 

The identified demand for general competences and knowledge on data 

management and research methods needs to be implemented in future data 

science education and training programmes, as well as to be included in reskilling 

training programmes. It is important to mention that knowledge of research 

methods does not mean that all data scientists must be talented scientists; how-

ever, they need to know the general research methods, such as formulating 

hypotheses, applying research methods, producing artefacts, and evaluating 

hypotheses (the so-called 4-step model). Research methods training is already 

included in master’s programmes and graduate students of many master’s 

programmes. 

From the education and training point of view, the identified competences can 

be treated or linked to the expected learning or training outcome. This aspect is 

discussed below in relation to the definition of the Data Science Body of 

Knowledge and Data Science Model Curriculum. The five identified data 

science-related competence groups provide the basis for defining consistent and 

balanced education and training programmes for data science-related jobs, 

reskilling, and professional certification. 

The proposed data science competences definition in the EDISON Project for 

different groups are supported by the data extracted from the job market analysis 

for the demanded competences, skills, knowledge, and attitude. The presented 

competences definition has been reviewed by a number of expert groups and 

individual experts as a part of the project EDISON engagement and network 

activities. The presented competences are required for different professional 

profiles, organizational roles and throughout the whole data life cycle but do 

not need to be provided by a single role or individual. The presented competences 

are enumerated to allow easy use and linking between the parts of the data science 

framework: CF-DS, DS-BoK, MC-DS, and DSPP.

• The second dimension of the CF-DS is Skills. The identified skills can be 

organized into the following three groups: 

1. Group A Skills. They refer to data science skills related to the main compe-

tence groups that cover knowledge and experience related to effectively 

realizing defined competences and related organizational functions. The
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identified data science skills associated with the main competence groups are 

as follows: 

1.1 Data analytics skills. Covering extensive skills related to using different 

machine learning, data mining, statistical methods, and algorithms 

1.2 Data engineering skills. Related to design, implementation, and oper-

ation of the data science (or big data) infrastructure, platforms, and 

applications 

1.3 Data management and governance skills. Including both general data 

management and research data management) 

1.4 Research methods and project management skills. 

1.5 Business analytics as an example of domain-related skills. 

The data analytics and data engineering groups are the most populated, 

which reflect a wide spectrum of required skills in these groups as a core for 

data science because it is mandatory for the data scientist to have the ability to 

implement effective data analytics solutions and applications. In addition, it is 

important to mention that the whole complex of data science-related compe-

tences, skills, and knowledge is strongly based on the mathematical founda-

tion that should include knowledge of mathematics, including linear algebra, 

calculus, statistics, probability theory, and other mathematical subjects. 

2. Group B Skills. They refer to data analytics and data handling languages, tools, 

platforms, and applications, including SQL- and NoSQL-based applications 

and data management tools and knowledge and experience with big data 

infrastructure platforms and tools. 

3. Transversal Skills. Separately defined are personal and attitude skills, also 

referred to as transversal, the twenty-first-century skills and data science 

professional skills that define specific (personal) skills that the data scientist 

needs to develop to successfully work as a data scientist in different organi-

zational roles along their career.

• The third dimension of the CF-DS is knowledge topics. Knowledge or knowledge 

topics are the required knowledge to support corresponding competence groups. 

There is no direct mapping between individual competences and knowledge 

topics; a single competence may be mapped to multiple knowledge topics and 

vice versa. CF-DS provides mapping between knowledge topics defined for 

individual competences and knowledge units defined in DS-BoK. 

After introducing three dimensions of competence in the EDSF, we are now 

going to see the application of the model over the specific subject of this book, that 

is, we are going to introduce the Data Analytics Competences, Knowledge, and 

Skills (DSDA):

• Data Analytics (DSDA) Competences 

Data analytics competences deal with the use of appropriate data analytics and 

statistical techniques on available data to discover new relations and deliver 

insights into research problems or organizational processes and support
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decision-making and cover extensive skills related to using different machine 

learning, data mining, statistical methods, and algorithms. The following are the 

six DSDA identified competences: 

1. DSDA01. Effectively use a variety of data analytics techniques, such as 

machine learning (including supervised, unsupervised, and semi-supervised 

learning), data mining, prescriptive and predictive analytics, for complex data 

analysis through the whole data life cycle. 

2. DSDA02. Apply designated quantitative techniques, including statistics, time 

series analysis, optimization, and simulation, to deploy appropriate models for 

analysis and prediction. 

3. DSDA03. Identify, extract, and pull together available and pertinent hetero-

geneous data, including modern data sources such as social media data, open 

data, and governmental data, and verify data quality. 

4. DSDA04. Understand and use different performance and accuracy metrics for 

model validation in analytics projects, hypothesis testing, and information 

retrieval. 

5. DSDA05. Develop required data analytics for organizational tasks, integrate 

data analytics and processing applications into organizational workflows and 

business processes to enable agile decision-making. 

6. DSDA06. Visualize the results of data analysis, design dashboards, and use 

storytelling methods.

• Data Analytics Knowledge Topics (KDSDA) 

The following are the eighteen data science and data analytics knowledge 

(KDSDA) required to support the identified competences in this subject: 

1. KDSDA01. Machine learning supervised: decision trees, naïve Bayes clas-

sification, ordinary least square regression, logistic regression, neural net-

works, SVM (support vector machine), ensemble methods, and others. 

2. KDSDA02. Machine learning unsupervised: clustering algorithms, principal 

component analysis (PCA), singular value decomposition (SVD), indepen-

dent component analysis (ICA) 

3. KDSDA03. Machine learning (reinforced): Q-learning, TD-learning, genetic 

algorithms) 

4. KDSDA04. Data mining (text mining, anomaly detection, regression, time 

series, classification, feature selection, association, clustering) 

5. KDSDA05. Text data mining: statistical methods, NLP, feature selection, a 

priori algorithm, etc. 

6. KDSDA06. General statistical analysis methods and techniques, descriptive 

analytics 

7. KDSDA07. Quantitative analytics 

8. KDSDA08. Qualitative analytics 

9. KDSDA09. Predictive analytics 

10. KDSDA10. Prescriptive analytics
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11. KDSDA11. Graph data analytics: path analysis, connectivity analysis, com-

munity analysis, centrality analysis, subgraph isomorphism, etc. 

12. KDSDA12. Natural language processing 

13. KDSDA13. Data preparation and preprocessing 

14. KDSDA14. Performance and accuracy metrics 

15. KDSDA15. Markov models, conditional random fields 

16. KDSDA16. Operations research 

17. KDSDA17. Optimization 

18. KDSDA18. Simulation 

Data Science Analytics skills include three groups: skills group A, which 

are related to competences; skills group B, which includes skills related to 

practical skills related to using computational platforms, programming lan-

guages, and tools; and transversal skills, which include data science profes-

sional skills and workplace skills. These three groups of skills are described 

below in detail.

• Data Analytics Skills Group A (SDSDA) 

The following are the sixteen data science and data analytics identified Group 

A skills, SDSDA: 

1. SDSDA01. Use machine learning technology, algorithms, tools, including 

supervised, unsupervised, or reinforced learning. 

2. SDSDA02. Use data mining techniques. 

3. SDSDA03. Use text data mining techniques. 

4. SDSDA04. General statistical analysis methods and techniques, descriptive 

analytics. 

5. SDSDA05. Use quantitative analytics methods. 

6. SDSDA06. Use qualitative analytics methods. 

7. SDSDA07. Apply predictive analytics methods. 

8. SDSDA08. Apply prescriptive analytics methods. 

9. SDSDA09. Use graph data analytics for organizational network analysis, 

customer relations, and other tasks. 

10. SDSDA10. Analytics and statistical methods were applied for data prepara-

tion and preprocessing. 

11. SDSDA11. Be able to use performance and accuracy metrics for data ana-

lytics assessment and validation. 

12. SDSDA12. Use effective visualization and storytelling methods to create 

dashboards and data analytics reports. 

13. SDSDA13. Use natural language processing methods. 

14. SDSDA14. Operations research. 

15. SDSDA15. Optimization. 

16. SDSDA16. Simulation.
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• Data Analytics Skills Group B 

Group B skills are common practical skills related to using computational and 

data management platforms, programming languages, and tools. Group B skills 

are all related to data analytics and data handling languages, tools, platforms, and 

applications, including SQL- and NoSQL-based applications and data manage-

ment tools and knowledge and experience with big data infrastructure platforms 

and tools. 

The identified skills related to the data analytics languages, tools, platforms, 

and big data infrastructure are split into six subgroups. The groups and their 

associated skills are as follows: 

1. Data analytics and statistical languages and tools 

2. Databases and query languages 

3. Data/application visualization 

4. Data management and curation platform 

5. Big data analytics platforms 

6. Development and project management frameworks, platforms, and tools 

The Data Analytics and statistical languages and tools skills group 

(DSDALANG) includes popular languages and tools for data analytics. It is 

important to know many of them even if someone is dedicated only to Data 

Analytics, but specifically, the following are the twelve data analytics and 

statistical languages and tools Group B skills, DSDALANG: 

1. DSDALANG01. R and data analytics libraries (CRAN, ggplot2, dplyr, 

reshap2, etc.) 

2. DSDALANG02. Python and data analytics libraries (pandas, pandas profiling, 

numpy, mathplotlib, scipy, scikit-learn, seaborn, beautifulsoup4, etc.) 

3. DSDALANG03. SAS 

4. DSDALANG04. IBM SPSS 

5. DSDALANG05. Julia 

6. DSDALANG06. RapidMiner 

7. DSDALANG07. Other analytics, statistical, and programming languages 

(WEKA, KNIME, Scala, Stata, Orange, etc.) 

8. DSDALANG08. Scripting language, e.g., Octave, PHP, Pig, HiveQL, others 

9. DSDALANG09. MATLAB data analytics 

10. DSDALANG10. Analytics tools (R/R Studio, Python/Anaconda, SPSS, 

MATLAB, etc.) 

11. DSDALANG11. Data mining tools: RapidMiner, Orange, R, WEKA, NLTK, 

and others 

12. DSDALANG12. Excel data analytics (Analysis ToolPack, PivotTables, etc.) 

Among the six skills groups listed above, the data/application visualization 

group and some of the big data analytics platform group B skills are also relevant to 

data analytics.
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The following are essential data/application visualization skills (DSVIZ): 

1. DSVIZ01. Data visualization libraries (mathpoltlib, seaborn, D3.js, 

FusionCharts, Chart.js, and others) 

2. DSVIZ02. Visualization software (D3.js, Processing, Tableau, Raphael, 

Gephi, etc.) 

3. DSVIZ03. Online visualization tools (Datawrapper, Google Visualization 

API, Google Charts, Flare, etc.) 

The EDSF defines the following big data analytics platform skills related to 

data analytics (DSBDA): 

1. DSBDA05. Azure data analytics platforms (HDInsight, Data Lake Analytics, 

PowerBI, Team Data Science Process/MLOps, Machine Learning Studio, etc.) 

2. DSBDA06. The Amazon Data Analytics platform (SageMaker, EMR, Kine-

sis, Data Pipeline, Machine Learning Services and tools, etc.) 

3. DSBDA07. Google Analytics platform (Google Data Studio, Machine Learn-

ing, TensorFlow, others) 

4. DSBDA09. Other cloud-based data analytics platforms (Cloudera/ 

HortonWorks Data Platform, Vertica, LexisNexis HPCC System, etc.) 

5. DSBDA10. Cognitive platforms (such as IBM Watson, Microsoft Cortana, 

and others) 

6. DSBDA11. Kaggle competition, resources, and community platform 

It is also important for data scientists to be familiar with multiple data analytics 

languages and demonstrate proficiency in one or a few of the most popular languages 

(which should be supported with several years of practical experience), such as:

• R, including extensive data analysis libraries

• Python and related data analytics libraries

• Julia

• SPSS

• KNIME, Orange, WEKA, and others 

Finally, referring to Group B skills, any data science practitioner and, conse-

quently, a data analytics practitioner must be familiar and have experience with 

general programming languages, software versioning, and project management 

environments such as the following:

• Java, JavaScript and/or C/C++ as general application programming languages

• Git versioning system as a general platform for software development

• Scrum agile software development and management methodology and platform, 

in particular, applied to Data Science projects MLOps and DataOps supported by 

major Big Data platforms. 

It is essential to mention that all modern big data platforms and general data 

storage and management platforms are cloud based. The knowledge of cloud 

computing and related platforms for application deployment and data manage-

ment are included in the table. The use of cloud-based data analytics tools is



DSPS01. Accept/be ready for iterative development, know when to stop,

comfortable with failure, accept the symmetry of outcome (both positive and

negative results are valuable).
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growing, and most large cloud service providers provide whole suites of plat-

forms and tools for enterprise data management from enterprise data warehouses, 

data backup and archiving to business data analytics, data visualization, and 

content streaming.

• Data Analytics Transversal Skills (Applied to Data Science Analytics) 

It is commonly agreed on the importance of soft skills for data scientists and, 

consequently, for data analysts because a data analyst is a specific data scientist. 

The job market analysis clearly confirmed the importance of workplace and 

attitude skills and identified a number of specific data science professional skills 

that are required for data scientists to effectively work in modern agile data-driven 

organizations and project teams. These should also be complemented with gen-

eral professional skills referred to as twenty-first-century skills. The importance 

of such skills for data scientists, or data analysts, is defined by their cross-

organizational functions and responsibilities in collecting and analysing organi-

zational data to provide insight for decision-making. 

In such a role, the data scientist often reports to the executive level or to other 

departments and teams. These skills extend beyond traditionally required com-

munication or team skills. In addition, the ideal data scientist is expected to bring 

and spread new knowledge to the organization and contribute to the processes 

related to data collection, analysis, and exploitation. Consequently, the main two 

transversal skills and their associated skills are as follows:

• Data Science Professional or Attitude Skills (DSPS) (Thinking and Acting Like a 

Data Scientist) 

Data science is growing as a distinct profession and consequently will need 

professional identification via the definition of the specific professional skills and 

code of conduct that can be defined as “Thinking and acting like Data Scientist”. 

Understanding, recognizing, and acquiring such skills are essential for the data 

scientist to successfully progress along their career. It is also important for team 

leaders to correctly build relations in the team or the project group. Below are 

listed the data science professional (or attitude) skills (DSPS) that are identified 

by the data science practitioners and educators. Although some of the skills are 

common to the twenty-first-century skills, it is important to provide the whole list 

of skills that can provide guidance for future data scientists regarding what skills 

are expected from them and need to be developed along their careers. The fifteen 

skills are as follows: 

1. 

2. DSPS02. Ask the right questions. 

3. DSPS03. Recognize what things are important and what things are not 

important. 

4. DSPS04. Respect domain/subject matter knowledge in the area of data 

science. 

5. DSPS05. Data-driven problem solver and impact-driven mindset.



16 Introduction to Data Science and Data Analytics

6. DSPS06. Recognize value of data, work with raw data, exercise good data 

intuition. 

7. DSPS07. Good sense of metrics, understand importance of the results vali-

dation, never stop looking at individual examples. 

8. DSPS08. Be aware of the power and limitations of the main machine learning 

and data analytics algorithms and tools. 

9. DSPS09. Understand that most of data analytics algorithms are statistics- and 

probability-based, so any answer or solution has some degree of probability 

and represents an optimal solution for a number of variables and factors. 

10. DSPS10. Working in an agile environment and coordinating with other roles 

and team members. 

11. DSPS11. Work in a multidisciplinary team, ability to communicate with the 

domain and subject matter experts. 

12. DSPS12. Embrace online learning, continuously improve your knowledge, 

use professional networks and communities. 

13. DSPS13. Storytelling: Deliver actionable result of your analysis. 

14. DSPS14. Attitude: Creativity, curiosity (willingness to challenge the status 

quo), commitment to finding new knowledge and progress to completion. 

15. DSPS15. Ethics and responsible use of data and insight delivered, awareness 

of dependability (data scientist is a feedback loop in data-driven companies).

• Twenty-First-Century Skills (SK21) (Aka “Soft” Skills) 

Twenty-first-century skills comprise a set of general workplace skills that 

include critical thinking, creativity, communication, collaboration, organizational 

awareness, ethics, and others. The importance of this kind of skill is motivated by 

fast technology development and the ongoing digital transformation of the 

modern economy and Industry 4.0. 

Below are listed the twenty-first-century skills (SK 21) defined based on the 

recommendations of the DARE Project, OECD Report on industry digitalization, 

and P21’s Framework for twenty-first-century learning. 

1. SK21C01. Critical Thinking: Demonstrating the ability to apply critical 

thinking skills to solve problems and make effective decisions. 

2. SK21C02. Communication: Understanding and communicating ideas. 

3. SK21C03. Collaboration: Working with others, appreciation of multicultural 

difference. 

4. SK21C04. Creativity and attitude: Deliver high-quality work and focus on 

final results, initiative, and intellectual risk. 

5. SK21C05. Planning and organizing: Planning and prioritizing work to man-

age time effectively and accomplish assigned tasks. 

6. SK21C06. Business fundamentals: Having fundamental knowledge of the 

organization and the industry. 

7. SK21C07. Customer focus: Actively look for ways to identify market 

demands and meet customer or client needs.
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8. SK21C08. Working with tools and technology: Selecting, using, and 

maintaining tools and technology to facilitate work activity. 

9. SK21C09. Dynamic (self-) reskilling: Continuously monitor individual 

knowledge and skills as a shared responsibility between employer and 

employee, ability to adapt to changes. 

10. SK21C10. Professional network: Involvement and contribution to profes-

sional network activities. 

11. SK21C11. Ethics: Adhere to high ethical and professional norms, responsible 

use of power data-driven technologies, avoid and disregard unethical use of 

technologies and biased data collection and presentation. 

Data Analytics Body of Knowledge 

Once we defined the competences that a Data Analyst must have, the next step is to 

introduce the Body of Knowledge defined in the EDSF for Data Analytics as a part 

of the whole Data Science Body of Knowledge, DS-BoK. 

DS-BoK has been developed with three main objectives: 1. support the compe-

tence groups defined in the Competences Framework for Data Science (CF-DS) 

presented in the previous subsection; 2. reflect the data-lifecycle management where 

different organizational roles, functions, competences, and knowledge are needed; 

and 3. ensure knowledge transferability and education programme compatibility. 

Extending this third objective, the DS-BoK can also be used as the basis for defining 

data science-related curricula, courses, instructional methods, educational/course 

materials, and necessary practices for university undergraduate and postgraduate 

programmes and professional training courses. 

The DS-BoK is also intended to be used for defining certification programmes 

and certification exam questions. Although the CF-DS (comprising competences, 

skills, and knowledge) can be used for defining job profiles (and correspondingly the 

content of job advertisements), the DS-BoK can provide the basis for interview 

questions and evaluation of the candidate’s knowledge and related skills, as well as 

for professional certification exams and training. 

The DS-BoK is organized into knowledge area groups, KAGs, each one of them 

constituted by Knowledge Areas, and each Knowledge Area, KA, is formed by 

Knowledge Units, KUs. The DS-BoK contains the following five knowledge area 

groups (KAGs) that follow the competence groups defined in the previous 

subsection: 

1. KAG1-DSDA, Data Analytics Area Group. 

2. KAG2-DSENG, Data Engineering Area Group. 

3. KAG3-DSDM, Data Management Area Group. 

4. KAG4-DSRMP, Research methods and project management for research-related 

professions and business process management for business-related professions 

Area Group.
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5. KAG5-DSBA, Business Analytics. This subject domain-related knowledge 

group (scientific or business) KAG*-DSBA is recognized as essential for the 

practical work of data scientists, which in fact means not professional work in a 

specific subject domain but understanding the domain-related concepts, models, 

and organization and corresponding data analysis methods and models. These 

knowledge areas will be a subject for future development in tight cooperation 

with subject domain specialists. 

For the purpose of this book, we will look closer at the DS-BoK part related to 

Data Analytics, which is defined as the Data Analytics Knowledge Area Group, 

KAG1-DSDA. 

The KAG1-DSDA Data Analytics Knowledge Area Group is key and distin-

guishes KAG for DS-BoK. It includes different methods and algorithms, primarily 

statistical, machine learning, and data mining, to enable data processing, modelling, 

analysis, and inspection with the goal of discovering useful information, providing 

insight and recommendations, and supporting decision-making. The following are 

the six commonly defined data science analytics knowledge areas, KAs: 

1. KA01.01 (DSDA.01/SMA) Statistical methods for data analysis 

2. KA01.02 (DSDA.02/ML) Machine learning 

3. KA01.03 (DSDA.03/DM) Data mining 

4. KA01.04 (DSDA.04/TDM) Text data mining 

5. KA01.05 (DSDA.05/PA) Predictive analytics 

6. KA01.06 (DSDA.06/MSO) Computational modelling, simulation, and 

optimization 

We are going now to enumerate the Knowledge Units, KUs, in each one of the 

Knowledge Areas, KAs, in the KAG1-DSDA Data Analytics Knowledge Area 

Group.

• KA01.01 (DSDA.01/SMA) Statistical methods for data analysis. Starting with an 

initial KU about a general overview and main concepts, the sixteen suggested 

specific knowledge units, KUs, for statistical methods knowledge are as follows: 

0. KU1.01.00. General overview and main concepts in statistical methods for 

data analysis. 

1. KU1.01.01. Probability and statistics. 

2. KU1.01.02. Statistical paradigms (regression, time series, dimensionality, 

clusters). 

3. KU1.01.03. Probabilistic representations (causal networks, Bayesian analy-

sis, Markov nets). 

4. KU1.01.04. Frequentist and Bayesian statistics. 

5. KU1.01.05. Probabilistic reasoning. 

6. KU1.01.06. Exploratory and confirmatory data analysis. 

7. KU1.01.07. Quantitative analytics. 

8. KU1.01.08. Qualitative analytics. 

9. KU1.01.09. Data preparation and preprocessing.
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10. KU1.01.10. Performance analysis. 

11. KU1.01.11. Markov models, Markov networks. 

12. KU1.01.12. Operations research. 

13. KU1.01.13. Information theory. 

14. KU1.01.14. Discrete mathematics and graph theory. 

15. KU1.01.15. Mathematical analysis. 

16. KU1.01.16. Mathematical software and tools.

• KA01.02 (DSDA.02/ML) Machine learning knowledge area. Machine learning 

and related methods for information search, image recognition, decision support, 

classification. Starting with an initial KU about a general overview and main 

concepts, the thirteen suggested specific knowledge units, KU, for the machine 

learning methods knowledge are: 

0. KU1.02.00. General overview and main concepts in machine learning 

1. KU1.02.01. Machine learning theory and algorithms 

2. KU1.02.02. Supervised machine learning 

3. KU1.02.03. Unsupervised machine learning 

4. KU1.02.04. Reinforced learning 

5. KU1.02.05. Classification methods 

6. KU1.02.06. Design and analysis of algorithms 

7. KU1.02.07. Game theory and mechanism design 

8. KU1.02.08. Artificial intelligence 

9. KU1.01.02. Statistical paradigms (regression, time series, dimensionality, 

clusters) 

10. KU1.01.03. Probabilistic representations (causal networks, Bayesian analy-

sis, Markov nets) 

11. KU1.01.04. Frequentist and Bayesian statistics 

12. KU1.01.05. Probabilistic reasoning 

13. KU1.01.08. Performance analysis

• KA01.03 (DSDA.03/DM) Data mining knowledge area. It is a particular data 

analysis technique that focuses on modelling and knowledge discovery for 

predictive rather than purely descriptive purposes. Starting with an initial KU 

about a general overview and main concepts, the thirteen suggested specific 

knowledge units (Kus) for the data mining knowledge are as follows: 

0. KU1.03.00. General overview and main concepts in data mining 

1. KU1.03.01. Data mining and knowledge discovery 

2. KU1.03.02. Knowledge representation and reasoning 

3. 4. KU1.03.03. CRISP-DM and data mining stages 

4. KU1.03.04. Anomaly detection 

5. KU1.03.05. Time series analysis 

6. KU1.03.06. Feature selection, a priori algorithm 

7. KU1.03.07. Graph data analytics 

8. KU1.01.08. Performance analysis 

9. KU1.02.01. Machine learning theory and algorithms
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10. KU1.02.02. Supervised machine learning 

11. KU1.02.03. Unsupervised machine learning 

12. KU1.02.04. Reinforced learning 

13.KU1.02.05. Classification methods

• KA01.04 (DSDA.04/TDM) Text analytics applies statistical, linguistic, and 

structural techniques to extract and classify information from textual sources, a 

species of unstructured data. Starting with an initial KU about a general overview 

and main concepts, the seven suggested specific knowledge units (KUs) for text 

data mining knowledge are as follows: 

0. KU1.04.00. General overview and main concepts in text data mining 

1. KU1.04.01. Text analytics including statistical, linguistic, and structural tech-

niques to analyse structured and unstructured data 

2. KU1.04.02. Data mining and text analytics 

3. KU1.04.03. Natural language processing 

4. KU1.04.04. Predictive models for text 

5. KU1.04.05. Retrieval and clustering of documents 

6. KU1.04.06. Information extraction 

7. KU1.04.07. Sentiment analysis

• KA01.05 (DSDA.05/PA) Predictive analytics knowledge area. It focuses on the 

application of statistical models for predictive forecasting or classification. 

Starting with an initial KU about a general overview and main concepts, the 

seven suggested specific knowledge units (KU) for predictive analytics knowl-

edge are as follows: 

0. KU1.05.00. General overview and main concepts in predictive analytics 

1. KU1.05.01. Predictive modelling and analytics 

2. KU1.05.02. Inferential and predictive statistics 

3. KU1.05.03. Machine learning for predictive analytics 

4. KU1.05.04. Regression and multianalysis 

5. KU1.05.05. Generalized linear models 

6. KU1.05.06. Time series analysis and forecasting 

7. KU1.05.07. Deploying and refining predictive models

• KA01.06 (DSDA.06/MSO) Computational modelling, simulation, and optimiza-

tion knowledge area. Starting with an initial KU about a general overview and 

main concepts, the five suggested specific knowledge units (KUs) for business 

analytics and business intelligence knowledge are as follows: 

0. KU1.06.00. General overview and main concepts in computational modelling, 

simulation, and optimization 

1. KU1.06.01. Modelling and simulation theory and techniques (general and 

domain-oriented) 

2. KU1.06.02. Operations research and optimization 

3. KU1.06.03. Large-scale modelling and simulation systems 

4. KU1.06.04. Network optimization 

5. KU1.06.05. Risk simulation and queueing
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The above presented enumerated Knowledge Units for each Knowledge Area of 

the Data Analytics Knowledge Area Group reused where possible the ACM Com-

puting Classification System, ACM CCS2012, providing extension where necessary 

based on the existing university curricula and new scientific disciplines definitions. 

That is, we will present/describe the subset of the ACM CCS2012 taxonomy that 

provided the initial structure for the DS-BoK that was further extended with a full set 

of knowledge areas and knowledge units related to data science that in return can be 

partly mapped to ACM CCS2012. The subset of ACM CCS2012 classification 

defined below can provide the basis for future ACM CCS2012 extension with a 

new classification group related to data science and individual disciplines that are 

missing in the current ACM-IEEE classification. 

The ACM CCS2012 has been developed as a polyhierarchical ontology that can 

be utilized in semantic web applications. It replaces the traditional 1998 version of 

the ACM CCS, which has served as the de facto standard classification system for 

the computing field for many years (it has also been more human-readable). The 

ACM CCS2012 is being integrated into the search capabilities and visual topic 

displays of the ACM Digital Library. It relies on a semantic vocabulary as the single 

source of categories and concepts that reflect the state of the art of the computing 

discipline and is receptive to structural change as it evolves in the future. ACM 

provides a tool within the visual display format to facilitate the application of 2012 

CCS categories to forthcoming papers and a process to ensure that the CCS stays 

current and relevant. However, at the moment, none of the data science, big data or 

data-intensive science technologies are reflected in the ACM classification. 

The following is an extraction of the relevant classification facets from ACM 

CCS2012 related to data science, which reflects the multisubject area nature of data 

science. As an example, cloud computing, which is also a new technology and 

closely related to big data technologies, is currently classified in ACM CCS2012 into 

3 groups:

• Networks:: Network services:: Cloud computing

• Computer systems organization:: Architectures:: Distributed Architectures:: 

Cloud computing

• Software and its engineering:: Software organization and properties:: Software 

systems structures:: Distributed systems organizing principles:: Cloud computing 

Taxonomy is required to consistently present information about scientific disci-

plines and knowledge areas related to data science. Taxonomy is an important 

component to link components such as data science competences and knowledge 

areas, body of knowledge, and corresponding academic disciplines. From a practical 

point of view, taxonomy includes the vocabulary of names (or keywords) and the 

hierarchy of their relations. 

The presented ACM CCS2012 subsets/subtrees contain scientific disciplines 

related to three data science knowledge area groups as defined in DS-BoK:

• KAG1-DSDA: Data analytics group including machine learning, statistical 

methods, and business analytics
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• KAG2-DSENG: Data science engineering group including software engineering 

and infrastructure engineering

• KAG3-DSDM: Data management group including data curation, preservation, 

and data infrastructure 

Two other groups, KAG4-DSRMP, research methods and project management, 

and KAG5-DSDK, do not have a direct mapping to ACM CCS2012, and their 

taxonomies are defined based on other domain-specific bodies of knowledge. It is 

important to note that ACM CCS2012 provides a top-level classification entry 

“Applied Computing” that can be used as an extension point for the domain-related 

knowledge area group KAG5-DSDK. 

The following approach was used when constructing the proposed taxonomy:

• ACM CCS2012 provides almost full coverage of data science-related knowledge 

areas or disciplines related to KAG1, KAG2, and KAG3. The following top-level 

classification groups are used: 

– Theory of computation 

– Mathematics of computing 

– Computing methodologies 

– Information systems 

– Computer systems organization 

– Software and its engineering

• Each of the KAGs includes subsets from a few ACM CCS2012 classification 

groups to cover theoretical, technology, engineering, and technical management 

aspects. Extension points are suggested for possible future extensions of related 

KAGs together with their hierarchies.

• KAG3-DSDM: The data management group is extended with new concepts and 

technologies developed by the Research Data Alliance community and 

documented in community best practices. 

In the following lists, the ACM CCS2012 classification facets related to data 

analytics grouped by DS-BoK knowledge area groups and knowledge areas are 

presented. The ACM CCS2012 Subjects used to develop the DS-BoK Data science 

analytics-related scientific subjects from CCS2012 are as follows:

• CCS2012: Computing methodologies

• CCS2012: Mathematics of computing 

For each Data Analytics Knowledge Area Group the knowledge areas are: 

1. Statistical Methods Knowledge Area. Data science statistical methods related to 

scientific subjects from CCS2012 are as follows:

• Mathematics of computing 

– Discrete mathematics 

Graph theory 

Probability and statistics



For KU1.01.02, KU1.01.03, KU1.01.04, KU1.01.05, and KU1.01.08:

Probabilistic representations 

Probabilistic inference problems 

Probabilistic reasoning algorithms 

Probabilistic algorithms 

– Statistical paradigms 

– Mathematical software 

– Information theory 

– Mathematical analysis 

2. Machine Learning Methods Knowledge Area. Data science machine learning 

methods related to scientific subjects from CCS2012 are as follows: 

For KU1.02.00 to KU1.02.08:

• Computing methodologies 

– Artificial intelligence 

Machine learning 

Learning paradigms 

– Supervised learning 

– Unsupervised learning 

– Reinforcement learning 

– Multitask learning 

– Machine learning approaches 

Machine learning algorithms 
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• Theory of computation 

– Design and analysis of algorithms 

Data structure design and analysis 

– Theory and algorithms for application domains 

Machine learning theory 

Algorithmic game theory and mechanism design 

– Semantics and reasoning 

3. Data Mining Knowledge Area 

Data Science data mining-related scientific subjects from CCS2012 are as 

follows:

• Theory of computation 

– Design and analysis of algorithms 

Data structure design and analysis
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– Theory and algorithms for application domains 

Machine learning theory 

Algorithmic game theory and mechanism design 

– Semantics and reasoning 

4. Text Data Mining Knowledge Area 

Data science text mining-related scientific subjects from CCS2012 are as 

follows:

• Computing methodologies 

– Artificial intelligence 

Natural language processing 

Knowledge representation and reasoning 

Search methodologies 

5. Predictive Analytics Knowledge Area analytics knowledge area. Data science 

predictive analytics-related scientific subjects from CCS2012 are as follows:

• Computing methodologies 

– Artificial intelligence 

Natural language processing 

Knowledge representation and reasoning 

Search methodologies 

6. Computational Modelling, Simulation, and Optimization Knowledge Area. Data 

science computational modelling, simulation, and optimization-related scientific 

subjects from CCS2012 are as follows:

• Computing methodologies 

– Modelling and simulation 

– Model development and analysis 

– Simulation theory 

– Simulation types and techniques 

– Simulation support systems 

On the other hand, the ACM CCS2012 Extension Points from the DS-BoK Data 

Analytics are: 

1. Theory of computation. The ACM CCs 2012 Theory of computation extension 

point from DS-Bok is:

• Algorithms for big data computation
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2. Mathematics of Computing. ACM CCsCC 2012 Mathematics of computing 

extension point from DS-Bok is:

• Mathematical software for big data computation 

3. Computing methodologies. The ACM CCs 2012 Computing methodologies 

extension point from DS-Bok is:

• New DSA computing 

4. Information Systems. The ACM CCs 2012 Information systems extension point 

from DS-Bok is:

• Big data systems (e.g., cloud based) 

The ACM CCs 2012 Information systems applications extension points 

from DS-Bok are as follows:

• Big data applications

• Domain-specific data applications 

Data Analytics Model Curriculum Approach 

This subsection presents the definition of the EDISON Data Science Model Curric-

ulum that is primarily based on mapping between DS-BoK knowledge areas and 

Data Science Model Curriculum, MC-DS, learning units, which may represent 

academic courses and training modules, for required competence groups using a 

competence-based learning model. 

The proposed MC-DS can be used for defining individual curricula for specific 

data science professional profiles or customized individual curricula for practitioners 

who want to obtain a data science qualification or certification. The proposed 

methods can be used for developing tools for customizing or profiling training 

and/or education programmes for students or individual trainees. 

The model curriculum is organized as core and elective topics, following the 

ACM definition. Core topics are required for every data science programme, 

whereas elective topics aim to cover in depth the knowledge on a specific area of 

data science. The last step identifies the learning outcomes associated with each core 

or elective topic. The approach to defining the Data Science Model Curriculum in the 

EDISON Project has followed a competence-based education model and can be 

summarized in the following five steps: 

1. For each enumerated competence from the CF-DS, define learning outcome 

according to knowledge or mastery level (defined as familiarity, usage, assess-

ment for current MC-DS version). 

2. Each knowledge area group of DS-BoK (which includes both KAGs from 

existing BoKs and those defined based on the ACM Classification Computer 

Science CCS2012) is mapped to existing academic subject classification groups
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that are primarily based on ACM CS2012 and complemented with domain- or 

technology-specific classifications such as BABOK, ACM-BOK, DAMABOK, 

PM-BOK, and others to be defined by subject matter experts. 

3. For each KAG or knowledge unit, specify related learning units defined 

according to academic subject classification or following current practices by 

universities. 

4. For each learning unit, assign/suggest its category as core/mandatory (Tier 1 or 

Tier 2), elective, or prerequisite. 

5. For both core and elective, define a list of learning outcomes. 

The MC-DS learning units, LUs, or courses of step 3 can be defined based on the 

knowledge area groups and knowledge units defined in the DS-BoK. The individual 

learning units or courses are defined in accordance with the existing classification of 

academic disciplines, in particular the ACM CCS2012, and are verified with the 

existing offered courses at universities. In addition, the proposed LUs are grouped 

according to ACM CCS2012 classification or DS-BoK knowledge groups/units that 

can be used as context information for future data science curricula development, 

modification, or enhancement with the linked courses and disciplines. 

In the following, we present the six learning outcomes related to enumerated 

CF-DS competences for Data Analytics and the different knowledge/proficiency 

levels defined based on Bloom’s taxonomy, with the general learning outcomes 

defined after CF-DS competences that are in most cases split into 3 knowledge levels 

and use specific verbs that reflect necessary comprehension or mastery level. The 

data analytics learning outcomes are as follows: 

1. Data Analytics Learning Outcome (LO1-DA). Learning outcome 1, Data analyt-

ics, DSDA. Its acronym is LO1-DA. The global learning outcome (LO) of data 

analytics (DSDA-DA) is the use of appropriate data analytics and statistical 

techniques on available data to discover new relations, deliver insights into 

research problems or organizational processes, and support decision-making. 

The learning outcomes (LOs) for the whole DSDA are denoted as LO1-DA and 

specified at three levels:

• Familiarity: Choose an appropriate existing analytical method and operate 

existing tools to perform specified data analysis. Present data in the 

required form.

• Usage: Develop data analysis applications for specific datasets and tasks or 

processes. Identify necessary methods and use them in combination if neces-

sary. Identify relations and provide consistent reports and visualizations.

• Assessment: Create a formal model for the specific organizational tasks and 

processes and use it to discover hidden relations, propose optimization and 

improvements. Develop new models and methods if necessary. Recommend 

and influence organizational improvement based on continuous data analysis.
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Once we have specified the general learning outcome, the learning outcomes 

for specific DSDA competences are: 

1.1. LO1.01 based on DSDA01. Effectively use a variety of data analytics 

techniques, such as machine learning (including supervised, unsupervised, 

semisupervised learning), data mining, prescriptive and predictive analytics, 

for complex data analysis through the whole data life cycle. 

(a) Familiarity: Choose and execute existing data analytics and predictive 

(b) Usage: Identify existing requirements and develop predictive analysis 

tools. 

(c) Assessment: Design and evaluate predictive analysis tools to discover 

new relations. 

1.2. LO1.02 based on DSDA02. Apply designated quantitative techniques, 

including statistics, time series analysis, optimization and simulation, to 

deploy appropriate models for analysis and prediction. 

(a) Familiarity: Choose and execute standard methods from existing statis-

tical libraries to provide an overview. 

(b) Usage: Select the most appropriate statistical techniques and model 

available data to deliver insights. 

(c) Assessment: Assess and optimize organization processes using statisti-

cal techniques. 

1.3. LO1.03 based on DSDA03. Identify, extract, and pull together available and 

pertinent heterogeneous data, including modern data sources such as social 

media data, open data, and governmental data. 

(a) Familiarity: Operate tools for complex data handling. 

(b) Usage: Analyse available data sources and develop tools that work with 

complex datasets. 

(c) Assessment: Assess, adapt and combine data sources to improve 

analytics. 

1.4. LO1.04 based on DSDA04. Understand and use different performance and 

accuracy metrics for model validation in analytics projects, hypothesis 

testing, and information retrieval. 

(a) Familiarity: Name and use basic performance assessment metrics and 

tools 

(b) Usage: Use multiple performance and accuracy metrics and select and 

use the most appropriate metric for a specific type of data analytics 

application. 

(c) Assessment: Evaluate and recommend the most appropriate metrics and 

propose new methods for new applications.
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1.5. LO1.05 based on DSDA05. Develop required data analytics for organiza-

tional tasks, integrate data analytics and processing applications into orga-

nization workflow and business processes to enable agile decision-making. 

(a) Familiarity: Define data elements necessary to develop specified data 

analytics. 

(b) Usage: Develop specialized analytics to enable decision-making. 

(c) Assessment: Design specialized analytics to improve decision-making. 

1.6. LO1.06 based on DSDA06. Visualize the results of data analysis, design 

dashboards, and use storytelling methods. 

(a) Familiarity: Choose and execute standard visualization. 

(b) Usage: Build visualizations for complex and variable data. 

(c) Assessment: Create and optimize visualizations to influence executive 

decisions. 

Now, after defining the Data Analytics Learning Outcomes, we will present the 

Organization and Application of the Data Science Model Curriculum before 

presenting the Data Analytics-related courses. As has been explained, each knowl-

edge area group of DS-BoK is mapped to existing academic subject classification 

groups that are primarily based on ACM Classification Computer Science CCS2012 

complemented with domain- or technology-specific classifications such as those 

defined in the existing BoK’s ACM CS-BOK, BABOK, SWEBOK, DM-BoK, 

PM-BOK, and others that should be defined by subject matter experts. For each 

KAG, the MC-DS specifies learning outcomes and mastery levels following 

Bloom’s taxonomy verb usage. Learning outcomes are also linked to a set of 

learning units, which are examples of the practical application of knowledge units. 

ECTS points are provided for professional profile groups and divided into Tier 

1, Tier 2, elective and prerequisite categories to help create detailed tracks and 

specializations for academic programmes and professional training. 

Figure 3 illustrates the relation between different EDSF components when defin-

ing specific academic or professional training programmes that can be tailored for 

specific target data science professional groups or target competences. 

Figure 4 illustrates a general approach to the application of the model curriculum 

to create an educational programme. The work starts by deciding on a target Data 

Science Professional Profiles group (that is defined by the required competences, 

skills, and knowledge) the programme that should cover and the level of the 

programme, usually bachelor’s or master’s. These elements allow us to identify a 

set of competencies to be addressed in the programme. To identify relevant knowl-

edge units and to what extent they should be covered in the new programme, the 

programme designer can consult tables with ECTS points, which are defined for 

each professional profile. ECTS point specifications include a degree of flexibility to 

adjust to particular needs. For each knowledge area, MC-DS defines a set of 

knowledge units based on BoK and a set of learning outcomes based on the 

competence framework. Topics and learning outcomes become a basis for the 

definition of new courses or the use of existing courses. It is important to note that



when designing a specific course, it may include elements from several knowledge 

areas to ensure consistency of the whole data science programme. 
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Fig. 3 Interaction between different components of EDSF when using model curriculum for 

defining academic of professional training programme for target professional group (or target 

competences) 

Fig. 4 Visualization of the model curriculum application for programmes and courses 

Adjustment of learning outcome levels for different proficiency levels can be 

done based on the full list of learning outcomes for all CF-DS competences and for 

all mastery/proficiency levels. Learning outcomes can repeat between subgroups 

within the same KAG but can be adjusted to a specific course and topic context.
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Now, we are ready to see a proposal of Data Analytics-Related Courses based on 

the previous definitions. For them, we know that the data analytics knowledge group 

builds the ability to use appropriate statistical and data analytics techniques on 

available data to deliver insights and discover information, provide recommenda-

tions, and support decision-making. It includes knowledge areas that cover data 

mining, supervised and unsupervised machine learning, statistical modelling, and 

predictive analytics. In addition, we are going to remember here the six Knowledge 

areas of the Data Analytics Area Group. 

1. KA01.01 (DSDA.01/SMA) Statistical methods, including descriptive statistics, 

exploratory data analysis (EDA) focused on discovering new features in the data 

and confirmatory data analysis (CDA) dealing with validating formulated 

hypotheses. 

2. KA01.02 (DSDA.02/ML) Machine learning and related methods for information 

search, image recognition, decision support, classification. 

3. KA01.03 (DSDA.03/DM) Data mining as a particular data analysis technique 

that focuses on modelling and knowledge discovery for predictive rather than 

purely descriptive purposes. 

4. KA01.04 (DSDA.04/TDM) Text analytics applies statistical, linguistic, and 

structural techniques to extract and classify information from textual sources, a 

species of unstructured data. 

5. KA01.05 (DSDA.05/PA) Predictive analytics focuses on application of statistical 

models for predictive forecasting or classification. 

6. KA01.06 (DSDA.06/MSO) Computational modelling, simulation, and 

optimization 

Once we have remembered the Data Analytics Knowledge Areas, the proposed 

topics for the courses and learning outcomes for each are specified in the following 

points: 

1. DSDA.01/SMA. Statistical Methods and Data Analysis Statistics and probability 

theory are foundational components of data analytics and constitute a significant 

part of data science competences and knowledge. This module provides insights 

into major statistical and data analytics paradigms and schools of thought. They 

can be taught separately or as a part of other data analytics-related modules or 

courses.

• Topics: 

– Statistical paradigms (regression, time series, dimensionality, clusters). 

– Probabilistic representations (causal networks, Bayesian analysis, 

Markov nets). 

– Frequentist and Bayesian statistics. 

– Exploratory and confirmatory data analysis. 

– Information theory. 

– Graph theory.
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• Learning outcomes 

– Choose and execute standard methods from existing statistical libraries to 

provide an overview (LODA.02 L1) 

– Select the most appropriate statistical techniques and model available data 

to deliver insights (LODA.02 L2) 

– Identify requirements and develop analysis approaches (LODA.01 L2) 

– Assess and optimize organization processes using statistical techniques and 

simulation (LODA.02 L3) 

2. DSDA.02/ML. Machine Learning. Data scientists have a wide range of ready 

machine learning libraries available. Nevertheless, they also need to go beyond 

the simple application of algorithms to achieve the expected results. New prob-

lems they face might require an in-depth understanding of the theoretical under-

pinning of both simple and advanced algorithms. This module covers the use, 

analysis and design of machine learning algorithms.

• Topics: 

Machine learning theory (supervised, unsupervised, reinforced learning, 

deep learning, kernel methods, Markov decision processes) 

– Design and analysis of algorithms (graph algorithms, data structure design 

and analysis, online algorithms, Bloom filters and hashing, MapReduce 

algorithms) 

– Game theory and mechanism design 

– Classification methods 

– Ensemble methods 

– Cross-validation

• Learning outcomes 

– Choose and execute existing analytic techniques and tools (LODA.01 L1) 

– Identify requirements and develop analysis approaches (LODA.01 L2) 

– Develop specialized analytics to enable agile decision-making and integrate 

them into organizational workflows (L0DA.05 L2) 

– Design and evaluate analysis techniques and tools to discover new relations 

(LODA.01 L3) 

3. DSDA.03/DM. Data Mining. Mathematical and theoretical aspects of data ana-

lytics must be implemented in a computational form appropriate for both the 

problem at hand and the data size. This module builds familiarity with the most 

relevant data mining algorithms and related methods for knowledge representa-

tion and reasoning.

• Topics: 

– Data mining and knowledge discovery 

– Knowledge representation and reasoning
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– CRISP-DM and data mining stages 

– Anomaly detection 

– Time series analysis 

– Feature selection, a priori algorithm 

– Graph data analytics

• Learning outcomes 

– Choose and execute standard methods from statistical libraries to provide 

an overview (LODA.02 L1) 

– Select the most appropriate statistical techniques and model available data 

to deliver insights (LODA.02 L2) 

– Analyse available data sources and develop a tool that works with complex 

datasets (LODA.03 L2) 

– Develop specialized analytics to enable agile decision-making and integrate 

them into organizational workflows (LODA.05 L2) 

– Evaluate and recommend data analytics organizational strategy (LODA.05 

L3) 

4. DSDA.04/TDM. Text Data Mining. Text data mining can be considered a subset 

of data mining, but it is worth a separate consideration due to the amount of text 

data available and particular methods developed over the years to analyse it.

• Topics 

– Text analytics including statistical, linguistic and structural techniques to 

analyse structured and unstructured data 

– Data mining and text analytics 

– Natural language processing 

– Predictive models for text 

– Retrieval and clustering of documents 

– Information extraction 

– Sentiment analysis

• Learning outcomes 

– Choose and execute standard methods from statistical libraries to provide 

an overview (LODA.02 L1) 

– Analyse available data sources and develop a tool that works with complex 

datasets (LODA.03 L2) 

– Evaluate and recommend data analytics organizational strategy (LODA.05 

L3) 

5. DSDA.05/PA. Predictive Analytics Predictive analytics are commonly used to 

foresee future events to avoid them or act ahead. This module covers both 

traditional approaches based on time series and newer approaches based on 

deep learning. Anomaly detection is a particular focus since it is one of most 

common application areas.
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• Topics 

– Predictive modelling and analytics 

– Inferential and predictive statistics 

– Machine learning for predictive analytics 

– Regression and multianalysis 

– Generalized linear models 

– Time series analysis and forecasting 

– Deploying and refining predictive models

• Learning outcomes 

– Choose and execute existing analytic techniques and tools (LODA.01 L1) 

– Identify requirements and develop analysis approaches (LODA.01 L2) 

– Create stories and optimize visualizations to influence executive decisions 

6. DSDA.06/MSO. Computational Modelling, Simulation, and Optimization. 

Modelling and simulation are essential approaches to handle the complexity of 

some systems and event chains. This module provides an introduction in both 

theoretical and practical aspects of model development and simulation 

techniques.

• Topics: 

– Modelling and simulation theory and techniques (general and domain-

oriented) 

– Operations research and optimization 

– Large-scale modelling and simulation systems 

– Network optimization 

– Risk simulation and queuing

• Learning outcomes 

– Describe and execute different performance and accuracy metrics 

(LODA.04 L1) 

– Compare and choose performance and accuracy metrics (LODA.04 L2) 

– Assess and optimize organization processes using statistical techniques and 

simulation (LODA.02 L3) 

Data Analytics Professional Profiles 

This section presents a description of the professional profiles, defined by the 

EDISON project, that can be performed when a Data Scientist is working on the 

Data Analytics Knowledge Area Group. 

The EDISON project presents the following Data Science Professional Profiles, 

which are also called the data-related occupations family. They are defined as an



extension to the ESCO occupations taxonomy. The proposed occupations for data 

science are placed in four top classification groups:

• Managers, for managerial roles

• Professionals, applications developers, and infrastructure engineers

• Technicians and associate professionals, for operators and technicians

• Clerical support workers, for data curators and stewards 
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In the following, the data science-related occupation extension to ESCO classi-

fication is presented for the four top classifications of occupations: managers, pro-

fessionals, technicians and associate professionals, and clerical support workers. The 

occupations are presented from the top level (TL) to the occupations (O) with the 

existing (EH) and new (NH) hierarchies for each top level, and the occupations 

group (OG):

• Managers (TL) 

– Production and specialized services managers (EH) 

– Data science/big data infrastructure managers (NH) 

Research infrastructure managers (OG) 

DSP01. Data science (group) manager (O) 

DSP02. Data science infrastructure manager (O) 

DSP03. Research infrastructure manager (O)

• Professionals (TL) 

– Science and engineering professionals (EH) 

– Data science professionals (NH) 

Data science professionals not elsewhere classified (OG) 

DSP04. Data scientist (O) 

DSP05. Data science researcher (O) 

DSP06. Data science architect (O) 

DSP07. Data science (application) programmer/engineer (O) 

DSP08. (Big) data analyst (O) 

DSP09. Business analyst (O) 

– Information and communications technology professionals (EH) 

– Data science technology professionals (NH) 

Data handling professionals not elsewhere classified (OG) 

DSP10. Data steward (O) 

DSP11. Digital data curator (O) 

DSP12. Data librarian (O) 

DSP13. Data archivist (O) 

– Science and engineering professionals (EH) 

– Database and network professionals (NH)
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Large-scale (cloud) data storage designers and administrators (OG) 

DSP14. Large-scale (cloud) database designer1 (O) 

Large-scale (cloud) data storage designers and administrators (OG) 

DSP15. Large-scale (cloud) database administrator (O) 

Database and network professionals not elsewhere classified (OG) 

DSP16. Scientific database administrator (O)

• Technicians and associate professionals (TL) 

– Science and engineering associate professionals (EH) 

– Data science technology professionals (NH) 

Data infrastructure engineers and technicians (OG) 

DSP17. Big data facilities operators (O) 

DSP18. Large-scale (cloud) data storage operators (O) 

Database and network professionals not elsewhere classified (OG) 

DSP19. Scientific database operator (O) 

Clerical support workers (TL) 

– General and keyboard clerks (EH) 

– Data handling and support workers (NH) 

Data and information entry and access (OG) 

DSP20. Data entry/access desk/terminal workers (O) 

DSP21. Data entry field workers (O) 

DSP22. User support data services (O) 

The following are the commonly used definition of digital librarian responsibil-

ities and functions: selection, acquisition, organization, accessibility, and preserva-

tion of digital information/libraries. Manages digital materials; takes a lead role in 

the creation, maintenance and stewardship of digital collections, including the 

digitization of special collections; and develops strategies for the effective manage-

ment and preservation of library digital assets. 

From the classification presented above, we now present the definition of the Data 

Science Professional Profiles by defining their competences and organizational roles. 

The proposed definition can be instrumental in defining education and training 

profiles for students and for practitioners to acquire necessary competences and 

knowledge for specific professional profiles or occupations. It can also be used for 

defining certification profiles or career path building. The presented DSPP together 

with CF-DS and other EDSF documents that provide the basis for multiple practical 

uses include but are not limited to the following:

• Assessment of individual and team competences, as well as balanced data science 

team composition comprising the data science-related roles that together provide 

the necessary set of skills.
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• Developing tailored curriculum for academic education or professional training, 

in particular, to bridge skills gap and staff up/reskilling

• Professional certification and self-training. 

As has been said, the data science occupation groups are placed in the following 

top-level ESCO hierarchies: managers; professionals; technicians and associate 

professionals; and optionally, some data management occupations can also be placed 

into the clerical support workers group such as digital data archivist and digital 

librarians. 

Correspondingly, the following new third-level occupation groups are proposed:

• Data science/big data infrastructure managers

• Data science professionals

• Data science technology professionals

• Data and information entry and access (this is a candidate group under clerical 

support workers’ top-level hierarchy) 

It is proposed that the existing ESCO group “database and network professionals” 

should be extended with new occupations (or professions) related to big data or 

cloud-based databases: large-scale (cloud) database administrator/operator and sci-

entific database administrator/operator; however, further identification of such occu-

pations needs to be done. 

To ensure smooth data science professional acceptance by industry and employ-

ment bodies, the proposed profiles should be compatible with the relevant standards 

ESCO, CWA 16458 2012 ICT Profiles, eCFv3.0 (future CEN standard EN 16324). 

Figure 5 graphically illustrates the existing ESCO hierarchy and the proposed new 

data science classification groups and corresponding new data science-related

Fig. 5 Proposed data science-related extensions to the ESCO classification hierarchy and 

corresponding DSPP by classification groups



profiles. The table in the figure illustrates what competence groups are relevant to 

each profile by indicating competence relevance from 0 to 5 (0—not relevant, 5— 

very important), where information is taken from Table 4.3 that will be presented 

later. Figure 6 provides a visual presentation of the identified DSPP and their 

grouping by the proposed high-level classification groups.
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Fig. 6 Data Science Professional Profiles and their grouping by the proposed new professional 

groups compliant with the ESCO taxonomy 

In the following, a definition of the profile summary statement of the Data Science 

Professional Profiles defined in the taxonomy of 5.2.2. for Data Analytics is 

presented (between brackets are the alternative titles and legacy titles):

• Managers 

– Data science/big data infrastructure managers 

Research infrastructure managers 

DSP01. Data science (group) manager (data analytics department manager) 

Proposes, plans, and manages functional and technical evolutions of the 

data science operations within the relevant domain (technical, research, 

business)

• Professionals 

– Data science professionals 

Data science professionals not elsewhere classified 

DSP04. Data scientist (data analyst). Data scientists find and interpret rich 

data sources, manage large amounts of data, merge data sources, ensure
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consistency of datasets and create visualizations to aid in understanding 

data. Build mathematical models, present and communicate data 

insights and findings to specialists and scientists, and recommend 

ways to apply the data. 

DSP05. Data science researcher (data analyst). Data science researcher 

applies scientific discovery research/process, including hypothesis and 

hypothesis testing, to obtain actionable knowledge related to scientific 

problem, business 

DSP07. Data science (application) programmer/engineer (scientific pro-

grammer, data engineer). Designs/develops/codes large data analytics 

applications to support scientific or enterprise/business processes. 

DSP08. (Big) Data analyst. Analyses a large variety of data to extract 

information about system, service or organization performance and 

presents them in usable/actionable form. 

DSP09. Business analysts (business development managers (data science 

roles)) analyse a large variety of data information systems for improving 

business performance. 

Given the different professional profiles in which data analytics are the core 

knowledge, we will present the role of the experts in data analytics in a data science 

team. Data science team composition and competence matching is one of the 

intended uses of the EDSF and DSPP in particular. Figure 7 illustrates a case of 

creating a data science team or group for an average size of the research organization 

with an affiliated number of researchers of 200–300, which would require a data 

science team of 10–15 members whose responsibility would include supporting all 

main stages of the data life cycle: data collection, data input/ingest, data analysis,

Fig. 7 Matching the candidate’s competences for the data scientist competence profile



reporting, visualization, and storage. The figure also illustrates possible roles that 

may be assigned to perform different functions at different data workflow stages.
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To support all data-related research or production stages, the following roles may 

be required (including suggested staffing for the team of 10–12 members):

• (Managing) Data science architect (1)

• Data scientist (1), data analyst (1)

• Data science application architect/developer/programmer (2)

• Data infrastructure/facilities administrator/operator: storage, cloud, computing (1)

• Data stewards, curators, archivists (3–5) 

It is possible that some of the above roles can be redefined and reallocated to the 

data science team from the previous ICT and IT infrastructure groups or depart-

ments. In this case, some basic data science training will be required for not initially 

data-related professions. 

It also suggested a distinct role of the data steward, a new emerging role for data-

driven research organizations and projects. Data stewards should play a bridging role 

between the subject domain researcher and the data science team or data scientist in 

particular cases to help translate between the subject domain and data science or data 

analytics domain. Data stewards can have both backgrounds, either ICT and com-

puter or digital curation/librarian. 

A similar approach to data science and data governance role definition and team 

building was used in IBM enterprise consulting practice. 

Finally, we present the data science-enabled professions. Recent studies by 

BHEF, PwC and IBM, BGT and BHEF identified strong growth of data science 

and analytics (DSA)-enabled jobs that are not pure data scientists but require 

extensive DSA knowledge to work in specific industry sectors. Figure 8 from the 

PwC and BHEF study provides an illustration of currently highly demanded 

DSA-enabled jobs in multiple industry and business sectors: finance and insurance; 

healthcare and social assistance; information; manufacturing; professional, scien-

tific, and technical services; and retail trade. 

The study provides data on 2.35 million job postings in the United States in 2017: 

23% data scientist and 67% DSA-enabled jobs. There is also a strong demand for 

managers and decision-makers with data science (data analytics) skills/understand-

ing. This creates a new challenge to deliver actionable knowledge and competences 

to CEO-level managers. 

About This Book 

This book is the second of a series of books written as a result of the EDISON 

Project, which has been described in the second section of this chapter. The first of 

the series was the book entitled The Data Science Framework: A View from the 

EDISON Project, published by Springer in 2020. That first book was written with a 

double purpose: the first one was to gather all the information and knowledge



obtained during the development of the EDISON project in a single document that 

allows a much easier handling by researchers, practitioners, teachers, and all those 

interested in the data science; and the second was to go a step beyond what was 

obtained in the project and present the knowledge in a more elaborate and expanded 

way, which would allow an easier and deeper assimilation of them. Consequently, 

the topics were presented in more depth than the reader can find in the documenta-

tion resulting from the project, with a substantially revised structure and with a large 

amount of additional information. Most of the contents that have been introduced in
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Fig. 8 There is a strong demand for business people with analytics skills, not just data scientists in 

multiple industry sectors



this introductory lesson, or chapter, are presented in depth in the first book; for that 

reason, we want to encourage the reader of this second book to read and consult the 

first to advance the concepts related to the Data Science Framework.
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The content of the first book was structured as follows. After an initial chapter of 

introduction, Chapter “Data Science Competences” presents the set of competences 

that a data scientist must have. Starting from these lists of competences, the body of 

knowledge that the discipline must have to allow us to obtain them was presented in 

Chapter “Data Science Body of Knowledge”. This body of knowledge was used to 

define, in Chapter “Data Science Curriculum”, an approach to the development of 

data science curricula; after the treatment of the knowledge and education of data 

science seen in the previous chapters, the development of the profession of data 

science was exposed in Chapter “Data Science Profesional Profiles”, in which the 

Data Science Professional Profiles are presented. Chapter “Use Cases and Applica-

tions” presents a set of four real successful use cases and applications of the EDISON 

Data Science Framework that can be very useful for the reader in his or her 

application of the knowledge acquired in the book. The book ends with an Annex 

in which some models of processes related to data science are presented. 

This second book follows the series started in the first book, but its conception 

and development are totally different from the first one: if the first book is a 

theoretical book that was thought to present the framework of the whole data science 

discipline from an absolutely theoretical point of view, this second book does not 

present the whole data science discipline but only one of its six knowledge area 

groups, the data analytics knowledge area group, and presents it from an absolutely 

practical point of view. if in the first book there is neither solved nor even proposed 

any practical exercise, in this second book have been conceived and written with the 

practical exercise’s resolution as the main structural element of the book. 

Following the previous, the conception and construction of this book is based on 

the maxim that the authors read, many years ago, in an old book on electromagne-

tism problems, and whose veracity we have been able to verify throughout our 

academic lives, first as students and later as teachers. The maxim is as follows: “I 

forget what I hear, I remember what I see, and I learn what I do.” Consequently, the 

book will demand that the reader to do in order to learn. And, 

what is the reader to do? 

The answer is Exercises. Exercises, for the practical application of each of the 

theoretical concepts taught. The book will provide the reader with its complete 

detailed solution of all the exercises stated. However, the authors strongly ask the 

readers not to look at these solutions until they have solved the exercises themselves. 

If you look at the solutions before solving the exercise, it loses all its effectiveness as 

a learning element, and if this is done repeatedly, the book loses an important part of 

its value. However, it is important to make it very clear that this is not a “problems 

book”, since the theoretical concepts are exposed with length and depth. 

This book is about Data Analytics, and, how the reader knows now, after reading 

this introduction, it is a very extensive subject, for that reason, it is impossible to 

include all of its body of knowledge in only one book, and less if is intended to
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describe and explain them with the high level of detail that we want to apply in the 

book. For this reason, only some knowledge units of some knowledge areas of the 

Data Science Knowledge Area have been chosen to be included. The selection 

criteria applied to choose those contents have been double: first, they have been 

selected because of their direct relevance to the Data Analytics domain (knowledge 

area) and presentation of the main paradigm in data analysis; the second criteria have 

been their instructional value in building consistent foundational knowledge by 

learners. This is also a goal that the reader can use the example presented in this 

book as a guide to follow the same procedure when they need to study and learn 

other Data Analytics knowledge units not included in the book. 
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Once this has been clarified, the book is structured in seven chapters or lessons 

because each presents a different lesson. The contents of the book are as follows: 

After an initial chapter of introduction, Chapter “Data” presents the fundamentals of 

the knowledge related to the concept of Data. Starting with the definition of the 

concepts Characteristic and Data, the chapter introduces to the reader all the knowl-

edge, fundamentally of statistical techniques, related to the initial analysis that must 

be done over the set of data that are the object of the intended study with the 

objective of obtaining a deep knowledge of them and their main features. To 

facilitate the reader to pass to do only description of the data to make inferences 

over them, the book presents a novel approach over their observation and analysis 

and uses the concept of event for each observation, with the objective of facilitating a 

probabilistic approach over their treatment. This is quite different from the way that 

the books published about the subject describe and teach it, but we think that it will 

be very useful for the reader; for that reason, we have dedicated the whole 

Chapter “Probability” to introduce the fundamentals of Probability. Once we 

know how to do, from the contents of Chapter “Data”, an initial analysis and 

description of the data, and we are able to see each observation as an event, from 

the contents of Chapter “Probability”, and from this, their probabilistic character, in 

Chapter “Anomaly Detection” the book starts to apply Data Science Analytics to 

obtain “Knowledge from the Data”, and the first one, introduced in this chapter is the 

Anomaly Detection, an analysis that tries to identify those data in the studied set, that 

are enough different from the others to be considered anomalies, and its identifica-

tion can be very interesting and important, because those anomalies can be only 

errors in the data, that must be removed but can also be very important data that can 

give us a lot of information. After determining how individual data that are different 

from the others can be identified, in Chapter “Unsupervised Classification”,  w  

introduce how to identify groups of data that are sufficiently different from the 

others in the set and sufficiently similar between them to be considered as belonging 

to the group. This analysis is called Unsupervised Classification or Outliers Detec-

tion. In Chapter 6 “Supervised Classification” is introduced to teach to the reader 

how to use the studied dataset to try to obtain a classifier that allows, for future 

observed sets of data with the same characteristics, knowing the value of a specific 

characteristic whose value is unknown from the values of the characteristics that 

compose the classifier. Finally, the last chapter, Chapter “Association”, introduces to 

the reader the foundations of the Association Analysis, which tries to identify which



of the possible sets of characteristics that can be observed for an object in different 

observations, or events, appears more times together to try to establish that those 

characteristics are associated. 
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All the chapters, or lessons, with the exception of the first one, are constructed and 

structured in the same manner, and all of them will have three sections:

• Section A introduces, in a theoretical and, at the same time, practical way, all the 

basic theoretical knowledge that a data analyst must know in depth.

• Section B presents computer-based cases solving of the same contents that have 

been presented in the previous part.

• Finally, Section C will consist of a set of statements of exercises about the 

contents presented in part A, in which detailed solutions can also be found in 

this part of the lesson. This will be remembered several times in other parts of the 

book, but it is very important to obtain the best results for the learning process 

throughout the use of the book, that the reader tries to solve the exercises by 

himself before seeing their solutions and that only once solved check if the 

obtained solutions are correct. 

With this structure, after starting with an introduction, the contents of the lesson 

are presented in a theoretical-practical manner; that is, after each theoretical concept 

is introduced, an exercise to apply that concept is presented and solved in detail 

without the help of any software tool. Then, the examples that have been previously 

solved with the R software tool. Finally, all the learning of the contents of all the 

lessons is reinforced with the resolution of a set of proposed exercises, in which 

solutions, with and without the use of software tools, are explained in depth.3 

In addition to introducing the Data Analytics Knowledge Area Group of the 

EDISON Data Science Framework, this book has also been conceived as a textbook 

for the Data Analytics Fundamentals course of 64 face-to-face, or contact, hours in 

the classroom, which could be taught during a term, that is, 16 weeks, with a 

theoretical class and another practical per week, both of 2-h duration.4 Each chapter 

corresponds to a lesson and is taught in 2 weeks with a delay between the theoretical 

and the practical contents of the same lesson, which means that the first 3 weeks of 

the practical lesson must be dedicated to introduce the R environment because the 

first 2 weeks are to teach lesson 1, Introduction, which is theoretical, and the third 

week the lesson Data are started and there are no content for practices; in the fourth 

week, the first practical lesson about Data with R is held. As there are 7 lessons with 

2 weeks for each lesson, there are 14 weeks of lessons, and the 2 weeks remaining 

can be dedicated to examinations or/and the resolution of a data analysis of a 

complete practical case. In the theory class, the theoretical concepts of each topic

3 In this point, we recommend again to the reader to try solve alone all the exercises previously to see 

their solutions in the book. 
4 In the case of having fewer weeks, you could either increase the number of hours per week to 5, for 

12 weeks, or not teach any lessons. The lessons removed must be any of the 4, 5, 6, or 7, because all 

of them are not the basis of Data Analytics and are self-contained. In the event that the time 

constraints are severe, both solutions could be combined.



will be exposed, and all of them will be seen through a methodology consisting of 

two steps, the first of which will be to state and explain the theoretical concept; then, 

immediately after following the construction principle that governs the entire book 

and that has been exposed at the beginning of it, a practical exercise will be carried 

out, which allows the student to consolidate the knowledge acquired. This practical 

exercise must be solved on paper with the help of a hand calculator. During the 

laboratory session of the same week, you will learn how to solve with the use of the 

environment and the R language the same exercises that were solved in class in the 

theory session. Learning and deepening the knowledge of R will occur in parallel 

with that of Data Science.
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Data 

In this second chapter, we will see the essential aspects related to the concept of Data 

or Datum.1 As explained in the Introduction, this chapter is structured in three 

sections. This structure of three sections will also be presented for all the following 

chapters. 

Section A introduces, in a theoretical and, at the same time, practical way, all the 

basic theoretical knowledge related to the concept of Data that a Data Analyst should 

know, from the definition of the concept of Data and the related ones to the initial 

description process of the data set under study. Data Science is generally linked to 

Statistics, which is the reason why there are many concepts and definitions that need 

to be clarified and matched/harmonized between both domains to bring synergy and 

allow specialists from both to understand, speak, communicate, and cooperate better. 

Section B presents the computer-based solving of the same examples used in 

section A to introduce the theoretical knowledge. As it is the first time that this part 

appears in a lesson, the basics of the programming language and environment that, 

from here, will be used in the whole book, R, are introduced in detail. After that, the 

first problem solved with R will be solved in detail. 

Section C consists of a set of statements of exercises about Data for which 

detailed solutions can also be found in this section of the chapter.2 

1 In English Language, a single datum is called Datum, whereas a set of datum is called Data, but in 
day-to-day work in Data Science, it is usually used the term Data for referring to both a single 
datum and a set of data. There is not a common recipe to know when the term Data is referring to a 
single datum of a set of data and it is the context that establishes whether the meaning is one or the 
other. In the book, we are going to use only the term Data for refereeing both single and plural and 
the same criterium will be followed, it will be the context that establishes whether it is single or 
plural. 
2 As has been said in other parts of the book, it is very important to obtain the best results for the 
learning process throughout the use of the book, that the reader tries to solve the exercises by 
himself before seeing their solutions, and that only once solved, check if the obtained solutions are 
correct. 
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In this lesson, the reader can also find an Annex3 with extended concepts for 

contents treated in the lesson. 

A. Theory 

This first section of the chapter is structured in 7 Subsections: (1) Introduction, 

(2) Characteristic, (3) Data, (4) Available Data, (5) Frequency, (6) Mean, and 

(7) Median. In which the basic knowledge related to the concept of data and with 

the description process of the available data are presented in detail. 

Introduction 

As stated in the first introductory chapter, the raw material of Data Science and, 

consequently, of Data Science Analytics is data, so we begin our study of the subject 

by studying in depth the concept of data and all the related concepts. To do that, the 

lesson can be divided into two blocks: 

In the first block, the most important concepts, which must be known in depth, 

related to the concept of Data are introduced. It starts with the concept of Charac-

teristic, its definition, its types, and its difference and relationship with the Data 

concept will be explained. Next, the concept of data, its definition, and its types, 

from the point of view of their nature, and from their storage, that is, the type of data 

that are usually handled when the process of acquisition and preprocessing is being 

performed. The last contents introduced in this block are related to different concepts 

that have been grouped under the name of Available Data and they are focused on 

features of specific sets of data to be analysed in each study, which are the concepts 

of Experiment, Population, Sample, and data Quality. 

The second block introduces the main parameters4 used to perform the first 

analysis and description of the data that will be carried out, which allow us to better 

understand the available data set object of study. The first parameter that is usually 

calculated is the Frequency, which is fundamental in data observation. Its definition 

and types, its application to grouped5 data and a related measure called Mode are 

introduced. Next, a second parameter, the Mean, is introduced, and its definition, the 

definition of the Arithmetic Mean, and the related parameters of Variance and

3 No all the lessons are going to have an annex, only in those ones for which the contents treated in 
the annex have been considered to include there to increase the readability of the book. 
4 Parameter can be defined as: “a quantity (such as a mean or variance) that describes a statistical 
population”. 
5 The grouping of data will be, in certain cases, a very important tool that will facilitate their 
analysis.



Standard Deviation are presented. Finally, the last parameter of the data introduced 

is the Median, and its related parameters Quantiles and Range.
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Characteristic 

This section introduces the concept of a characteristic, its definition, and its types. 

Definition of Characteristic 

In the introductory lesson, we define Data Science as follows: 

Science that studies how to obtain knowledge from Data. 

From this definition, we can ask ourselves: obtain knowledge from Data, 

about what? 

We can answer the following: 

About those that we observe of things and events. 

And those that we observe of things and events are their characteristics. For that 

reason, before introducing the concept of data, it is very important to have knowl-

edge of what is a characteristic. 

If we take the definitions that can be found in the dictionaries about the terms 

property, attribute, quality, and characteristic, we have for property: “Attribute or 

essential quality of someone or something”; for attribute: “Each one of the qualities 

or properties of a being”; for quality: “Each one of the characteristics, natural or 

acquired, that distinguish people, living beings in general or things”; and for 

characteristic: “Said of a quality: That gives character or serves to distinguish 

someone or something from their peers”. From these definitions, two immediate 

conclusions can be reached: the first one is that they are synonymous with each 

other, so any of them can be used to name what data science is going to focus their 

studies on; and the second one is that a collection of characteristics, which can also 

be called an instance, record, or  case, describes an object. In this text, from all of 

them, we have selected the term characteristic. 

It is commonly accepted to use the term Variable interchangeably to refer to the 

term characteristic, although their definitions are not equal. We introduce the 

definition of Variable here, but we recommend that the reader return to its definition 

when the Experiment, Population, and Frequency concepts had been defined, later in 

this lesson, and even later, after studying the Probability lesson, for a better 

understanding. Variable can be defined as “Magnitude that can have any value of 

those included in a set” or “A factor in a scientific experiment that may be subject to 

change”. And a Random Variable can be defined as “A variable associated with a 

certain probability law or distribution, in which each of the values it can take 

corresponds to a specific relative or probability frequency”. And a Statistical



Variable can be defined as “Function defined on a finite population or a sample, 

which takes the values of each one of the modalities of an attribute, and to which it 

associates a frequency distribution”. 
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In this book, we will start using the term characteristic to gradually switch to 

using variable6 in future lessons. 

Types of Characteristics 

The characteristics can be of two types: 

1. Quantitative, or measurable,7 means measurable that can be measured.8 Conse-

quently, their values are going to be numbers in which arithmetic operations9 can 

be applied. 

Quantitative, or measurable, characteristic. To introduce the concept of quantita-

tive, or measurable, characteristics through an example, we can use the distances, 

measured in kilometres, km, between their homes and the University for the group of 

students of the Data Science subject of one academic course; the time each of them 

takes to travel the previous distance; the number of different subjects in which each 

one of them is enrolled in the first semester of the academic course; or the number or 

social networks used for every student. 

2. Qualitative, which cannot be measured, and consequently arithmetic operations 

cannot be performed with their values. Qualitative characteristics are also 

usually called Attributes. 

6 When the term Characteristic is replaced by the term Variable, it is important to note that in some 
experiments, the values of the data for that characteristic can be constants and it is possible to call a 
variable to a constant, but in that cases, the term variable is only replacing the term characteristic 
and it has not its etymological meaning. 
7 Quantitative data, to facilitate their mathematical treatment, can be rounded and truncated. 
Rounding can be defined as: “Dispense, in quantities, of small differences in more or less, to take 
into account only units of a higher order”; and defines truncate as: “From lat. truncāre. Cut a part to 
something”. Both rounding and truncation applied to numbers replace a number with a shorter one, 
whose value is not exactly the same but is very approximate. If x 2 ℝ and it is expressed in decimal 
form, it can be rounded by following the next three rules: 1. If the first digit removed is less than 
5, then the value of the first digit not removed is kept. 2. If the first digit removed is greater than 5, or 
is 5 followed by digits greater than 0, then the value of the first digit not removed is increased by 
one. 3. If the first digit removed is 5, or is 5 followed by digits equal to 0, then the value of the first 
digit not removed is changed to the even number that makes it closest to the number resulting from 
the rounded number. To truncate a number, the rule is followed: If x 2 ℝ and it is expressed in 
decimal form, it can be truncated by eliminating the digits to be eliminated. Digits not removed 
remain unchanged. 
8 Measure can be defined as: “Compare a quantity with its respective unit, in order to determine how 
many times the second is contained in the first”. 
9 The arithmetic operations are addition, subtraction, multiplication, and division.
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Qualitative characteristic. To introduce the concept of qualitative characteristic 

through an example, we will again use the group of students of the Data Science 

subject of one academic course, and in this case, we can use the name of their 

residence towns, the highest course in which each student is enrolled in the academic 

course, the identification number of the student in the university,10 or the gender of 

the student. 

3. Binary, or Logical. Its values can be numerical or textual, but in both cases, the 

meaning of the value will be logical, whether the characteristic exists or not 

exists. 

Logical characteristics. To introduce the concept of logical characteristic through 

an example, we are going to again use the group of students of the Data Science 

subject of one academic course, and in this case, we use if each one of them has a 

driving license or not or if the student has ever worked for someone else. 

Data 

Once we know the fundamentals of the characteristic concept, let us follow with the 

concept of Data. This section introduces the concept of Data, its definition, and its 

types11 from the perspectives of their nature and storage. 

Definition of Data 

A data can be defined as: the value obtained for a characteristic of the object of study 

in an observation.12 

Considering this definition, we denote each data point of the observation of the 

characteristic x as xi, so that n observations of the characteristic x for n different 

individuals or objects would be the following set x: 

10 Although is given by a number, this characteristic and the previous one, are qualitative charac-
teristics because the same identification could have come from the student’s name. To know if a 
characteristic whose data are given by numbers is quantitative or qualitative, it can be reasoned if 
with said numbers it makes sense to perform simple arithmetic operations such as addition or 
subtraction. In this case, for example, it is clear that it does not make sense to add two identification 
numbers of two students. 
11 Every programming language defines their data types and structures. 
12 We think it is interesting to complement this definition with some of those that, for the concept of 
data, can be found in dictionaries: “1. Information about something specific that allows its exact 
knowledge or serves to deduce the consequences derived from an event.”. In addition, it is curious 
and, in some manner, surprising and interesting for anyone that comes from the Computer Science 
field, the following definition: “3. Information arranged in a suitable way for processing by a 
computer.” And the term Observation is related to the term Experiment that will be introduced in the 
next section.
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x= x1, x2, . . . , xk , . . . , xnf g  

We could also observe a set of characteristics xi for the same individual or object, 

and this situation can also be written with a similar set as in the previous case. 

x= x1, x2, . . . , xk , . . . , xnf g  

However, in this case, x is the individual or object, and xi is the data of every one 

of the characteristics observed in an observation, while in the previous case, x is the 

characteristic, and xi are the values of the data observed for each individual or object. 

We can also have a set of n individuals or objects for which m different charac-

teristics have been observed. This situation can be represented with a matrix, in 

which each row (also it could be written transposed, with the values of the rows in 

the columns) represents a different individual or object, and each column represents 

the value, data, observed for each characteristic identified for that individual or 

object. The matrix would be: 

x= 

x11 ⋯ x1k ⋯ x1m 

⋮ ⋱  ⋮ ⋮  

xj1 ⋯ xjk ⋯ xjm 

⋮ ⋮  ⋱  ⋯  

xn1 ⋯ xnk ⋯ xnm 

From that matrix, it is possible to introduce the concept of Instance as the set of 

values of each row; that is, in the previous case, we would have n instances of 

m values for each one of them. In this case, each instance would be composed of the 

values of the m observed characteristics of an individual or object. If only one 

characteristic is observed, an instance is each observation. Synonyms of instance 

are register or case. 

If the data obtained for a characteristic does not vary in all the observations made 

of it, it is said that characteristic has a constant13 value. If the data obtained for a 

characteristic have different values in different observations, the characteristic is said 

to have a variable14 value. Once it has been established that a characteristic has a 

constant value, its study usually has ended because it has no interest, so normally the 

studied characteristics have a variable value, this is another reason complementary to 

the previously introduced that makes it very common to use the variable name to 

refer to the characteristics. 

13 Additionally, it can be defined as: “5 . F. Mat. Quantity that has a fixed value in a certain process, 
calculation, etc.” See the example of ordinal qualitative data below. 
14 A complementary definition of variable to the previously introduced is: “Magnitude whose values 
are determined by the laws of probability, such as the points resulting from the roll of a die”.
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Types of Data from Their Nature 

From the perspective of their nature, data can have one of three fundamental types,15 

and inside one type, they will have one specific subtype. The definition of the three 

types and their subtypes are the following: 

1. Quantitative data. Numerical value observed for a certain quantitative character-

istic of an object in a certain observation. Considering the nature of the numbers 

used to obtain the data, quantitative data can be expressed as follows: 

1.1. Discrete quantitative data. They can only have values within a countable set 

of possible values between two given numbers. Consequently, if xi is the 

discrete data resulting from the measurement of the characteristic x, then xi is 

obtained by means of a whole number and xi 2 ℤ. 
Discrete quantitative data. To introduce the concept of discrete quantitative 

data through an example,16 we use the number of different subjects in which 

each of the students described in the previous section is enrolled in the 

academic course in the first semester. The data are {6, 8, 7, 6, 4, 4, 4, 4, 3, 

3, 3, 7, 5, 9, 6, 4, 4, 5, 4, 8, 4, 6, 3, 5, 5, 4, 3, 5, 5, 6, 4, 7, 7, 7, 7, 5, 9, 3, 5, 

8, 5, 7, 9, 3, 3, 3, 3, 6, 3, 3, 1, 6, 6, 7, 7, 5, 4, 3, 7, 7, 4, 7, 5, 8, 3, 4, 4, 6, 5, 

5, 4, 5, 6}. 

Instance. An example of an instance is the number of courses of the first 

student, which is 6. If we had more than one characteristic observed for the 

student, the set of the values of all the data for all the characteristics in each 

specific observation would be an instance. 

1.2. Continuous quantitative data. It can take any value between two given 

numbers.17 Consequently, if xi is the continuous data resulting from the 

measurement of the characteristic x, then xi is obtained by means of a Real 

number and xi 2 ℝ. 

Continuous quantitative data. To introduce the concept of continuous quan-

titative data through an example, we are going to use the distances, measured 

in kilometres, km, between their homes and the University18 for the group of 

students of the Data Science subject of one academic course. The data are

15 Which will correspond to the three types of characteristics. 
16 All the data used for this example and for the rest of the lesson are real data obtained from the 
students enrolled in one academic year. 
17 Although subject to a resolution of measurement or quantification. 
18 When the book is used as the textbook of a Data Science course: It can be interesting to ask to the 
students at the beginning of the course to collect all these data in the reality to use and analyze them 
during the course. It is not difficult to do it. As instance: to collect these distances they can follow 
the simple way to do it as it is to enter google maps and in the text box search write distance. A new 
text box is opened and there they can write the address of their house and the address of the 
university. They get the distance, and the provided time to travel it.



{16.5, 34.8, 20.7, 6.2, 4.4, 3.4, 24, 24, 32, 30, 33, 27, 15, 9.4, 2.1, 34, 24, 

12, 4.4, 28, 31.4, 21.6, 3.1, 4.5, 5.1, 4, 3.2, 25, 4.5, 20, 34, 12, 12, 12, 12, 

12, 12, 5, 19, 30, 5.5, 38, 25, 3.7, 9, 30, 13, 30, 30, 26, 30, 30, 1, 26, 22, 10, 

9.7, 11, 24.1, 33, 17.2, 27, 24, 27, 21, 28, 30, 4, 46, 29, 3.7, 2.7, 8.1, 19, 16}.
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2. Qualitative data. Textual description observed for a certain qualitative character-

istic of an object in a certain observation. Qualitative data can be distinguished 

between nominal, when the text only serves to describe the data, and ordinal, 

when the texts corresponding to each data also serve to establish an ordering 

thereof. Although this distinction can be made, qualitative data have not been 

separated into two different types, as has been done above with quantitative data, 

because in both cases, the data are of the same nature. It may be the case that the 

nominal values of a characteristic are numbers, but they will only have a 

qualitative value, that is, of distinction of the possible values that the character-

istics may have, but arithmetic operations cannot be carried out with them. 

Qualitative Nominal data. To introduce the concept of Qualitative nominal data 

through an example, we again use the group of students of the data science subject of 

one academic course, and in this case, we use the name of their residence towns as an 

example of nominal qualitative data. The data are19 : {Villalbilla, Ensanche de 

Vallecas, Villalbilla, Alcalá de Henares, Alcalá de Henares, Alcalá de Henares, 

Cifuentes, Cifuentes, El Casar, Fuente el Saz del Jarama, ND, Coslada, Daganzo de 

Arriba, Alcalá de Henares, Alcalá de Henares, Arganda del Rey, Coslada, Alcalá de 

Henares, Alcalá de Henares, Madrid, Madrid, Mejorada del Campo, Alcalá de 

Henares, Alcalá de Henares, Alcalá de Henares, ND, ND, ND, Alcalá de Henares, 

Guadalajara, Guadalajara, Torrejón de Ardoz, Torrejón de Ardoz, Torrejón de Ardoz, 

Torrejón de Ardoz, Alcalá de Henares, Torrejón de Ardoz, Guadalajara, ND, ND, 

Chiloheches, Alcalá de Henares, ND, ND, ND, Guadalajara, Guadalajara, Coslada, 

Guadalajara, Cabanillas del Campo, Alcalá de Henares, Madrid, ND, ND, Daganzo, 

Alcalá de Henares, Torres de la Alameda, Velilla de San Antonio, Daganzo, Guada-

lajara, ND, Guadalajara, Cobeña, Galapagos, Madrid, Alcalá de Henares, Madrid, 

Coslada, ND, Alcalá de Henares, ND, Alovera, Torrejón de Ardoz} 

Qualitative Ordinal data. To introduce the concept of Qualitative ordinal data 

through an example, we use the highest course in which each participant is 

enrolled in the academic course. The data are {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}. These data 

are ordinal because in the case in which they were variable, all the students could 

be ordered by the highest course in which they are enrolled, that is, we can take 

another group of five students with the following data: (Name of the student, 

Highest Course) {John, 3; Martha, 4; Mike, 3; Tom, 2; Caroline, 1}. We can order 

them from the students enrolled in the highest course to the lowest one in that 

manner: Martha, John, Mike, Tom, Caroline. 

19 The list are towns near to Madrid, Spain, or Madrid itself.
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3. Logical data. Logical value, usually of existence or not, is observed for a certain 

logical characteristic of an object in a certain observation. Logical data can be 

treated directly as logical data but can also be treated as discrete quantitative data, 

assigning, for example, a 1 to the existence of the characteristic and a 0 to the 

nonexistence, or vice versa, or as qualitative data, assigning, for example, a true 

or T to existence and a false or F to nonexistence. 

Logical data. To introduce the concept of logical data through an example, we are 

going to again use the group of students of the Data Science subject of one academic 

course, and in this case, we use whether each student has a driving license or not. The 

data are as follows: {No, Yes, Yes, No, No, No, No, Yes, No, No, No, No, No, No, 

No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, Yes, No, Yes, No, 

No, No, No, No, No, No, No, Yes, No, No, No, No, No, No, No, Yes, No, No, No, 

No, Yes, No, No, No, No, Yes, No, No, No, No, Yes, No, No, Yes, Yes, Yes, No, 

No, No, Yes}. Other example of logical data is the data about if the group of students 

have ever worked for someone else, and the data are: {No, No, No, No, Yes, No, No, 

No, No, No, No, No, No, Yes, No, No, No, No, No, No, No, No, Yes, No, No, No, 

No, No, No, No, No, No, No, No, No, Yes, No, No, No, No, No, No, No, No, No, 

No, Yes, No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, No, 

Yes, Yes, No, No, No, No, Yes, No, No} 

Once the different data types from the perspective of their nature have been 

introduced and before introducing the types of data from the perspective of their 

storage, it is important to see another view of the data from the perspective of their 

values obtained in the different observations of an experiment.20,21 From this 

perspective, there can be two types of values for the data:

• Variable. Data are variable when their values for a specific characteristic change 

in the different observations of an experiment. 

Variable Data. As an example of variable characteristics, any of those collected in 

the examples of quantitative or qualitative variables can be taken, with the exception 

of the example of qualitative ordinal data, the highest course in which each one of the 

students is enrolled in the academic course, which is a constant.

• Constant. Data are constant when their values for a specific characteristic do not 

change in the different observations of an experiment. Another definition of a 

constant is “Quantity that has a fixed value in a certain process, calculation, etc.” 

Constant Data. The example of qualitative ordinal data, the highest course in 

which each one of the every student is enrolled in the academic course, is also an 

example of a constant because how Data Science is a subject of the fourth course and

20 The definition of Experiment will be introduced in the next section. 
21 It is the data that is constant or variable, not the characteristic, because a characteristic can have 
constant data in an experiment and variable data in other. This explanation will be extended in the 
examples.



this course is the highest one of the studies none student can be enrolled in a higher 

course, for that reason all the data observed in all the observations are the same, and 

consequently the characteristic highest course in which the student is enrolled has a 

constant value in this analysis, and it is an example of a constant. It can be seen from 

this example that a characteristic can be a constant in an analysis and a variable in 

another because if we were applying this characteristic to, for example, all the 

students enrolled in the degree, it will be variable.
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Types of Data from Their Storage 

The observable data may have different dimensions, structures, and models, that is, 

they can be formed by the value of a single characteristic, of two, or of n. With this in 

mind, their registration structures and models can be different, and data types can be 

defined in the following ways:

• Formal Data. Those are data described via formal data. This definition of the data 

is used in the majority of structured data. Examples are data stored in databases, 

archives, etc.

• Formalized Grammar. Those are data described via a formalized grammar. 

Examples are machine-generated textual data or forms.

• Standard Format. Those are data described via a standard format. Examples are 

digital images, audio, or video files.

• Arbitrary textual or Binary Data. 

Related to the Data Models, some of the more used are:

• Structured data. Data are defined by a model or relations between characteristics. 

Data can be observed and recorded individually in such a way that what is 

obtained is a continuous set of records. This is what happens when a single 

feature is observed. However, the most common is that data analysis is performed 

on more complex structures. Next, we will see that some of the most common are: 

– Records. The data consist of a collection of records of a set of characteristics or 

elementary events that are the same for all. Each record is a separate record or 

event.22 When data are collected for the simultaneous study of more than one 

characteristic, the data for each one of them can be of different types; for 

example, for two characteristics, corresponding to the n-tuples c and d between 

which a binary relation exists, the following combinations can be given: c and d 

Qualitative; c Qualitative and d Measurable or vice versa; c and d Measurable. 

– Matrix. A set of records make up a matrix,23 as we saw in the definition of 

data, which can be quantitative, qualitative, or mixed. If it is quantitative, the 

records can be represented in an r-dimensional space in a scatter diagram. 

22 As an example, this is an array in R, the programming language that we use in the book. 
23 This will be a matrix or a data frame in R, both of them and their differences will be described.
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Structured data have a series of properties such as: 

– Dimension. When dealing with data, one should try to avoid the curse of 

dimension (the word dimensionality appears in the texts, but this word does 

not exist in the dictionary) (it is necessary to introduce here how the dimension 

is treated in statistics, that there is an extensive treatment based on correlation), 

which consists in that when the dimension increases, the data becomes grey 

and the definitions of distance and density between points become less signif-

icant. For all this, it is necessary to reduce the dimension. This is done for 

several reasons: to eliminate irrelevant characteristics and noise, to visualize 

the data more easily, and to reduce the time and memory used by the data 

mining algorithms. The dimension analysis techniques are as follows: 

– Aggregation. It is about combining two or more values into one. There are 

different aggregation techniques, among them is clustering, which we will see 

in a separate chapter. 

– Extraction (which we could also call elimination). It is about eliminating 

redundant characteristics (e.g., price and taxes) or irrelevant (eye colour to 

predict salary). There are different extraction techniques, such as principal 

component analysis (which must be developed in depth) or decomposition into 

singular values. 

– Sparseness, that is, the distance between data. 

– Resolution. The patterns depend on the scale and gradation of the recorded/ 

measured data.

• Unstructured data. In the case of unstructured data, the data can be observed in 

different sources, but they are not organized as in the previous cases, so 

preprocessing must be performed to give them structure before they can be 

analysed. The most common sources are as follows: 

– Documents. Each document is transformed into a record in which each term is 

an attribute or elementary event, and the value that each record has is the 

number of times it appears in the document. A special case of a document is a 

transaction record (shopping cart), where each record includes a set of ele-

mentary events or items. 

– Graphs. The information is extracted from graphs, such as the molecular 

structure or a map.24

• Ordered or sorted data. They are structured or unstructured data25 that are 

connected to each other or follow an order that is relevant for the analysis to be 

made of them. Examples include sequences of transactions in an association 

analysis, genomic sequences, or space-time such as a temperature map. 

24 Very fashionable with Twitter and R 
25 This is a clear example where the term Data is used in plural.
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• Semistructured data. An example is Tables.

• Key-value pairs.

• XML: Hierarchical data. For example, Document.

• RDF: Semantic data. For example, RDF or triple store. 

Available Data 

As we have just seen, to carry out studies on the characteristics, it is mandatory to 

collect data. From the previous subsection, we know that data are defined as 

information that is collected through observation, so in this subsection, we are 

going to see the concepts associated with the observation that must be done to obtain 

the available data for the study. These concepts are Experiment, Population, and 

Sample. The subsection also briefly discusses the quality of data. 

Experiment 

As mentioned above, the data or values of one or more characteristics are obtained 

through observations of the characteristic. These observations are made through 

what is defined as an experiment. An Experiment can be defined as the “action and 

effect of experimenting”. The authors define experiencing as follows: “In the 

physicochemical and natural sciences, carry out operations destined to discover, 

verify or demonstrate certain phenomena or scientific principles.” 

This definition can be expanded and applied not only to scientific areas of 

knowledge but also to the rest of all areas of knowledge. According to the expected 

results of the experiments, these can be divided into two main types:

• Deterministic, which are those in which the result is completely determined by 

the initial conditions.

• Random, which are those in which the result is or is not determined by the initial 

conditions or defined by conditions and environment, that are not known or 

controlled, and, in consequence, it is unforeseen. 

Data science studies are usually carried out on results obtained in random 

experiments.26 

26 Many times, the objective of statistical studies on random experiments is to serve as a basis for the 
search for equations or laws that link identified conditions, or influencing variable, with the 
experiment result, and make the phenomenon studied deterministic.
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Data Population 

Population can be defined as a “Set of individuals or things subjected to statistical 

evaluation by sampling”. If the study applying data science is going to be carried out 

only on the data obtained in the experiment, then we have the entire population of 

data under study. This will allow you to obtain results with absolute certainty. The 

population can be described using analytic parameters, as will be described in the 

next sections. 

Data Sample 

Sample can be defined as: “Part or portion extracted from a set by methods that allow 

it to be considered representative of it.” If the study applying data science is going to 

be carried out on more data than have been obtained in the experiment, then there is 

only a sample of the population data (which is a larger data set). This will lead us to 

the fact that the results obtained are totally true for the sample studied but only 

probable for the population. When statistics are applied to a sample of data from a 

population, Statistical Inference is being carried out. To perform statistical inference, 

it is necessary to apply Probability. The size of the sample is very important in 

statistical inference. 

As in practically all experiments, it is either impossible or very expensive to 

obtain the population of interest, so it is necessary to resort to obtaining a sample or a 

set of samples from which the information can be inferred. As it is immediate to 

deduce, for the inferences obtained to be valid, the samples defined in the experiment 

must be as representative as possible. This need to define the quality of the samples 

gives rise to a whole theory of definition of samples called Sampling Theory. It is 

very important to establish that it is possible to work with samples if the sample is 

well obtained and it is statistically representative of the population. 

There are different sampling types:

• Sample Random. The probability of selecting any event is the same.

• Sample without replacement. Selected objects are removed from the population, 

and they can only be selected once.

• Sampling with replacement. Selected objects are not removed from the popula-

tion, and they can be selected multiple times.

• Stratified sampling. The data set is partitioned following some stratification 

criterion, and random samples are taken from each partition. 

As mentioned above, to extend the results of data analysis obtained from samples 

to the populations to which they belong, it is necessary to apply concepts from 

probability theory. In Lesson 3, the fundamental concepts of probability will be 

studied. The sample can be described or used to perform inference for the 

population.
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Data Quality 

The data obtained from one or more samples, through sampling, or from the entire 

population, where available, may present quality problems. The most common data 

quality problems are as follows:

• Missing values. The reasons for missing data may be multiple; for example, it was 

not possible to collect the values of all the characteristics in all cases, or the 

sources did not want to provide them (age, salary, etc.). When this is the case, the 

actions that can be taken to solve it are fundamentally eliminating the instance, 

eliminating the value, ignoring all the missing values during the analysis, or 

replacing all the missing values with values generated artificially using probabi-

listic techniques. (In the cardata exercises we have missing data that must be dealt 

with before we can do the data analysis)

• Duplicate values. Data can be duplicated when data from heterogeneous sources 

(e.g., the same person with several postal addresses) are mixed. When this case 

occurs, the action to solve it is to clean the data by eliminating this duplication.

• Noise. There is noise in the data when the original data are modified due to the 

superposition of a signal that modifies the values of the original data (e.g., in an 

audio signal).

• Outliers. These are data whose values are very different from the rest of the values 

obtained. It is very important to note that outliers may not be a quality problem in 

the data but have a meaning that needs to be analysed. The treatment of outliers is 

studied in depth in lesson 4. 

Another aspect related to the quality of the data is their Statistical Reliability or 

sometimes called Veracity, which measures the degree of repeatability of the 

observations. 

Frequency 

Once we have finished introducing the main concepts related to the concept of data, 

now we are going to start the introduction of the methods that will allow us to know 

more in depth the set or sets of data that we must study in the analysis that we must 

do over them. Those methods are called data description methods,27 and their

27 The description of data has traditionally been part of descriptive statistics, although with the 
development of new techniques, especially visualization, their current knowledge exceeds the limits 
of statistics. The description of the data has also been called as Statistical Summary or Exploratory 
Data Analysis (EDA), definition, the latter given by J. Tukey in his book of the same name, 
although to our understanding, the EDA should be treated in visualization, since its fundamental 
philosophy rests on a search for knowledge of the data through its visual analysis, that is, through 
graphics, in addition to presenting graphic techniques not only for the description of the data but 
also for other purposes such as the detection of clusters or outliers.
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application will facilitate the subsequent analysis that is going to be carried out 

on them.
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Definition of Frequency 

The first method of the description of the data that is usually applied is frequency 

analysis, that is, the one that we are going to see in this subsection. We are going to 

see its definition, its types, its distribution, and the related concept of Mode. Another 

way to obtain a better understanding of the data you are working with is to obtain one 

or more values that represent all of them, that is, what you are going to get through 

the data summary measures, or to use the ordered measurements, which will be 

presented in the next sections. 

Once you have the data available, an initial analysis to do over them is to 

determine how many times each different data value28 appears, with the double 

objective of determining the importance of each29 data value within the data set, 

since the data that appear more times will have greater weight in the study and to 

reduce the number of data processed. Associated with this process, the concept of 

frequency is defined.30.31 

Types of Frequency 

In the first level, two fundamental types of frequency are defined: punctual, o  

associated only with the data, and accumulated,32 or associated with the data and 

all data with a value lower than it. In addition, each of them can be of two types: 

absolute or relative. The definitions of all of them will be seen in detail below. The 

frequency can be applied to data of both quantitative and qualitative characteristics 

or of logical. 

28 A certain observation can be made up of a single data or value, a set of values, which can be two, 
three, or more data. 
29 It is very important to highlight the fact that frequency is a measure that is going to be given for 
each different data, that is, you can have, for example, 100 data, but only three different data values, 
a, b, and c, but each of them is repeated a set of times, in such a way that in the end there are 
100 data, since there will only be three frequencies, not 100. 
30 Frequency can be defined as: “Number of elements within an interval in a given distribution.” 
31 It is very important to understand, know, and be familiar with the concept of frequency, especially 
with the concepts of relative frequency and accumulated relative frequency, in order to understand 
and more easily assimilate the concepts of probability and probability distributions that will be seen 
in the second part of the book dedicated to studying probability. 
32 This type can be only applied to quantitative data.
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There are two types of Punctual Frequency33 or frequency:

• Absolute frequency. It  is defined as the number of times that a given data value 

appears in a set of observations, that is, 

f i = ni 

where i is each of the observations or data of different values that has been 

obtained. If the observations are made up of a single piece of data, the absolute 

frequency is given by the number of times that data appear in the set of observa-

tions that have been made. If the observations are made up of pairs of data, the 

absolute frequency is given by the number of times a certain pair of data appears, 

and the same applies for larger dimensions. In the case of using equivalence 

classes, the frequency of a class is given by the number of data belonging to that 

class. 

We are going to see the concept of Absolute Frequency using the data of the 

number of different subjects in which each one of the students described in the 

previous section are enrolled in the first semester of the academic course. The 

data are: {6, 8, 7, 6, 4, 4, 4, 4, 3, 3, 3, 7, 5, 9, 6, 4, 4, 5, 4, 8, 4, 6, 3, 5, 5, 4, 3, 

5, 5, 6, 4, 7, 7, 7, 7, 5, 9, 3, 5, 8, 5, 7, 9, 3, 3, 3, 3, 6, 3, 3, 1, 6, 6, 7, 7, 5, 4, 3, 7, 7, 4, 

7, 5, 8, 3, 4, 4, 6, 5, 5, 4, 5, 6}. The first thing that we must do is to identify the set of 

different data that we have in the observed series of data, and that set is 3, 4, 5, 6, 7, 8, 

and 9. Once we have this set, we calculate the number of times that is observed or 

appears each one of them. That is: 

If the first different data observed is x1 = 3, 

f 1 = n1 

and n1 is equal to the number of times that value 3 has been observed in the whole 

data. If we analyse the set of data, the value 3 appears 14 times, and in consequence, 

f 1 = 14 

The rest of the frequencies, with x2 = 4, x3 = 5, x4 = 6, x5 = 7, x6 = 8, x7 = 9, are: 

f 2 = 15, f 3 = 13, f 4 = 10, f 5 = 12, f 6 = 4, f 7 = 3

• Relative frequency. It  is  defined as the number of times a given observation 

appears in a set of observations divided by the total number of observations, 

that is, 

33 The punctual frequency of a given observation is usually called simply frequency and is 
distinguished from the cumulative frequency because it always carries the cumulative name.
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fri = 
i 

n 

where 

n= 

j 

i= 1 

ni 

and j is the total number of observations with different values. It is important to 

consider that the sum of the relative frequencies of the observed data is equal to 1, 

j 

i= 1 

fri = 1 

The same considerations as in the previous definition apply to the treatment of 

one or more data points. In the case of equivalence classes, the relative frequency of 

a class is given by the number of data belonging to that class divided by the total 

amount of data in all classes. The new perspective offered by the relative over the 

absolute frequency is that it gives us a vision of the relative importance of a certain 

piece of data in the data set, that is, a piece of data can have an apparently high 

absolute frequency, but when considering all the data, through the calculation of the 

relative frequency, it can be seen that the importance of these data is low because 

there are many observations. 

We are going to see the concept of Relative Frequency using the data of the 

number of different subjects in which each one of the students described in the 

previous exercise. From the previous exercise, we know that the sets of different data 

that we have in the observed series of data are 3, 4, 5, 6, 7, 8, and 9. From the 

previous exercise, we also know the number of times that each one of them has been 

observed because there are their absolute frequencies, and they are:where x1 = 3, 

x2 = 4, x3 = 5, x4 = 6, x5 = 7, x6 = 8, x7 = 9 are: 

f 1 = 14, f 2 = 15, f 3 = 13, f 4 = 10, f 5 = 12, f 6 = 4, f 7 = 3 

From its definition above, the relative frequency is: 

fri = 
ni 
n 
= 

fai 
n 

where 

n= 

j 

i= 1 

ni is the total number of data, which in this case is 

n = 14 + 15 + 13 + 10 + 12 + 4 + 3 = 71
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Consequently, the relative frequency of x1 = 3 is: 

fr1 = 
n1 
n 

= 
14 

71 
= 0:20 

The rest are: 

fr2 = 
15 

71 
, fr3 = 

13 

71 
, fr4 = 

10 

71 
, fr5 = 

12 

71 
, fr6 = 

4 

71 
, fr7 = 

3 

71 
→ rounded to two decimalsð Þ  

fr2 = 0, 21, fr3 = 0:18, fr4 = 0:14, fr5 = 0:17, fr6 = 0:06, fr7 = 0:04 

The relative frequency must be verified: 

j 

i= 1 

fri = 1→ 0:2 þ 0:21þ 0:18þ 0:14 þ 0:17þ 0:06 þ 0:04= 1 

There are two types of Cumulative frequency. The accumulated frequency can 

only be applied to data with both quantitative characteristics since as a step prior to 

calculating this type of frequency, the data must be ordered by magnitude. 

The types of cumulative frequency are:

• Cumulative absolute frequency. It  is defined as, with the data ordered by numeric 

value, from the lowest to the highest, the sum of the absolute frequencies of the 

data lower than the data for which the accumulated absolute frequency is being 

calculated, plus that of the data itself, that is, 

fck = 

k 

i= 1 

f i 

It must be verified that the accumulated absolute frequency of the data, 

different, of greater value is equal to the total number of data, since it is the 

sum of the relative frequencies of all the other data plus it.

• Cumulative relative frequency. It  is defined as, with the data ordered by numeric 

value, from the lowest to the highest, the sum of the relative frequencies of the 

data lower than the data for which the accumulated absolute frequency is being 

calculated, plus that of the data itself, that is, 

fcrk = 

k 

i= 1 

fri
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It must be verified that the accumulated relative frequency of the data, differ-

ent, of greater value is equal to 1, since it is the sum of the relative frequencies of 

all the other data plus it. 

We are going to see the concept of cumulative frequency, absolute and relative, 

using the data of the number of different subjects in which each one of the students 

described in the previous exercises. From the previous exercises, we know that the 

set of different data that we have in the observed series of data are 3, 4, 5, 6, 7, 8, and 

9. From the previous exercises, we also know that their absolute and relative 

frequencies are: where x1 = 3, x2 = 4, x3 = 5, x4 = 6, x5 = 7, x6 = 8, x7 = 9 

Absolute frequencies are: 

f 1 = 14, f 2 = 15, f 3 = 13, f 4 = 10, f 5 = 12, f 6 = 4, f 7 = 3 

The relative frequencies are: 

fr1 = 0, 20, fr2 = 0, 21, fr3 = 0:18, fr4 = 0:14, fr5 = 0:17, fr6 = 0:06, fr7 = 0:04 

From its definition above, the cumulative absolute frequency is: 

fck = 

k 

i= 1 

f i 

From the data above and this equation and how the data are ordered by their 

values, that is, 3 is before 4, 4 is before 5, and so on, the cumulative absolute 

frequencies for our problem are: 

fc1 = 14 

fc2 = 

2 

i= 1 

f i = f 1 þ f 2 = 14 þ 15= 29 

fc3 = 

3 

i= 1 

f i = f 1 þ f 2 þ f 3 = 14þ 15þ 13= 42 

and the rest are: fc4 = 52, fc5 = 64, fc6 = 68, fc7 = 71. 

How can be seen the cumulative absolute frequency of the highest value is the 

same as the total number of data points. 

The cumulative relative frequency is: 

fcrk = 

k 

i= 1 

fri
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From the data above and this equation and how the data are ordered by their 

values, that is, 3 is before 4, 4 is before 5, and so on, the cumulative absolute 

frequencies for our problem are: 

frc1 = 0:20 

frc2 = 

2 

i= 1 

fri = fr1 þ fr2 = 0:20þ 0:21= 0:41 

frc5 = 

5 

i= 1 

f i = f 1 þ f 2 þ f 3 þ f 4 þ f 5 = 0:20 þ 0:21 þ 0:18þ 0:14þ 0:17= 0:9 

and the rest are:fc3 = 0.59, fc4 = 0.73, fc6 = 0.96, fc7 = 1 

The cumulative relative frequency of the highest value is the same as the total 

amount of data. 

Frequency of Grouped Data 

In certain cases, when the data analysis is being performed on continuous quantita-

tive data, or in some cases on discrete quantitative data, and the number of data 

available is very large, it may be useful to group the data in intervals34 called 

equivalence classes35 to reduce the amount of data processed and facilitate its 

analysis. It will be seen later that it is also useful to know the concepts of data 

grouping when conducting supervised classification studies. 

It is important to note that to carry out a grouping of data, it is necessary to 

perform arithmetic operations, so it is only possible to do so on quantitative 

characteristics. We are going to see below the definitions and techniques associated 

with this grouping. The data grouping process can be carried out by following the 

next four steps36 :

• The first step in data grouping is to determine the number of groups into which the 

complete data set is to be divided. Each of these groups will constitute a different 

equivalence class,37 so that certain data can only belong to a single equivalence 

class. The number of classes, nc, into which the data set is to be divided is 

34 When some of the types of studies are carried out within the framework of the Data Science 
discipline, such as supervised classification studies, it is useful to apply the concepts of data 
grouping. 
35 In set theory, an equivalence class is one each of the disjoint subsets of elements into which an 
equivalence relation divides a complete set. 
36 The definitions of the concepts associated with the grouping will be entered in the step where they 
are needed. 
37 In set theory an equivalence class is each of the disjoint subsets of elements into which an 
equivalence relation divides a complete set.
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arbitrary and depends on the analyst, but it is recommended that it be a maximum 

of 10% of the available data, that is, nc ≤ 0.1 n where n is the number of data 

available.

• The second step consists of establishing the amplitude of each class, or the 

difference between the highest and the lowest value of the data belonging to 

each class. To do this, the first thing to do is sort the data by magnitude, from 

smallest to largest. In general, classes of the same amplitude are usually defined, 

for which the procedure consists of calculating the range38 of the data, or what is 

the same, the difference between the largest and the smallest value of the 

observed data for the characteristic under study, that is, 

r = vmax - vmin 

and divide this value by the number of classes decided in the first step, that is, 

ac = 
r 

nc 

It is important to note that, as with the number of classes, the amplitude of the 

classes can also be arbitrarily decided by the analyst, and they can be different for 

each class.

• The third step consists of determining the limits and the borders of the classes, or 

what is the same, the minimum and maximum value of each one of them and 

which are the borders between all of them. To obtain them, we start from the 

ordered data and take the lowest value of the data, which will correspond to the 

minimum value or lower limit of the first class, and add the amplitude, or the first 

class, if the amplitudes are different for each class, or the one common to all 

classes, and the data whose value is closest to the result will be the upper limit of 

that class, and the next data in magnitude will be the lower limit of the subsequent 

class. This process is repeated until the highest value of the observed data is 

reached, which will be the upper limit of the last class. When arbitrarily defining 

the criteria, the limits can also be arbitrarily set. 

Class boundaries are obtained by adding the upper bound of one class to the 

lower bound of the next class and dividing by two. The boundary thus determined 

is the boundary of both classes. That is, taking the same argument as in the two 

previous sections, the boundary between classes ai and ai + 1  would be obtained 

by performing the following calculation: biþbiþ1 

2 
. Class boundaries must not match 

data in the set being analyzed. 

38 Range can be defined as: “Amplitude of the variation of a phenomenon between a limit clearly 
specified minor and major. “That can be a good starting definition for the range concept, but that it 
must be expanded later in this lesson with the text that has been introduced in the paragraph to better 
understand it.
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If borders are not used, but limits are used to establish the divisions between 

classes, it may be the case that a data in the set coincides with a limit, in which 

case it would belong to two classes, which it cannot be. To avoid this problem, the 

criterion is to take the classes as open intervals on the right.

• The fourth and last step in data grouping consists of obtaining a representative of 

the class, which is usually called the class mark, and which is the value that is 

substituted for that of all the data belonging to that class, that is, it is as if all the 

data that belong to that class happened to have that value. As a mark of each class, 

the midpoint is taken, that is, the lower and upper limits of the class are added, and 

the result is divided by two, that is, 

mc = 
ls - ls 
2 

After grouping, the size of the data set will be reduced according to the criteria 

taken in the first step, so if the indications given have been followed, the size 

reduction will have been at least 90%, and it will stop working with the observed 

data to start working with the class marks. 

For grouped data, the frequency is given for each equivalence class, and calcu-

lations come from:

• Absolute frequency is given by the amount of data in the observed set that 

belongs to the class.

• Relative frequency is given by the amount of data in the observed set that belongs 

to the class divided by the total number of data in the set.

• The cumulative absolute frequency is given by the amount of data in the observed 

set that belongs to the class and the previous classes in the ordered observed set. 

Previous classes are those with a mark of the class lower than the mark of the class 

for which the frequency is being calculated.

• The cumulative relative frequency is given by the amount of data in the observed 

set that belongs to the class and the previous classes in the ordered observed set 

divided by the total amount of data in the whole data set. Previous classes are 

those with a mark of the class lower than the mark of the class for which the 

frequency is being calculated. 

To see an example of grouping data and obtain the frequencies of grouped data, 

we are going to use the data of the distances of the students of the data science 

subject to the university, that are: {16.5, 34.8, 20.7, 6.2, 4.4, 3.4, 24, 24, 32, 30, 

33, 27, 15, 9.4, 2.1, 34, 24, 12, 4.4, 28, 31.4, 21.6, 3.1, 4.5, 5.1, 4, 3.2, 25, 4.5, 

20, 34, 12, 12, 12, 12, 12, 12, 5, 19, 30, 5.5, 38, 25, 3.7, 9, 30, 13, 30, 30, 26, 30, 30, 

1, 26, 22, 10, 9.7, 11, 24.1, 33, 17.2, 27, 24, 27, 21, 28, 30, 4, 46, 29, 3.7, 2.7, 8.1, 

19, 16}, For those data, we obtain the range and group them into five equivalence 

classes, including in each class the values in the same ten, the limits and amplitude of 

each class, and the class mark.
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We will apply the steps for grouping: 

1. First step: Determine the number of equivalence groups or classes. As there are 

n = 73 distances and the recommended criteria is nc ≤ 0.1n, the class number 

should be nc ≤ 7, but how the statement of the problem says that we must be 

established by tens, we are going to obtain the range of the data to determine the 

number of classes. The range is 

range= vmax - vmin = 46- 1= 45 

Since the highest value is 46 and the lowest is 1, we will have a class of tens for 

the first five tens. All the classes will have the same Amplitude 10, and the classes 

will be: 

0, 10½ Þ, 10, 20½ Þ, 20, 30½ Þ, 30, 40½ Þ, 40, 50½ Þ  

2. Second step: Obtaining the amplitude of the classes. The recommended criterion 

in this case is to obtain classes of equal amplitude. For the statement of the 

problem, we know that, in this case, this is mandatory because each class will be a 

ten and, in consequence, the amplitude of all of them will be 10. 

3. Third step: Obtaining the borders and the limits of the classes. To obtain the limits 

of the classes in this case, since the amplitude of the classes has been established 

by the statement of the problem, the first limit between the first and the second 

class is: 

b 1uð Þ þ b 2lð Þ  
2 

= 
10þ 10 

2 
= 10 

Because the upper limit of the first class and the lowest limit of the second 

class are the same value, that value is the limit, and the decision of to which class 

each limit belongs is taken by the analyst, and in this case, it has been chosen that 

it belongs to the upper class; for that reason, the division of the data into classes 

remains as follows: 

0, 10½ Þ, 10, 20½ Þ, 20, 30½ Þ, 30, 40½ Þ, 40, 50½ Þ  

4. Fourth step: Determination of the representative of the data group or class brand. 

To calculate the mark of the two classes, the limits of both are taken, and the 

equation mc = 
lsþli 
2 

is applied in both cases. For the first class, the mark is
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mc = 
ls þ li 
2 

= 
10þ 0 

2 
= 5, 

for the second class, the mark is 

mc = 
ls þ li 
2 

= 
20 þ 10 

2 
= 15: 

For the third class, the mark is 

mc = 
ls þ li 
2 

= 
30 þ 20 

2 
= 25: 

Applying the same equations for the other two, the marks will be 35 and 45. 

This step completes the grouping of the data into the five equivalence classes 

using the usual criteria. 

Once grouped, the data have been reduced close to 90%, it has gone from 71 data 

to five. Once the grouping is done, only the data would be worked: 5, 15, 25, 35, and 

45, as representative of the classes. 

Let us now calculate the frequencies of each class. We start for the first [0, 10) 

with mark 5. Taking into account that the data are: 

{16.5, 34.8, 20.7, 6.2, 4.4, 3.4, 24, 24, 32, 30, 33, 27, 15, 9.4, 2.1, 34, 24, 12, 4.4, 28, 31.4, 
21.6, 3.1, 4.5, 5.1, 4, 3.2, 25, 4.5, 20, 34, 12, 12, 12, 12, 12, 12, 5, 19, 30, 5.5, 38, 25, 3.7, 
9, 30, 13, 30, 30, 26, 30, 30, 1, 26, 22, 10, 9.7, 11, 24.1, 33, 17.2, 27, 24, 27, 21, 28, 30, 4, 46, 
29, 3.7, 2.7, 8.1, 19, 16} 

We select from them the data that are between 0 and 10, that are: 

6:2,4:4,3:4,9:4,2:1,4:4,3:1,4:5,5:1,4,3:2,4:5,5,5:5,3:7,9,1,9:7,4,3:7,2:7,8:1: 

From this, the absolute frequency of the first class, that is, the number of data in 

the class, is: 

f 5 = n5 = 22 

We write a 5 in the subindex of the class because it is the mark of the class and the 

number that defines it. 

If we do the same for the rest of the classes, we have: 

f 15 = 14, f 25 = 20, f 35 = 16, f 45 = 1 

To calculate the relative frequencies, we must divide the value of the absolute 

frequency of each class by the total number of data, as is pointed out in the equation 

fri = 
ni 
n
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where 

n= 

j 

i= 1 

ni 

That, in this case, is 

n= 

j 

i= 1 

ni = 22þ 14þ 20þ 16þ 1= 73 

Consequently, the relative frequency of the first class is 

fr1 = 
22 

73 
= 0:3 

If we do the same for the rest of the classes, we have: 

fr15 = 0:19, fr25 = 0:27, fr35 = 0:22, fr45 = 0:01 

and j is the total number of observations with different values. It is important to 

consider that the sum of the relative frequencies of the observed data is equal to 1, 

j 

i= 1 

fri = 1 

That, in our case, is 

j 

i= 1 

fri = 0:3 þ 0:19 þ 0:27þ 0:22 þ 0:01 ffi 1 

It is not exactly one by the rounded but it is correct. 

For the cumulative absolute frequency 

fc1 = 22 

fc2 = 

2 

i= 1 

f i = f 1 þ f 2 = 22 þ 14= 36 

For the rest: 

fc3 = 56, fc4 = 72, fc5 = 73 

fc5 = 73 verify that it is equal to the total number of data.
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For the cumulative relative frequency 

frc1 = 0:3 

frc2 = 

2 

i= 1 

fri = fr1 þ fr2 = 0:3þ 0:19= 0:49 

For the rest: 

fc3 = 0:76, fc4 = 0:98, fc5 = 0:99 

fc5 = 0.99 verify that it is equal to one. 

Frequency Distribution 

A frequency distribution is the set formed by all the pairs made up of each different 

value of the observed data and its frequency, the frequency that forms the pair being 

any of the views in the previous definitions. It will be called with whatever type of 

frequency it is, for example, if it is the absolute frequency, it will be called absolute 

frequency distribution and the same for the rest of the types of frequencies seen, both 

for discrete data and for data groupings. Frequency distributions are usually given as 

the pair formed by each different value and its frequency for discrete qualitative and 

quantitative data and as the pair formed by each data interval, or equivalence class, 

defined in the set of observations, and their frequency for continuous quantitative 

data, although intervals with discrete quantitative data can also be used. 

To see an example of a frequency distribution, we use the absolute and relative 

frequency of the number of different subjects in which each of the students is 

enrolled. Those relative and absolute frequencies are: 

f 1 = 14, f 2 = 15, f 3 = 13, f 4 = 10, f 5 = 12, f 6 = 4, f 7 = 3 

fr1=0,20, fr2=0,21, fr3=0:18, fr4=0:14, fr5=0:17, fr6=0:06, fr7=0:04 

The values are: 

x1 = 3, x2 = 4, x3 = 5, x4 = 6, x5 = 7, x6 = 8, x7 = 9 

Consequently, the frequency distributions are: 

For the absolute frequency: 

3, 14ð  Þ,  4, 15ð  Þ,  5, 13ð  Þ,  6, 10ð  Þ,  7, 12ð  Þ,  8, 4ð  Þ,  9, 3ð  Þ
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For the relative frequency: 

3,0:20ð Þ, 4, 0:21ð Þ, 5, 0:18ð Þ, 6, 0:14ð Þ, 7, 0:17ð Þ, 8, 0:06ð Þ, 9, 0:04ð Þ  

Mode 

Once the frequency analysis has been carried out, the data of the variable being 

analysed are better known, and from said first analysis, a first approximation can be 

made in the search for a value that can represent the entire data set. The reason is that 

when you have a significant amount of data, the enumeration of all the different 

values and their frequencies, although it allows us to better understand the variable, 

can also give us a very broad set of different values, so one of the fundamental 

objectives of data description is to explore the possibility of finding a value that can 

represent the set as a whole. The first concept defined in order to try to represent the 

entire set of observed data on which the statistical analysis is being carried out and 

therefore to be able to assign a single value to the variable on which said data have 

been observed is the Mode. 

The Mode is the most frequently observed value, that is, the value whose absolute 

frequency, fi, is greater than those of the other values. The mode is not always 

unique; if the sample has two modes, it is bimodal; if it has three modes, it is 

trimodal; if it has more, the concept begins to lose its meaning as a representative of 

the data. The mode is a value that can be obtained for both qualitative and quanti-

tative, discrete, and continuous data; for logical data, this value has no application 

since there are only two different values. 

In the case of non-grouped data, the calculation of the mode consists solely of 

calculating the absolute frequencies and identifying the data with a higher frequency 

and calling it the mode of the set of observations, but when the data are grouped in 

equivalence classes, the calculation is more complicated. When there are intervals, 

the mode will be a value that will be in the interval in which the absolute frequency 

divided by the amplitude is greater. To calculate it, we start from the basis that said 

value will be closer to, of the two intervals contiguous to the interval in which the 

mode is, the upper and the lower, the one that has a higher frequency–amplitude ratio 

for different amplitudes or a higher frequency for equal amplitudes. From this 

conclusion, the following hypothesis is established: the ratio of the distances of 

the mode to the intervals contiguous to the one in which it is found is inversely 

proportional to the ratio of absolute frequencies of said intervals if the intervals are of 

equal amplitude. If the intervals are of different amplitudes, the ratio is inversely 

proportional to the ratio of absolute frequencies of said intervals divided by their 

amplitudes. 

Considering the hypothesis stated in the previous paragraph, if i is the interval 

with the highest frequency in which the mode is found, fi - 1 is the frequency of the 

interval adjacent to i on its left and fi +  1  is the frequency of the interval adjacent to 

i on its right. If we assume that fi - 1 > fi +  1, that di - 1 is the distance from the mode
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value mo to the interval i - 1 and ai - di - 1 is the distance from mo to the interval 

i + 1, where ai is the width of the interval i in which the mean lies, then: 
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di- 1 

ai - di- 1 
= 

f iþ1 

f i- 1 

→ di- 1f i- 1 = f iþ1 ai - di- 1ð Þ→ 

di- 1f i- 1 = f iþ1ai - f iþ1di- 1Þ→ 

di- 1f i- 1 þ f iþ1di- 1 = f iþ1ai → 

di- 1 = 
f iþ1 

f i- 1 þ f iþ1 

ai → 

Consequently, if lsi- 1 
is the upper limit of the interval i - 1, the value of the 

mode is: 

mo= lsi- 1 
þ f iþ1 

f i- 1 þ f iþ1 

ai 

If the intervals have the same amplitude and if they do not, then the equation for 

calculating the mode is: 

mo= lsi- 1 
þ 

f iþ1 

aiþ1 

f i- 1 

ai- 1 
þ f iþ1 

aiþ1 

ai 

This equation of the mode is derived as the first one by changing fi + 1  and fi - 1 

by 
f iþ1 

ai 1 
and 

f i- 1 

ai 1 
in the starting equation.

þ 

For the mode we are going to see three examples, one for the data of the number 

of different subjects in which each one of the students described in the previous 

sections are enrolled in the academic course first semester: {6, 8, 7, 6, 4, 4, 4, 4, 3, 

3, 3, 7, 5, 9, 6, 4, 4, 5, 4, 8, 4, 6, 3, 5, 5, 4, 3, 5, 5, 6, 4, 7, 7, 7, 7, 5, 9, 3, 5, 8, 5, 7, 9, 

3, 3, 3, 3, 6, 3, 3, 1, 6, 6, 7, 7, 5, 4, 3, 7, 7, 4, 7, 5, 8, 3, 4, 4, 6, 5, 5, 4, 5, 6}. The 

different values are: 

x1 = 3, x2 = 4, x3 = 5, x4 = 6, x5 = 7, x6 = 8, x7 = 9: 

Their frequencies are: 

f 1 = 14, f 2 = 15, f 3 = 13, f 4 = 10, f 5 = 12, f 6 = 4, f 7 = 3: 

Analysing them, we observe that the value with more data is x2 = 4, 15 data, and 

in consequence, this set of data has a mode of 4, but since the value x1 = 3 has 

14 data, and the value x3 = 5 has 13 data, that is too close we could say that we have 

a trimodal set of data, with a mode of 3, 4, 5.
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The second example is for the data of the distances of the students to the 

University 16.5, 34.8, 20.7, 6.2, 4.4, 3.4, 24, 24, 32, 30, 33, 27, 15, 9.4, 2.1, 

34, 24, 12, 4.4, 28, 31.4, 21.6, 3.1, 4.5, 5.1, 4, 3.2, 25, 4.5, 20, 34, 12, 12, 12, 12, 

5, 19, 30, 5.5, 38, 25, 3.7, 9, 30, 13, 30, 30, 26, 30, 30, 1, 26, 22, 10, 9.7, 11, 24.1, 

33, 17.2, 27, 24, 27, 21, 28, 30, 4, 46, 29, 3.7, 2.7, 8.1, 19, 16) 

The mode is the value 30 with an absolute frequency of 8. 

And the third example is for the grouped data of the distances, if we take absolute 

frequencies of that data, we have: 

f 5 = 22, f 15 = 14, f 25 = 20, f 35 = 16, f 45 = 1: 

We write a 5 in the subindex of the class because it is the mark of the class and the 

number that defines it. 

Analysing them, we observe that the class with more data is [0,10], 22 data, and in 

consequence this set of data has a mode of 5, which is the mark of the interval, but 

since the class [20,30] has 20 data, that is too close we could say that we have a 

bimodal set of data, with a mode of 5 and 25. The last number is the mark of the 

interval [20,30]. 

Mean 

As explained when the concept of Mode has been defined, one of the main objectives 

to be achieved when performing a descriptive analysis of observed data of a variable 

is to try to find a value that summarizes the set. Obtaining the mode is the first 

approximation that is usually made in the search for said value, but not the only one, 

we are now going to see another of the values calculated in order to obtain a 

representative of the data that is being analysed, such as is the Mean. In this 

subsection, we are going to see its different definitions and the related concepts of 

variance and standard deviation. 

Definition of Mean 

When you have a data set of a quantitative statistical variable, you can define a single 

measure that can represent the whole set, in such a way that it is not necessary to list 

all the data to know what data are being treated but it is enough to give only the data 

that represent them. One of the more known of these measures is called the Mean. 

The Mean can be defined as follows: “Number that results when carrying out a 

certain series of operations with a set of numbers and that, under certain conditions, 

can represent the entire set by itself. It receives different names according to the 

operations carried out to obtain it, such as arithmetic mean, geometric mean, etc. 

Arithmetic. Quotient of dividing the sum of several quantities by their number. 

Quadratic. Given the fluctuations of a magnitude, it is called the square root of the



quotient of dividing the sum of the squares of the fluctuations by their number. 

Geometric. Nth root of the product of numbers. Weighted. Result of multiplying 

each of the numbers in a set by a particular value called its weight, adding the 

quantities thus obtained, and dividing that sum by the sum of all the weights. 

Proportional. Geometric mean of two numbers.” 
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From this definition, we can conclude the following:

• First, the objective sought when calculating the mean is to represent all the data 

by means of a single value, which will be something like the fact the mean and the 

mode are included within a group of measures called central measures of 

said data.

• Second, there are many ways to calculate the mean. We are going to see in this 

section of the lesson the most commonly used, the arithmetic mean, but in the last 

part of the lesson the rest of the means will be studied in depth, depending on the 

type of analysis we are carrying out, we will have to use a kind of mean or other. 

To finish this introduction to the concept of mean, it is interesting to know that the 

invention of the Arithmetic, Geometric, and Harmonic39 mean is usually attributed 

to the Greek philosopher Pythagoras (570–500 BC), but there are documents that 

prove the use of these three means by different civilizations many years before the 

birth of Pythagoras; for example, the first documents on the use of the arithmetic 

mean were written around the year 7290 BC. It belongs to the Babylonian civiliza-

tion, and it is written in cuneiform language. They describe the calculation of the area 

of a trapezoid, with two opposite sides of equal length and two opposite sides of 

different lengths, as the product of the arithmetic mean of the length of the sides of 

different lengths by the length of one from the two other sides. 

Arithmetic Mean 

The Arithmetic Mean, x, or  xa, of a set of data obtained in n observations is obtained 

by adding the values of all those data, xi, and dividing the result by n. Consequently, 

the equation to calculate the arithmetic mean is.40 Of n data of a variable is: 

x= 

n 

i= 1 

xi 

n 

If the definition of absolute frequency seen above is used, the arithmetic mean can 

be defined using not all the data that we have but all the different data that we have, 

which we call x′j, and their absolute frequencies. As we have n observed values, we 

have used i as a subscript to differentiate them, and i will go from 1 to n, and of those

39 The last two ones will be introduced at the end of the lesson. 
40 In statistics texts, it is also called Average.



n observed values, we will have m different values to differentiate them from all. For 

the values we have used x′ , which refers to the x whose value is different for each one 

of them, and the subscript j, which will go from 1 to m. If we use x′ for each different 

data point and its frequency fj, we can define the arithmetic mean as:
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x= 

m 

j= 1 

f j:xj 

m 

j= 1 

f j 

As we know from the definition of the accumulated absolute frequency, the sum 

of the absolute frequencies of all the different observed elements is equal to the total 

number of observed elements, so in the definition equation of the mean we have 

substituted n times 
m 

j= 1 

f j, but n could have been left, and from this conclusion, we 

can obtain a third equation to define the arithmetic mean, and that, from the 

definition of relative frequency that we know, if we divide each of the absolute 

frequencies of the m different values that we have by the total number of data n that 

we have, what we obtain is the relative frequency.41 Of each of the m different values 

that we have, we can define the arithmetic mean as: 

x= 

m 

j= 1 

f j:x ′ j 

m 

j= 1 

f j 

= 

m 

j= 1 

f j:x ′ j 

n 
= 

m 

j= 1 

f j 

n 
x ′ j 

Therefore, we can define the arithmetic mean as: 

x= frj:x ′ j 

When data are being analysed for which intervals or equivalence classes have 

been defined, the x′j will be the marks of each class mc and their frequencies, 

absolute or relative, those calculated for each of them. 

If weights wi are used, the equation of calculus for the arithmetic mean is: 

41 It could also be the weight, in the case that weights or values that reflect a different importance are 
used for different observations, even if the value is observed the same number of times. The weight 
or relative importance given to each piece of information is usually represented by a w. This mean in 
some texts is called weighted mean.
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x= 

n 

i= 1 

wixi 

n 

i= 1 

wi 

For the arithmetic mean, we use the example of the distances between the homes 

of the students and the University. We remember that the data are {16.5, 34.8, 20.7, 

6.2, 4.4, 3.4, 24, 24, 32, 30, 33, 27, 15, 9.4, 2.1, 34, 24, 12, 4.4, 28, 31.4, 21.6, 3.1, 

4.5, 5.1, 4, 3.2, 25, 4.5, 20, 34, 12, 12, 12, 12, 5, 19, 30, 5.5, 38, 25, 3.7, 9, 30, 13, 30, 

30, 26, 30, 30, 1, 26, 22, 10, 9.7, 11, 24.1, 33, 17.2, 27, 24, 27, 21, 28, 30, 4, 46, 

29, 3.7, 2.7, 8.1, 19, 16} 

We calculate the mean for all the data without groups and grouped. 

For all the data, the arithmetic mean is: 

xa = 

73 

i= 1 

xi 

n 
= 

16:5þ 34:8þ . . .þ 19þ 16 
73 

= 
1353 

73 
= 18:53 

Since some of the data are repeated, if we use their frequencies, we have: 

xa = 

47 

j= 1 

f jxj 

47 
j= 1f j 

= 

1:1þ . . .  þ 2:3, 7þ . . .þ 8:30þ . . .þ 1:46 
Fn 

47 
j= 1f j = 1þ . . .þ 2þ . . .þ 8þ . . .þ 1= 73 

xa = 
1353 

= 18:53 

Now, we are going to calculate the arithmetic mean with the data grouped in the 

classes defined in the previous exercise. 

xa = 

5 

j= 1 

f jxj 

5 
j= 1f j 

= 

22:5þ 14:15 þ 20:25þ 16:35þ 1:45 
5 
i= 1f j 

5 
i= 1f i = 22þ 14þ 20þ 16þ 1= 73 

xa = 
1425 

73 
= 19:52 

Variance and Standard Deviation 

Whenever we have a set of observed quantitative data on which we are performing a 

statistical analysis, it is possible to calculate its arithmetic mean by applying the 

equations seen above, and once calculated, there is a single value that, in theory,



represents everyone. However, it is possible that the mean is just a calculated value, 

but it does not serve its purpose of being a value that represents the data set. This can 

be due to different reasons, including for example, that the data values are widely 

separated from each other or that there is one or more values that are very far from 

the rest. Consequently, it is essential to have a value that allows us to know if the 

arithmetic mean can be considered a representative of the data or if it is simply a 

calculated number without any meaning. 
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The measures of dispersion42 allow us to solve this problem because they allow 

us to know how the values of the sample are distributed around values such as the 

mean or the median, which are intended to represent the sample as a whole. If the 

dispersion values are high, the summary values of the sample will have little or no 

meaning, so every measure of the mean or median must always have its dispersion 

value associated with it.43 Next, in each of the following, the different existing 

measures to obtain the absolute dispersion will be described. 

In addition to the absolute spread, the relative spread is also obtained by calcu-

lating the quotient between the absolute spread and the value used to summarize the 

data. In the case in which the absolute dispersion has been calculated with the 

standard deviation and the summary measure of the data is the mean, the relative 

deviation is called the variation coefficient44 and is calculated using the equation: 

cv= 
s 

x 

where x is the arithmetic mean and s is the absolute dispersion, usually measured 

using the standard deviation, a measure that we will see later in this lesson. 

The first absolute dispersion measure that we are going to introduce is the 

variance, which will obtain the bonanza of the arithmetic mean as representative 

of the data set through the calculation of the arithmetic mean of the square of what is 

called deviation from the entire data set to its arithmetic mean, and if the value 

obtained is high, it means that the data are far from the mean and its value is not valid 

as a representative of the set. Consequently, to calculate the variance, the first thing 

we have to calculate is the deviation of each data point with respect to the arithmetic 

mean calculated for the data set, which is done simply by obtaining the distance of 

each data point with respect to the mean, 

42 The term dispersion means: Statistical distribution of a set of values. 
43 This is not something that always happens, especially in the media, such as TV or newspapers, 
where they usually use only the media to make value judgements that, in many cases, do not make 
any sense. 
44 The variation coefficient is also measured as a percentage, using the equation: 

cv= 100 
s 

x
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xi - x 

then we square the result of said subtraction, 

xi - xð Þ2 

The reason for doing this is that in the data set, some of them will be greater than 

the mean xi > x and other minor ones xi < x for which they would be compensated 

and the variance would always be zero and it would not make sense to calculate it, 

when raising all the subtractions to the square, they all add up and the problem 

disappears. Later in the lesson, we will see the properties of the arithmetic mean, and 

we will see the demonstration that the sum of the deviations of the values of a set 

with respect to its mean is zero. Once all the squares of all deviations have been 

obtained, we obtain their arithmetic mean, which, as we know, will consist of adding 

all the values and dividing it by the number of data we have. According to all of the 

above, the equation for calculating the variance is: 

s2 = 

n 
i= 1 xi - xð Þ2 

n 

This equation for calculating the variance would be valid when applied to all the 

observed values of the set, but following the same reasoning that we follow when we 

define the arithmetic mean, if we apply what we have learned about frequencies in 

the first part of the lesson, we can work not on all the observed values but only on the 

different observed values, x′j, and their frequencies, absolute and relative, in which 

case we can obtain, as was the case for the mean, two new equations for calculating 

the variance, the first one using absolute frequencies, fj, and that is: 

s2 = 

m 
j= 1f j x0j - x 

2 

m 
j= 1f j 

The second one uses relative frequencies, frj, that is: 

s2 = 
m 

j= 1 
frj x0j - x 

2 

Once we know what the variance is and its meaning and use, we can see 

immediately that to avoid the problem with the sum of positive and negative 

distances between the points and the mean, we have used the square of the differ-

ences, but it is impossible to compare the variance with the mean because the units of 

the variance are the squared units of the mean. To solve this problem, a new 

magnitude is defined, the standard deviation that will be presented next. 

For the variance, we use the example of the distances between the homes of the 

students and the University. We remember that the data are {16.5, 34.8, 20.7, 6.2, 

4.4, 3.4, 24, 24, 32, 30, 33, 27, 15, 9.4, 2.1, 34, 24, 12, 4.4, 28, 31.4, 21.6, 3.1, 4.5,



Þ

5.1, 4, 3.2, 25, 4.5, 20, 34, 12, 12, 12, 12, 5, 19, 30, 5.5, 38, 25, 3.7, 9, 30, 13, 30, 

30, 26, 30, 30, 1, 26, 22, 10, 9.7, 11, 24.1, 33, 17.2, 27, 24, 27, 21, 28, 30, 4, 46, 

29, 3.7, 2.7, 8.1, 19, 16}. 
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According to the equation, the variance is: 

s2 = 

n 
i= 1 xi - xð Þ2 

n 
= 

16:5- 18:53ð Þ2 þ 34:8- 18:53ð Þ2 þ . . .þ 16- 18:53ð 2 

73 

= 
9209:59 

73 
= 126:16 

Since some of the data are repeated, if we use their frequencies, we have: 

s2 = 

47 
j= 1f j x0j - x 

2 

47 
j= 1f j 

= 

4:12 þ 264:71þ . . .þ 6:4 
Fn 

47 
j= 1f j = 1þ 1 þ . . .þ 1= 73 

s2 = 
9209:59 

73 
= 126:16 

The standard deviation measures the same as the variance and uses the same 

principle, the distances between the values in the set that is being analysed and their 

mean, but as a difference from the variance, the measurement unit is the same as the 

mean, not its squared value, to obtain the equation used: 

s= 

n 
i= 1 xi - xð Þ2 

n 

Using the same principle as in the mean and in the variance definitions, if we use 

the frequencies, absolute and relative, we have the following equations: 

Using the absolute frequency: 

s= 

m 
j= 1f j x0j - x 

2 

m 
j= 1f j 

The second one uses relative frequencies, frj, that is: 

s= 
m 

j= 1 
frj x0j - x 

2
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That, if it is compared with the variance, it can be seen that it is the squared root 

of the variance or, on the contrary, the variance is the square of the standard 

deviation. 

s= s2
p 

ors2 = (s)2 

For notation, it is commonly accepted to call the standard deviation for the 

sample45 as s. 

If we use the definition of the standard deviation with the absolute frequency 

and the square inside the summatory is developed, we have the following equation: 

s= 

m 

j= 1 

f i x
2 
j þ x2 - 2xjx 

m 

j= 1 

f j 

= 

m 

j= 1 

f ix
2 
j þ x2 

m 
j= 1f j - 2x 

m 
j= 1f jxj 

m 

j= 1 

f j 

= 

m 

j= 1 

f jx
2 
j 

n 

i= 1 

f i 

þ x2 
m 
j= 1f j 
m 

j= 1 

f j

- 2x 

m 
j= 1f jxj 
m 

j= 1 

f j 

= =  

m 

j= 1 

f jx
2 
j 

n 

i= 1 

f i 

þ x2 :1- 2x:x 

= 

n 

i= 1 

f ix
2 
i 

n 

i= 1 

f i

- x2 = =  

n 

i= 1 

f ix
2 
i 

n 

i= 1 

f i

-

n 
i= 1f ixi 
n 

i= 1 

f i 

2 

As seen, this equation can be calculated directly from the measured data; how-

ever, in the previous equation, it was necessary to previously calculate the mean but 

in this last equation, it is not necessary because the standard deviation is equal to the 

mean of the squares minus the square of the mean. 

For the standard deviation, we use the example of the distances between the 

homes of the students and the University. We remember that the data are {16.5, 34.8, 

20.7, 6.2, 4.4, 3.4, 24, 24, 32, 30, 33, 27, 15, 9.4, 2.1, 34, 24, 12, 4.4, 28, 31.4, 21.6, 

3.1, 4.5, 5.1, 4, 3.2, 25, 4.5, 20, 34, 12, 12, 12, 12, 5, 19, 30, 5.5, 38, 25, 3.7, 9, 30, 

13, 30, 30, 26, 30, 30, 1, 26, 22, 10, 9.7, 11, 24.1, 33, 17.2, 27, 24, 27, 21, 28, 30, 

4, 46, 29, 3.7, 2.7, 8.1, 19, 16}. 

According to the equation, the standard deviation is: 

45 We will see the difference in notation between the sample and the population later in this lesson.
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s= 

47 

i= 1 

f ix
2 
i 

47 

i= 1 

f i

-

47 
i= 1f ixi 
47 

i= 1 

f i 

2 

= 
272:25 þ 1211:04þ . . .þ 256 

73
-

16:5 þ 34:8þ . . .þ 16 
73 

2 

= 11:23 

Median 

In neither of the previous steps performed to have a better understanding of the set of 

data that has been analysed, the frequency, to know the degree of importance of each 

one of the observed values; and the analysis and the mean, to know if we can find a 

value that could represent all the values in the whole set, we have not needed to order 

in no manner the observed values. However, if we order the observed values from 

the lowest to the highest, we can use a new set of parameters to describe the set of 

data, which can give new, and in many cases more interesting, information about the 

set of data. For that reason, from now all the concepts introduced, that will be the 

range, the median, the quantiles, and the quantiles range, will be applied to an 

ordered, by the value of the data, from the lowest to the highest, set of a quantitative 

characteristic. 

We are going to use the example of the distances between the homes of the 

students and the University. We remember that the data are {16.5, 34.8, 20.7, 6.2, 

4.4, 3.4, 24, 24, 32, 30, 33, 27, 15, 9.4, 2.1, 34, 24, 12, 4.4, 28, 31.4, 21.6, 3.1, 4.5, 

5.1, 4, 3.2, 25, 4.5, 20, 34, 12, 12, 12, 12, 5, 19, 30, 5.5, 38, 25, 3.7, 9, 30, 13, 30, 

30, 26, 30, 30, 1, 26, 22, 10, 9.7, 11, 24.1, 33, 17.2, 27, 24, 27, 21, 28, 30, 4, 46, 

29, 3.7, 2.7, 8.1, 19, 16}. 

According to the above explanation, the values must be ordered: {1, 2.1, 2.7, 3.1, 

3.2, 3.4, 3.7, 3.7, 4, 4, 4.4, 4.4, 4.5, 4.5, 5, 5.1, 5.5, 6.2, 8.1, 9, 9.4, 9.7, 10, 11, 12, 12, 

12, 12, 12, 13, 15, 16, 16.5, 17.2, 19, 19, 20, 20.7, 21, 21.6, 22, 24, 24, 24, 24, 24.1, 

25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 30, 30, 30, 30, 30, 31.4, 32, 33, 

33, 34, 34, 34.8, 38, 46} 

Once we have the set of data that we are analysing ordered by its values, the first 

magnitude that we can obtain to know them better is the range.
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Range 

The Range46 provides a measure of the difference in value between two data points 

belonging to the sample located in the orders chosen for each one of them. If only 

called a range, the range measure provides the difference between the largest and 

smallest values in the sample. In another case, the data positions for which you want 

to obtain the range will be defined, thus, the interquartile range provides the 

difference between the values located in the third and first quartiles, or there is 

other specific range definition as interpercentile range or interdacile range, we will 

come back over them when the quantiles were explained. 

For the range, we use the example of the distances between the homes of the 

students and the University. We remember that the ordered data are: {1, 2.1, 2.7, 3.1, 

3.2, 3.4, 3.7, 3.7, 4, 4, 4.4, 4.4, 4.5, 4.5, 5, 5.1, 5.5, 6.2, 8.1, 9, 9.4, 9.7, 10, 11, 12, 12, 

12, 12, 12, 13, 15, 16, 16.5, 17.2, 19, 19, 20, 20.7, 21, 21.6, 22, 24, 24, 24, 24, 24.1, 

25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 30, 30, 30, 30, 30, 31.4, 32, 33, 

33, 34, 34, 34.8, 38, 46}. 

Since the range is calculated as the difference between the highest and the lowest 

values, in this case, the range is equal to 45 km (46 minus 1). 

Median 

The most important magnitude applied over the ordered set of values observed for 

the characteristic that it has been analysed is the Median, that is because as happened 

with the Mean, the value of the Median is intended that was the representative of the 

whole set, and in although it is, in the non-specialized data analysis world, less 

known and used than the mean, in many cases the Median is a better representative 

of the whole set than the mean. 

The median, which can be defined as: “Element of an ordered series of increasing 

values in such a way that it divides it into two equal parts, higher and lower than it.”. 

Allows us to obtain the central value of the data ordered according to its magnitude. 

Consequently, once the data have been sorted by magnitude, the median is calcu-

lated as follows:

• For an even number of data is the sum of the two central values divided by 2. 

~x= 

xn=2 þ x n=2ð Þþ1 

2

• For an odd number of data points, the median is the centre value. 

46 The term range means: Amplitude of the variation of a phenomenon between a clearly specified 
lower and a higher limit.
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~x= x nþ1ð Þ=2 

The reason to try to find the median value is because if it is the central value, it can 

make this value a good representative of the whole set, and the reason that it can be a 

better representative than the mean is because the calculation of its value is not 

affected, which can be shown in the calculation equations by the value of the more 

extreme, lower or higher data in the set, as happens with the calculation of the mean. 

For the median, we use the example of the distances between the homes of the 

students and the University. We remember that the ordered data are: {1, 2.1, 2.7, 3.1, 

3.2, 3.4, 3.7, 3.7, 4, 4, 4.4, 4.4, 4.5, 4.5, 5, 5.1, 5.5, 6.2, 8.1, 9, 9.4, 9.7, 10, 11, 12, 12, 

12, 12, 12, 13, 15, 16, 16.5, 17.2, 19, 19, 20, 20.7, 21, 21.6, 22, 24, 24, 24, 24, 24.1, 

25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 30, 30, 30, 30, 30, 31.4, 32, 33, 

33, 34, 34, 34.8, 38, 46}. 

Since there are 73 values in the data set, which is an odd number, the median is 

obtained as the centre value of the data set. Therefore, in this case, the median is: 

~x= x 73þ1ð Þ=2 = x37 = 20 

To see an example about the calculation of the median for an even number of 

data, we suppose that one of the students, the first one, whose distance to the 

university is 1, changes the university and goes to another one. In this case, we 

have 72 data points, starting with 2.1. 

Since now there are 72 values in the data set, and this is an even number, the 

median is obtained as the median of the two central values. Therefore, in this case, 

the median is: 

~x= 

xn=2 þ x n=2ð Þþ1 

2 
= 

x73=2 þ x 73=2ð Þþ1 

2 
= 

x36 þ x37 
2 

= 
20 þ 20:7 

2 
= 20:35 

Quantiles 

Once the Median has been introduced and is has been seen that the value that divides 

the whole set in two equal parts can have meaning and a use, the question that 

immediately arises is that perhaps to find other values, as the three values that divide 

the whole set in four equal parts, or other divisions of the ordered set values, can 

have meaning and use too. The answer is yes, that happens, and the consequence is 

the definition of the quantiles of the ordered set of observed values that is being 

analysed. 

The quantiles allow us to obtain which of the data we have are in the final stages 

when we have the data ordered by magnitude, to those three main quantiles have 

been defined:



4½ ]

• Quartiles can be defined as a value that divides the ordered set of observed data 

into four parts with the same number of observations in each part. Consequently, 

there are three quartiles. The first quartile is the value that left 25% of the values 

below it, that is, they are lower than it, and 75% of the values are greater than 

it. With this definition, it is easy to conclude that the second quartile is the 

median. The third quartile is the value that leaves 75% of the values below it, 

that is, they are lower than it, and 25% of the values are greater than it. 
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The equations to calculate the quartiles are: 

~xc = x 
nc 
4½ ]þ1 sin 

c 

4 
=2ℕ 

~xc = 

xnc 
4
þ xnc 

4
þ1 

2 
sin 

c 

4 
2 ℕ 

where n is the number of data in the set, and c is the number of quartiles, which 

can be 1, 2, or 3 for the first, second, or third quartiles, respectively. 

For the quartiles, we use the example of the distances between the homes of the 

students and the University. We remember that the ordered data are: {1, 2.1, 2.7, 3.1, 

3.2, 3.4, 3.7, 3.7, 4, 4, 4.4, 4.4, 4.5, 4.5, 5, 5.1, 5.5, 6.2, 8.1, 9, 9.4, 9.7, 10, 11, 12, 12, 

12, 12, 12, 13, 15, 16, 16.5, 17.2, 19, 19, 20, 20.7, 21, 21.6, 22, 24, 24, 24, 24, 24.1, 

25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 30, 30, 30, 30, 30, 31.4, 32, 33, 

33, 34, 34, 34.8, 38, 46}. 

Since there are 73 values in the data set, which is an odd number, the quartiles are 

obtained by applying the first equation as follows: 

~xc = x 
nc 4½ ]þ1 

For the first quartile, c is equal to 1: 

~x1 = x 731 
4½ ]þ1 = x19 = 8:1 

For the second quartile, c is equal to 2, and its value is the median: 

~x2 = 20 

For the third quartile, c is equal to 3: 

~x3 = x 733 þ1 = x55 = 28 

For grouped data, the calculation equation is:



g

g
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~xc = li- 1 þ n 
c 
4
-

i- 1 
i= 1ni 

ni 
:ai 

where ni is the number of data in the interval; c is the number of quartiles, which 

can be 1, 2, or 3 for the first, second, or third quartiles, respectively; li - 1 is the 

limit of the previous interval; and ai is the amplitude of the interval. 

Following the same example, for grouped data, we can consider that all the 

classes have the same amplitude, 10, so the classes will be: 

0, 10½ Þ, 10, 20½ Þ, 20, 30½ Þ, 30, 40½ Þ, 40, 50½ Þ  

Therefore, we have the following set of data in each class: 

010½ = 1, 2:1, 2:7, 3:1, 3:2, 3:4, 3:7, 3:7, 4, 4, 4:4, 4:4, 4:5, 4:5,f 
5, 5:1, 5:5, 6:2, 8:1, 9, 9:4, 9:7g 

10, 20½ Þ= 10, 11, 12, 12, 12, 12, 12, 13, 15, 16, 16:5, 17:2, 19, 19f  
20,30½ Þ=f20,20:7,21,21:6,22,24,24,24,24,24:1,25,25,26 

26,27,27,27,28,28,29g 
30, 40½ Þ= 30, 30, 30, 30, 30, 30, 30, 30, 31:4, 32, 33, 33, 34, 34, 34:8, 38f  
40, 50½ Þ= 46f g  

If we apply the previous equation to obtain the first quartile, c is equal to 1, n is 

equal to 73, and the amplitude of every class is 10: 

~x1 = li- 1 þ 73
1 
4
-

i- 1 
i= 1ni 

ni 
:10

• Deciles can be defined as the values that divide the ordered set of observed data 

into ten parts with the same number of observations in each part. Consequently, 

there are nine deciles. The first decile is the value that leaves 10% of the values 

below it, that is, they are lower than it, and 90% of the values are greater than it. 

The equations to calculate the deciles are: 

~xd = x 
n d 
10½ ]þ1 sin 

d 

10 
=2ℕ 

~xd = 

xn d 
10 
þ xn d 

10
þ1 

2 
sin 

d 

10 
=2ℕ 

where n is the amount of data in the set, and d is the number of deciles, which can 

be 1, . . ., 9, for the first to the nine.
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For grouped data, it is not used to calculate the deciles, but in the case that is 

wished to do it, the same equation than with quartiles can be used, only changing 

the c for the d and the 4 for a 10, in the equation. 

For the deciles, we use the example of the distances between the homes of the 

students and the University. We remember that the ordered data are: {1, 2.1, 2.7, 3.1, 

3.2, 3.4, 3.7, 3.7, 4, 4, 4.4, 4.4, 4.5, 4.5, 5, 5.1, 5.5, 6.2, 8.1, 9, 9.4, 9.7, 10, 11, 12, 12, 

12, 12, 12, 13, 15, 16, 16.5, 17.2, 19, 19, 20, 20.7, 21, 21.6, 22, 24, 24, 24, 24, 24.1, 

25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 30, 30, 30, 30, 30, 31.4, 32, 33, 

33, 34, 34, 34.8, 38, 46}. 

Since there are 73 values in the data set, which is an odd number, the deciles are 

obtained by applying the first equation as follows: 

~xd = x 
n d 
10½ ]þ1 

For the first decile, d is equal to 1: 

~x1 = x 73 1 
10½ ]þ1 = x8 = 3:7 

For the second decile, d is equal to 2: 

~x2 = x 73 2 
10½ ]þ1 = x15 = 5 

For the rest, we have the following results: 

~x3 = x22 = 9:7 

~x4 = x30 = 13 

~x5 = x37 = 20 

~x6 = x44 = 24 

~x7 = x52 = 27 

~x8 = x59 = 30 

~x9 = x66 = 32

• Percentiles can be defined as the values that divide the ordered set of observed 

data into one hundred parts with the same number of observations in each part. 

Consequently, there are ninety percentiles; the first one is the value that leaves 1% 

of the values below it, that is, they are lower than it, and 99% of the values are 

greater than it.
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The equations to calculate the percentiles are: 

~xp = x 
n 

p 

100½ ]þ1 sin 
p 

100 
=2ℕ 

~xp = 

xn p 
100 

þ xn p 
100

þ1 

2 
sin 

p 

100 
=2ℕ 

where n is the number of data in the set, and p is the number of percentiles, 

which can be 1, . . ., 99, for the first to the ninety-nine data points. 

For grouped data, the same equation as with quartiles can be used, only 

changing c for p and 4 for a 100 in the equation. 

For the percentiles, we are going to use the example of the distances between the 

homes of the students to the University.We remember that the ordered data are: {1, 2.1, 

2.7, 3.1, 3.2, 3.4, 3.7, 3.7, 4, 4, 4.4, 4.4, 4.5, 4.5, 5, 5.1, 5.5, 6.2, 8.1, 9, 9.4, 9.7, 10, 11, 

12, 12, 12, 12, 12, 13, 15, 16, 16.5, 17.2, 19, 19, 20, 20.7, 21, 21.6, 22, 24, 24, 24, 

24, 24.1, 25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 30, 30, 30, 30, 30, 31.4, 

32, 33, 33, 34, 34, 34.8, 38, 46}. 

Since there are 73 values in the data set, which is an odd number, the percentiles 

are obtained by applying the first equation as follows: 

~xp = x 
n 

p 

100½ ]þ1 

For the first percentile, p is equal to 1: 

~x1 = x 73 1 
100½ ]þ1 = x1 = 1 

For the percentile number 18, for example, p is equal to 18: 

~x18 = x 73 18 
100½ ]þ1 = x14 = 4:5 

Other examples of percentiles are as follows: 

~x39 = x29 = 12 

and 

~x52 = x38 = 20:7 

Quantiles Range 

Once the quantiles have been introduced, we can return to the concept of range 

applied to all of them, and the definitions are:



• Interquartile range: Rc=~x3=4 -~x1=4:

• Intercentile range: Rp=~x90=100 -~x10=100

• Interdecyl Range: Rd=~x9=10 -~x1=10 
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For data grouped in equivalence classes, the concept of data is changed to class. 

B. Computer-Based Solving 

This section starts with an introduction about what computer-based solving means, 

that is, the application of a systematic process of designing, implementing, and using 

programming tools to solve the data science subject treated in the lesson. 

In this section, in each lesson, the R environment will be used to solve the same 

cases that had been solved theoretically in the previous sections, and at the same 

time, the main features of the R environment will be introduced. In this lesson, R will 

be used for Computer R-based Data Description solving. 

In this lesson, as this section appears in the book for the first time, the section will 

start with an introduction of the R Project and the RGUI so that the reader becomes 

familiar with both of them before starting to use them.47 In future lessons, other basic 

knowledge of R, such as the R Packages or the R tool RStudio, will be introduced 

jointly with the first lesson that uses them. 

R Project 

The first page of the R Project reads “R is a language and environment for statistical 

computing and graphics.” 

The term “environment” is intended to characterize it as a fully planned and 

coherent system, rather than an incremental accumulation of very specific and 

inflexible tools, as is often the case with other data analysis software. 

R was initially written in 1993 by Robert Gentleman and Ross Ihaka, also known 

as “R & R”, from the Department of Statistics at the University of Auckland, 

New Zealand. R was inspired by language and environment S, which was developed 

based on Fortran in 1976 and first published in 1984 at Bell Labs (owned by AT&T, 

now Lucent Technologies) by John Chambers (and four contributors), who contrib-

uted in the early stages of R and later became a member of the core team. In 1988, the 

R core system was migrated to the C language, and the object-oriented development

47 In this point, we made a decision about if the R environment and the RGUI must be introduced 
here in the lesson or in an appendix, but finally was decided to leave them here to avoid that the 
reader must come and go, many times for this point to the end of the book and in consequence, 
improve the readability of the book.



paradigm was introduced. Since 1997, the development of R has been managed by 

the R Development Core Team, belonging to the R Foundation (Fundación R).
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The first instruction that we will introduce when we open the RGui, as a tribute to 

all those who developed and work on the R project, will be: 

> contributors ðÞ 

The R Foundation is a nonprofit organization that works in the public interest. It 

was founded by members of the R Development Core Team to:

• Provide support for the R project and other innovations in statistical computing, 

based on the belief that R has become a mature and valuable tool and conse-

quently ensures its continuous development, as well as the development of future 

innovations in software for statistical and computational research.

• Provide a point of reference for individuals, institutions, or commercial compa-

nies that want to support or interact with the R development community.

• Maintain and manage copyright of R software and documentation. 

R is  an official part of the GNU project of the Free Software Foundation, and the 

R Foundation has similar goals to other open source software foundations such as the 

Apache Foundation or the GNOME Foundation. 

You can find definitions of R that say: “R is a functional language intended for 

data processing” or “intended for statistical studies.” With regard to function, this 

definition refers to the fact that it is based on functions that implement the different 

functionalities that we need from the language. It is correct that it is fundamentally 

oriented to data analysis, although its scope is broader than that of statistics, since it 

also allows, for example, machine learning. 

R can be installed on Windows, Mac OS and Unix (Linux). 

Website of the R Project 

https://www.r-project.org/ 

All the information about R managed by the R Foundation can be found on the R 

project website. We are going to navigate all the links in the left column, the first one 

is Download. 

Download 

Download takes us to a page where the international mirrors can be found from 

where we can enter the CRAN. The CRAN can be accessed from any of them, but 

we are going to go down to the Spanish links, which are under Spain and there 

are two: cixug, which is the link maintained by the Galician interuniversity consor-

tium Cixug; and Rediris, which is the one that maintains the Spanish national

https://www.r-project.org/
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CRAN stands for Comprehensive R Archive Network, and it is the repository 

where all the downloadable R archives are located and, as we are going to see, there 

is very useful information. 

On the right-hand side of the page, you will find the links to download and install 

the R environment, which we will see in detail in the next lesson. We are now going 

to navigate through the CRAN, again using the navigation column on the left, below 

the R logo.

• Mirrors: Takes us back to the page where all international R mirrors are listed.

• What’s new: It takes us to a page where the latest R news published by the R 

Development Core Team are, within the page there is a set of links to each year’s 

news page, and within each year there is a set of news or announcements.

• Task Views: It gives us a list with links to everything that R can offer us to solve 

different types of data analysis; there is a link for each type.

• Search: This allows us to search by keywords within the R Project website using 

the Google search engine.

• R Homepage: Takes us to the main page of the R Project

• The R Journal: It takes us to the R Journal page. We will see the R journal in detail 

in one of the following sections. 

At any time if we want to return to the CRAN main page, we can click on 

the logo. 

The following links are grouped under the headings, Software, as downloadable 

software, and Documentation, as downloadable documentation. 

Software

• R Sources: We can download the R source files.

• R Binaries: We can download the executable files of R. It takes us to the 

installation page of R.

• Packages: We can download packages that are extensions of R and are one of the 

characteristics that make the use of R so useful and interesting. We will see it in 

more detail in a topic of R packages itself. Until now, we have contributed from 

the University of Alcalá the authors of this book, they have been LearnClust and 

LearningRLab, both packages were developed as End-of-Degree Projects and 

were carried out by students Dennis Monheimius and Eduardo Benito, the first; 

and Roberto Alcantará, the second. More details on these will be given in the 

lesson on packages.

• Other: We can download other software related to R.
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Documentation

• Manuals: We can download the fundamental R manuals edited by the R Devel-

opment Core Team and published by the R Foundation. It is composed of seven 

(7) documents: 

1. An Introduction to R 

2. R Data Import/Export 

3. R Installation and Administration 

4. Writing R Extensions 

5. The R language definition 

6. R Internals 

7. The R Reference Index 

There are translations of some of them into other languages in the Contributed link, 

which we will see below.

• FAQs: We can access the answers for frequently asked questions. They are 

divided into three types: general questions, questions about R in Windows, and 

questions about R in MacOS.

• Contributed: It allows us to download other documentation on R developed by 

users. There is documentation not only in English but also in many other 

languages. As mentioned above, you can also find some of the official manuals 

translated into other languages. Currently this page is frozen and is not being 

maintained. 

R Project 

Under the R Project heading, there are a series of links related to the R project. Let us 

navigate through the navigation column on the left of the page under the R Project 

heading:

• About R: It takes us to a page that introduces what R is and what the R 

environment is. This gives us a new definition: “R is a free software environment 

for statistical computing and graphics.”

• Logo: It allows us to download the R logo and informs us about its copyright.

• Contributors: It presents us with the list of the main R developers in their 

historical evolution and the current core team.

• What’s new: It is the same What’s new from the CRAN page seen above.

• Reporting Bugs: This explains what to do if we find a bug in R or if we have a 

patch for a bug that we want to send.

• Conferences: This is a very important link for all those who want to start 

collaborating with the R community, so, although it is in the same heading as 

the R Project, we have separated it and put it in bold. This link provides all the 

information related to the two annual conferences supported by the R Foundation:
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1. useR! – International R User Conference 

2. DSC – Directions in Statistical Computing. 

On two regional conferences, in languages other than English, also supported by 

the R Foundation: 

1. R @ IIRSA. In English 

2. Connector. In Spanish 

3. LatinR. In Spanish, Portuguese and English 

4. R Day. In Portuguese

• Search: It allows us to perform searches on R with other possibilities different 

from the CRAN search engine. It also allows us to enter a very active forum 

about R, Nabble R Forum, which allows us to consult our doubts with other 

members of the R community.

• Get involved: mailing list: Mailing lists of topics of interest about R.

• Developers page: It is an intermediate repository of ideas and plans more or less 

completed for R.

• Rblog: Blog with news about R. 

R Foundation 

Under the heading R Foundation, there are a series of links related to the R 

foundation. Let us navigate through the navigation column on the left of the page 

under the heading R Foundation:

• Foundation: Describes everything related to the R foundation, and its statutes can 

be downloaded.

• Board: We can see the members of the Board of Directors, the Steering Commit-

tee, and the official direction of the R Foundation, currently in the Institute for 

Statistics and Mathematics, of the Vienna University of Economics and Business.

• Members: We can see the ordinary members of the R Foundation. The election of 

these members is made on the merits of his work with R.

• Donors: We can see a list of support members, supporting members, and donors. 

The difference between one and the other is the economic amount with which 

they have contributed to the support of R.

• Donate: It allows us to make donations to the R foundation and thus obtain the 

status of Supporting Member or Donor. 

Help with R

• This section presents a single link: Getting Help. This link takes us to a page that 

shows us all the ways to get help with R. In the lesson in which we will see the 

RGUI, we will study all the help functions of R, and when we see the package 

lesson, we will see all the help functions with packages.



B. Computer-Based Solving 93

Documentation 

Under the heading Documentation, there are a series of links related to downloadable 

documentation on R. Let us navigate through the navigation column on the left of the 

page, under the heading Documentation:

• Manuals: It is the same link as the CRAN Manuals link, remember that we can 

download the fundamental R manuals edited by the R Development Core Team 

and published by the R Foundation.

• FAQs: It is the same link as the CRAN FAQ link, remembering that we can 

access the answers to frequently asked questions.

• The R Journal: This is, together with Conferences, a very important link for all 

those who want to start collaborating with the R community, so, although it is in 

the same Documentation section, we have separated it and put it in bold. This link 

provides all the information related to the R Journal published by the R Founda-

tion. R Journal is published biannually, with editions in June and December of 

each year. On the page, you can find all the numbers and the way to publish 

articles.

• Books: This page provides an annotated list of some of the books published 

annually that are related to S or R and may be useful to the R user community. It 

only describes the books, but they cannot be downloaded.

• Certification: This page offers us two links in principle with little use: The first is 

on regulatory compliance and validation issues for the use of R in regulated 

clinical trial settings; and the second is about the development life cycle of R.

• Other: It takes us to links on other downloadable documentation related to R and 

maintained on other websites, some of it very interesting and some of it in 

languages other than English. 

Links 

Under the heading Links, there are three very interesting links related to R. Let us 

navigate through the navigation column that is on the left of the page, under the 

heading Links, to see each one of them:

• Bioconductor: Takes us to the Bioconductor website, which is an open-source, 

open-development software project that provides high-performance tools, down-

loadable from the page, for analysis and understanding of genomic data. It is 

primarily based on the R programming language.

• Related Projects: It offers us links to other software projects related to R or based 

on R, it is very interesting for advanced R users.

• GoSC: It offers us the link that connects R with the Google Summer of Code, 

Google’s Summer of Code. The Google Summer of Code is a global program 

focused on attracting more than student code developers to open-source software 

development. Students work on a three-month programming project with an
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open-source organization during their break from college. It would be very 

interesting to work on this program. The email to participate in an open-source 

development project with the R Foundation as hosting institution is gsoc-

r@googlegroups.com. 

R Graphical User Interface, RGUI 

We start from the R project website: https://www.r-project.org/ 

To download the RGUI to work with R, click on: download R. 

When we click, it takes us to the windows page so that we can choose from which 

window we want to download R. In principle, the R Foundation only admits two 

windows per country, but if it is believed that downloads to the community can be 

improved, an institution can request to host one more. 

Let us go to those of Spain, there are currently two: 

Free software office (CIXUG): https://ftp.cixug.es/CRAN/ 

Spanish National Research Network, Madrid: https://cran.rediris.es/ 

We enter any of them (they are mirrors, so they are therefore identical) and 

download R for the operating system we have. Let us see how the download is done 

for Windows. 

Click on: Download R for Windows. 

In the next topic, we will see how to install R. 

Then, on the next screen, install R for the first time. 

Then, on the next screen, at: Download R 3.4.3 for Windows (62 megabytes, 

32/64 bit). 

It automatically starts the download in the download folder. Download a single 

installer: 

R-4.2.1-win.exe 

R Installation 

Click twice and it begins to install R, during the installation it will ask us where we 

want to install it and if the recommended folder does not exist, it will ask us if we 

want to create it, to which we will answer yes, and click next. 

Then, it will ask us:

• Language: We can choose Spanish, English, or whatever we want, but this is only 

for the installation.

• Legal information: we must accept the agreement.

• Installation folder: it is convenient to leave the one offered by default to facilitate 

subsequent downloads and installation of packages.

• If we want to install the Core Files, we answer yes.

https://www.r-project.org/
https://ftp.cixug.es/CRAN/
https://cran.rediris.es/
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If we want to install the version of 32-bit files or 64-bit files, we will select the 

appropriate one for our processor (in the case of a 64-bit computer, we will be able to 

select both). We will see when we deal with the packages in depth that there are 

certain packages that present installation problems in R x64, so it is interesting when 

R is loaded to also load the R i386 version.

• and if we want to install the message translations, we also select yes. In addition, 

we click next. 

Then, it asks us if we want to use the configuration options, we can say no, 

because if we say yes, it is better to leave the ones that come by default, which are:

• If you prefer a single MDI document interface, which will open a single window, 

or SDI, multiple document interface, which will open separate windows, by 

default we choose MDI.

• If we want help in plain text or HTML, by default, we choose HTML.

• Finally, if we want direct access to R at startup and if we want to register entries, 

we leave it as it is by default and click next. 

Then, we install R on our system. 

Starting to Work with the RGui 

To start working with the RGui (R Graphical User Interface), we open the program 

by clicking on the R icon in the start menu and the R Graphical user interface or 

RGui opens. Two windows open to us:

• The RGui, which is the largest window, is the container.

• The R Console is the console window in which we enter the R code instructions. 

In addition to the console, which will always be inside the RGui window, we will 

be able to find more windows inside the RGui, such as the graphics when we 

get them. 

As we said in the previous section about R Project, the first thing we are going to 

do when opening the RGui is to introduce our first instruction, which will be: 

> contributors ðÞ 

Having paid tribute to the people who created and developed R, and hoping to 

maybe see our name there sometime, we start working with RGui. 

The RGui has seven menus: 

1. File/File 

2. Edit/Edit 

3. View/Visualize 

4. Misc 

5. Packages/Packages
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6. Windows/Windows 

7. Help/Help 

We will see each of them in detail: 

1. File/File: You have twelve (12) options: 

1.1 Source R Code/Interpret source code in R: Loads to the console and executes 

a code in R or S written in a file with an .R or .S extension, that is, in script. 

1.2 New Script/New Script: Opens a window to write a script (a script is a 

program stored in a file, which is usually plain text). The file menu is 

modified and now refers to the active window in which we are writing the 

script, with five options, file, edit, packages, window and help, and allows us 

to save it with the save as option. We will choose the name and save 

directory and it will save it with the extension .R. In the window in which 

we can write the script, if we press the right button, we have the option run 

line, execute line, or selection to execute and test the script. The execution 

will take place on the console. 

1.3 Open Script/Open Script: This allows us to open, in a script window, a script 

with an .R extension, previously written, to modify it. 

1.4 Display Files//Show File: It opens any file with an .R, .RData, or Rhistory 

extension in a window within the RGui (one different each time) to see it, but 

we cannot modify it. 

1.5 Load Workspace/Load Work Area: Loads the variables saved in a file with 

the extension: .RData from the R session that we have previously saved in 

the file. 

1.6 Save Workspace/Save Workspace: Saves in a file with extension: .RData, in 

the working directory in which we are working all the variables (not the 

instructions) of the R session in which we are working. 

1.7 Load History/Load History: Loads the history saved in a file with the 

extension: .Rhistory, of all the instructions (only the input instructions, not 

the results) of the R session that we have previously saved in the file. 

1.8. Save History/Save History: Saves in a file with the extension:.Rhistory, in the 

working directory, the history of all the instructions (only the input instruc-

tions, not the results) of the R session in which we are working. 

1.9. Change dir/Change directory: It is a very useful option in the menu. It 

indicates the directory in which we are working with the RGui and allows 

us to change, through a window system, said working directory to the one we 

want. As a result of this change, the session will take place in said directory. In 

addition, it also allows us to change to a new working folder that we create 

when we are executing the directory change. In a new execution of the 

program, it would return to the initially defined directory. 

1.10. Print/Print: Prints on the printer we select, including a file, for example .pdf, 

the session in which we are working. Print the entire session, with all the 

messages, inputs and outputs.
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1.11. Save to File/Save to File: Saves the session we are working on in a .txt file. 

Print the entire session, with all the messages, inputs and outputs. 

1.12. Exit/Exit: We will leave the RGui. Before leaving, it asks us if we want to save 

a workspace image (save workspace image?) 

2. Edit/Edit: Which has eight (8) options: 

2.1. Copy/Copy: Copy the selected text. 

2.2. Paste/Paste: Pastes what was copied. 

2.3. Paste commands only/Copy only commands: If a set of instructions is 

copied, the > symbols are also copied, and when these lines are pasted, 

execution is erroneous because the program cannot interpret those symbols. 

If the paste command only statement is used, only clean statements are 

pasted and the RGui interprets them correctly. 

2.4. Copy and Paste/Copy and Paste: Immediately copy and paste the pasted text 

on the last line of the console. 

2.5. Select All/Select all: Select everything written in the console. 

2.6. Clear Console/Clean Console: Completely clears the console. 

2.7. Data Editor/Data Editor: Allows you to edit any defined data of any type and 

fix the changes. 

2.8. Gui Preferences/Graphical interface preferences: Allows you to change 

multiple RGui features and save different RGui configurations, with the 

Save option, and load them with the Load option. 

3. View/Visualize: Which has two (2) options: 

3.1. Toolbar/Toolbar: Activates or deactivates the R toolbar, which is made up of 

eight (8) buttons (all of them do what is described in their respective menus): 

1. Open Script/Open Script 

2. Load Workspace/Load workspace 

3. Save Workspace/Save workspace 

4. Copy/Copy 

5. Paste/Paste 

6. Copy and Paste/Copy and Paste 

7. Stop current computation/Stop current computation 

8. Print/Print 

3.2. Status bar/Status bar: Activates or deactivates the status bar that indicates the 

version of R with which we are working. 

4. Misc: Which has eight (8) options: 

4.1. Stop current computation/For current computation: For the execution of the 

last order that R was executing. 

4.2. Stop all computations/For current computation: To execute all the orders that 

R was executing. 

4.3. Buffered output/Output with buffer: It stores the outputs as it 

calculates them.
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4.4. Word completion: When it is checked, if we write the first letters of a known 

word, for example, the name of a function, and press Tab, the RGui 

automatically completes the word. 

4.5. Filename completion/Finish filename: When it is checked, if we write the 

first letters of a known word, for example the name of a file, and press Tab, 

the RGui automatically completes the word. 

4.6. List Object/List objects: It shows us all the variables that we have defined in 

the execution of R. 

4.7. Remove all objects/Remove all objects: This removes all the variables that 

we have defined in the execution of R. It asks us for confirmation before 

carrying out the deletion. 

4.8. List search path/List the search path: It lists the environment and the R 

packages that we have active in the execution of R. 

5. Packages/Packages: which has six (6) options. We will see them in detail in the 

topic of Packages. 

6. Windows/Windows: Which has (4) options plus a list of the windows open within 

the RGui: 

6.1. Cascade/Cascade: Distribute as a waterfall. 

6.2. Tile Horizontally/Divide horizontally: Distribute horizontally. 

6.3. Tile Vertically/Divided Vertically: Distribute vertically. 

6.4. Arrange Icons/Organize icons: Organize the minimized icons of the win-

dows that we have opened in the RGui. 

7. Help/Ayuda: Which has (12) options: 

7.1. Console/Console: If we press this option, a pop-up window appears that 

indicates all the combinations of keys that can be used to operate the console. 

It is very important to note that the letters that are indicated in uppercase 

must be in uppercase to work. 

7.2. FAQ on R/FAQ on R: It opens the same web page as the CRAN FAQs link, 

and the FAQs link of the RProject Documentation section, remember that we 

can access the answers to frequently asked questions. 

7.3. FAQ on R for Windows/FAQ in R for Windows: It opens the same web page 

as the FAQs for Windows link of CRAN, remembering that we can access 

the answers to frequently asked questions. 

7.4. Manuals (in PDF)/Manuals (in PDF): It provides direct links, that is, if we 

click, each one of the .pdfs opens to the seven manuals that appear on the 

Manuals website under the CRAN Documentation heading. In addition, 

there is another very interesting manual that is the Sweave User. Sweave 

provides a flexible framework for mixing text and code for automatic report 

generation. The basic idea is to replace the code with your output, so that the 

final document only contains the text and the result of the statistical analysis; 

however, the source code can also be included.
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7.5. R Functions (text)/R Functions (text): It presents us with a window in which 

we can enter the name of the function for which we want help and opens a 

web page with all the information for that function. 

7.6. Html Help/Html Help: Opens the official RProject help page. Among the 

links that are provided deserves special mention the link Writing R Exten-

sions, which gives us all the information necessary to write new packages 

in R. 

7.7. Search Help/Search help: It opens a window in which, if we enter the search 

term, for example, of a function, it opens a page with all the links in which 

we can find information about the search term. It is broader than R function 

because it not only opens the link to help about the function but also to all the 

pages where we can find help. 

7.8. search.r-project.org: It opens a window in which, if we enter the search term, 

for example, of a function, it opens a page with all the links in which we can 

find information about the search term within the RProject website. It is 

broader than Search Help because it opens all kinds of links or documents 

that contain the term. 

7.9. Apropos/About. . .: Finds all those functions whose name contains the word 

given as an argument for the packages loaded in memory. 

7.10. R Project home page/R Project home page: Opens the R Project home page. 

7.11. CRAN home page/CRAN home page: Opens the CRAN home page. 

7.12. About/About. . .: It tells us the version and the credits of the RGui. 

Data Exercises Solved with R 

Once we have studied the R environment and the RGUI, we are ready to start to 

solve, using R, the cases that have been theoretically solved in this lesson about Data 

and its description, applying all the concepts introduced in the lesson. We are going 

to calculate all the magnitudes seen in the theory, that is, we are going to obtain the 

frequencies, the mean, which will be the arithmetic; the measures of dispersion, 

standard deviation, and variance, and the measures of ordering, median and quar-

tiles, including percentile 54. To solve this problem, we are going to use a file of 

data, which will be of type .txt, that is, plain text, and it will be made up of the data of 

the distances between the homes of the students to the University. We remember that 

the data are: {16.5, 34.8, 20.7, 6.2, 4.4, 3.4, 24, 24, 32, 30, 33, 27, 15, 9.4, 2.1, 

34, 24, 12, 4.4, 28, 31.4, 21.6, 3.1, 4.5, 5.1, 4, 3.2, 25, 4.5, 20, 34, 12, 12, 12, 12, 

5, 19, 30, 5.5, 38, 25, 3.7, 9, 30, 13, 30, 30, 26, 30, 30, 1, 26, 22, 10, 9.7, 11, 24.1, 

33, 17.2, 27, 24, 27, 21, 28, 30, 4, 46, 29, 3.7, 2.7, 8.1, 19, 16}. 

To solve it, the first function that we are going to see in R is: 

> help ðÞ

http://search.r-project.org
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The help function will open a window in the web browser that will give us all the 

information about the function that we enter between the parentheses, and if we do 

not enter any, it will give us information about the help function itself. To see how it 

works, we are going to find information about the next function that we are going to 

see from R, which is getwd () and which is a function that tells us the directory in 

which is working R. The complete instruction is: 

> help getwdð Þ  

If we introduce the instruction ? followed by the instruction about which we want 

information, we would obtain the same result as with the help function. Applied to 

the getwd instruction, it would be: 

> ?getwd 

If we introduce the help.start () function, we will open a window in the browser in 

which all the information about R is presented. To check it, we introduce the 

function: 

> help:start ðÞ 

Next, we introduce the function getwd () to see in which directory we are: 

> getwd ðÞ 

If we want to change the working directory, we must use the setwd () function and 

between parentheses and in quotes we have to put the full path of the directory where 

we want to work, for example, to work in the R directory located in the root directory 

of C, we would enter the instruction: 

> setwd “ C : =R” 

Or on a pendrive that the system would have assigned as drive G, in a directory 

called R the instruction would be: 

> setwd “ G : =R” 

To verify that we have changed the directory, we introduce the function again: 

> getwd ðÞ 

To see what files we have in the working directory, we use the list.files () 

function. We introduce it to check it:
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> list:files ðÞ 

Once we have seen these preliminary instructions, which are important to start 

working with R, we begin to solve what they ask us in the exercise, for which the 

first thing we have to enter is the data. Normally, we will not enter the data by 

keyboard, although in future exercises, we will indicate how to do it, but we will read 

them from files. We are going to start by reading the data from a .txt text file, for 

which the first thing we have to do is generate it. It is very important to strictly follow 

the rules for generating the file because otherwise R will not read it and the data 

analysis will not be possible. 

Rules for Generating the txt File:

• There must be a tab between data and data (if there are more tabs, nothing 

happens).

• There must be a first column that numbers the rows, except the first, which will 

have a blank space; a first row with the name of the variables.

• An enter must be entered at the end of the last row.

• The use of semicolons in the separation of decimal numbers is not the same and it 

is very important to take it into account, hours can be lost because the system does 

not give us the results we are looking for because we have put a comma where 

you could only put a point. In the input files, such as the Uranus.txt satellite, the 

decimal numbers must be separated by periods, never by commas.

• Another problem that can occur when reading the data is, for example, that the 

name of a town as “Alcalá Henares” is not written in a single word but in two, that 

is, with a space between Alcalá and Henares. If we do not do any step correctly, it 

will present us with an error message when we read it. The correct manner would 

be “Alcala_Henares” or another way to write both words together. 

Following these instructions, we introduce the data of the distances between the 

homes of the students to the University, in a .txt file with the name “distances.txt” as 

follows: 

Distance 

1 16.5 

2 34.8 

3 20.7 

. . .  

23 3.1 

24 4.5 

25 5.1 

. . .  

46 30 

47 30 

48 26 

. . .
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Distance 

60 27 

61 24 

62 27 

. . .  

71 8.1 

72 19 

73 16 

We will assign the data from the file to an array that we will call d using the read. 

table () instruction. It is very important to keep in mind that the file can only be 

loaded in R if it is in the working directory of R. To assign a value to a variable, you 

can use two commands <- or  =. We will start using <- because it is very common 

in R. 

> d< - read:table } distances:txt} 

To check that the data have been loaded correctly, we use the print() function. The 

full instruction is: 

> print dð Þ  

which shows us the matrix d on the screen, or we simply introduce the name of the 

matrix: 

> d 

And it shows it on the screen. Whenever we enter the name of a variable, it will 

show it to us on the screen. 

If we would like to know the dimensions of the table, we would use the dim () 

function, the complete instruction would be: 

> dim dð Þ  

If we wanted to order the distances table according to distance, which we would 

call so, we could use the order () function. As an order argument, we would put the 

name of the variable by which we want to order the table, which in this case is the 

variable Distance (it should be noted that since R takes capital letters into account, 

the R in Distance must be capitalized because this is how we have entered it from the 

text file), but since said variable is inside a matrix, we have to indicate that we only 

want that component of the matrix using the $ symbol between the name of the 

matrix and the variable we want from it. The full instruction is: 

> do= d order d $ Distanceð Þ,½ ]

The brackets indicate every position inside the matrix, the first position, before 

the comma, is for the files, and the second, after the comma, is for the columns. For



]

that reason, the previous instruction means that the files are ordered by distance, and 

that is applied to all the columns because it is nothing written in the column site after 

the comma. 
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To see the result we would enter: 

> do 

If we wanted to order them in descending order, we would use the instruction: 

> do= d rev order d $ Distanceð Þð Þ,½  

To see the result, we introduce again: 

> SW 

If we wanted to know the length, that is, the number of data points of a variable, 

we would use the function length (), and in the argument, we would put the name of 

the variable; for the radius, the complete instruction would be: 

> length d $ Distanceð Þ  

If we wanted to know the range of the distances, which we would call range, that 

is, the difference between the maximum and minimum values in the sample, we 

would use the max () and min () functions. The complete instruction would be: 

> range= max d $ Distanceð Þ- min d $ Distanceð Þ  

To see the result, we enter: 

> rank 

As we have seen, we have to calculate the range because there is no function in R 

that gives it to us directly, as we have defined it in theory. To solve this problem, we 

will start to see how a function is programmed, which will be something of an 

essential utility in R, so it will be deepened throughout the text. Whenever we want 

to define a function, we must assign it a variable name, which in this case is range; 

and we will use the function instruction followed by a parenthesis, inside which we 

will include the variables that the function is going to use, which in this case is going 

to be Distance, so previously we are going to define that variable as: 

>Distance= d $ Distance 

Then, between braces, we will introduce the instructions that make up the 

function and that will give us its result, which in this case is only a subtraction. 

The full instruction is:
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> range= function Distanceð Þ  max Distanceð Þ- min Distanceð Þf  

To check that it works, we introduce: 

> range Distanceð Þ  

The next essential aspect to consider is also essential in the use of functions and is 

the fact that the defined function will only be available for the execution of the 

program in which it has been defined. For it to be available, we have to save it. To do 

this, there are different ways, we can save it as a script, through an option that we 

open from the menu line or from the command line with the dump () function which 

saves the file, whose name we have put between the parentheses, and it will have the 

extension .R, in the working directory. In the example, solving the complete 

statement is: 

> dump } range} , file= } range:R} 

Now we are going to use the function ls ( ) to know which variables we have 

defined in this execution of R, and we can see the function range. To see how we can 

load the function range stored, we will remove it from the current execution. To do 

this, we remove it from the current execution using the function rm ( ), including as 

its attribute the function that we want to remove. The full instructions are as follows: 

> rm rangeð Þ  

To check that the function range has been removed, we can again use the function 

ls ( ) or introduce the instruction: 

> range radioð Þ  

and see that we obtain nothing. Once this is done, if we want to load the function in 

another execution of the program, one of the possible, and most used, instructions 

that we can use is source (). In this case, the complete instruction will be: 

> source } rank:R} 

Keep in mind that for the range to work, the variables it uses must be loaded. 

Once we have the data in R, we begin to carry out the analysis that the exercise 

asks of us. 

To obtain the absolute frequency of the variable distance, which we call 

frecabsdist, we use the table ( ) function, and as an argument, we introduce the 

variable for which we want to obtain its absolute frequency, which is Distance. The 

full instruction is:
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> frecabsdist< - table d $ Distanceð Þ  

To see the result, we enter 

> frecabsdist 

To calculate the accumulated absolute frequency, which we call frecabsacumdist, 

we use the cumsum () function that gives the accumulated frequency of each 

previous value, and as an argument, we introduce the absolute frequency of the 

radius calculated in the previous step. The complete instruction is: 

frecabsacumdist< - cumsum frecabsdistð Þ  

To see the result, we enter 

Frecabsacumdist 

To calculate the relative frequency, there is no function in R, so we generate one 

that we call frecreldist. To define a function, we will again use the function function 

() to which we will give as an argument the input variable that it will have, which will 

be x, and then, between braces, we will put the definition of the function. The 

complete instruction will be: 

frecrel< - function xð Þ  table xð Þ=length xð Þf  

As we know, the frecrel function would only work in this execution of the 

program; if we wanted to save it to use it in other executions, we would use the 

dump () function that would save it in the working directory, and the complete 

instruction would be: 

dump } frecrel} , file= } frecrel:R} 

To load the function in other executions of the program, we would use the source 

() function, and the complete instruction would be: 

source } frecrel:R} 

Next, for the variable x, we assign the value of the distances, and the complete 

instruction is: 

x= d $ Distance 

Finally, we calculate the value of the relative frequency function to which we will 

assign the name frecrelradio, and the complete instruction is:
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frecreldist< - frecrel xð Þ  

To see the result, we enter: 

frecreldist 

To calculate the accumulated relative frequency, which we call frecrelsacumdist, 

we do the same as in the case of the absolute frequency, and we use the cumsum () 

function. In this case, we introduce the relative frequency of the distance as an 

argument. The complete instruction is: 

frecrelacumdist< - cumsum frecreldistð Þ  

To see the result, we enter 

frecrelacumdist 

To calculate the mean, which we call md, we use the mean () function, and as an 

argument, we introduce the variable in this case, when found within a matrix, we 

know that it is d $ Distance, the complete instruction is: 

md< -mean d $ Distanceð Þ  

To see the result, we enter 

md 

The measures of dispersion that we will calculate are the standard deviation and 

the variance, which we will call sdd and vard, respectively, for which we will use the 

functions sd () and var (), respectively, so the instructions will be: 

sdd< - sd d $ Distanceð Þ  

vard< - var d $ Distanceð Þ  

To see the result, we enter: 

sdd 

As seen, the result is not the same as the one obtained in theory because R uses 

different equations to calculate the standard deviation and the variance and divides 

by n–1 and not by n, so to obtain the same results that in theory you have to do the 

operations:
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sdd= sqrt sdd2
*
72=73 

vard= vard* 72=73 

We check that we already obtain the same as in theory by introducing sdd and 

vard again. 

The ordering measures that we are going to calculate will be the median, the 

quartiles, and the 54th percentile, which we will call mediand and quart1d, quart2d, 

quart3d, cuan54d, respectively, for which we will use the median (), and quantile () 

functions, respectively, so the instructions will be: 

mediand< -median d $ Distanceð Þ  

cuar1d< - quantile d $ Distance, 0:25ð Þ  

cuar2d< - quantile d $ Distance, 0:5ð Þ  

cuar3d< - quantile d $ Distance, 0:75ð Þ  

cuan54d< - quantile d $ Distance, 0:54ð Þ  

To see the result, we enter: 

mediand 

quar1d 

quar2d 

cuar3d 

cuan54d 

We see that in this case, the results are not the same as in theory because the 

calculation equations used have not been the same either; as part of the exercise, it 

can be solved as in theory. 

C. Data Exercises Solved 

This section has two parts. In the first part, a set of exercises solved in detail are 

presented to allow you to check if all the knowledge has been correctly acquired. The 

advice is to try to solve the exercises by yourself, and then to get the solution to 

check it with the proposed one by the book. This procedure will make this section 

truly useful for you. In the second part, the exercises will be solved in R.
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Hand-Made Exercises 

1. Give at least an example of each existing type of characteristics using the planets 

of the Solar system. All the characteristics selected must be real ones. 

There are three types of characteristics: quantitative, qualitative, and logical; if we 

use the planets of the Solar system to have examples of each one of them, we can use 

the following:

• For Quantitative characteristics, examples can be the number of satellites that 

each planet has; or the equatorial (maximum) diameter of the planet, the density 

or the rotation period.

• For Qualitative characteristics, examples can be the name of each planet, which is 

the principal gaseous component in the atmosphere of each one of them; their 

positions considered the distance to the sun; or the name of the first planet 

exploration spaceship for each one of them.

• For Logical characteristics, examples can be if the planet has satellites or not or if 

the planet is solid or not; the latter can also be considered a qualitative 

characteristic. 

2. Give at least an example of each existing type of data using the planets of the 

Solar system. All the data selected must be real data. 

For each type of characteristic, there are different types of data: for quantitative 

characteristics, there are discrete and continuous data; for qualitative characteristics, 

there are nominal and ordinal data; and there are also logic data. If we use the planets 

of the Solar system to have examples of each one, we can use the following: 

For Quantitative Characteristics:

• For Quantitative discrete data, an example can be the number of satellites that 

each planet has; if we collected them, the data are {Mercury, 0; Venus, 0; Earth, 

1; Mars, 2; Jupiter, 67; Saturn, 61; Uranus, 27; and Neptune, 14}. As can be 

verified, all the values belong to ℤ, and the defined arithmetic operations for 

quantitative discrete data can be performed with them; for example, the number of 

joint satellites of Earth and Mars is 3, which is the sum of the satellites of both 

planets ns = ns(Mars) +  ns(Earth) = 2 + 1  = 3. 

An example of Instance, record or case. From the previous data, as an example of 

an instance, we can take the attributes of Jupiter, which define Jupiter from the 

characteristics treated in Jupiter, which has 67 satellites.

• For Quantitative continuous data, an example can be the equatorial (maximum) 

diameter of the planet, measured, for example, in thousands of km, that the planet 

has can be taken. They are Mercury, 4879; Venus, 12,106; Earth, 12,756; Mars, 

6794; Jupiter, 142,984; Saturn, 108,728; Uranus, 51,118; Neptune, 48,572. All 

the values belong toℝ, and arithmetic operations can be performed with them; for 

example, the size of Mars is approximately half that of Earth since the
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relationship between its diameters is (Mars)/d(Earth) = 6.794/12.756 = 0.53, 

and consequently, Mars has a diameter close to half the diameter of Earth. 

Other quantitative continuous data examples are the data of the density of the 

planet, and they are, in g/cm3 : {Mercury, 5.4; Venus, 5.2; Earth, 5.5; Mars, 3.9; 

Jupiter, 1.4; Saturn, 0.7; Uranus, 1.3; Neptune, 1.8}. 

Or the rotation period, and the data are in hours: {Mercury, 1407; Venus, 24.62; 

Earth, 23.93; Mars, 24.62; Jupiter, 9.84; Saturn, 10.24; Uranus, 15.6; Neptune, 

18.5}. 

For Qualitative Characteristics:

• For Qualitative nominal data, examples can be the name of each planet, that if we 

collected them, the data are {Mercury, Venus, Earth, Mars, Jupiter, Saturn, 

Uranus, and Neptune}; or which is the principal gaseous component in the 

atmosphere of each one of them; if we collected them, the data are {Mercury, 

potassium, K; Venus, carbon dioxide, CO2; The Earth, nitrogen, N; Mars, carbon 

dioxide, CO2; Jupiter, hydrogen, H; Saturn, hydrogen, H; Uranus, hydrogen, H; 

Neptune, hydrogen, H. As seen, all the data are descriptive textual}.

• For Qualitative ordinal data, an example is their positions considering the dis-

tance to the sun. Although the data for characteristics are numeric, they are 

qualitative because nonarithmetic operations can be performed with them, and 

they are ordinal because they allow us to obtain an ordination of the planets using 

them, from the closest to the furthest. The data are: {Mercury, 1: Venus, 2; Earth, 

3; Mars, 4; Jupiter, 5; Saturn, 6; Uranus, 7; Neptune; 8}. 

Another example of qualitative ordinal data is the name of the first planet 

exploration spaceship for each one. It is ordinal because the names of the spaceships 

include the year of exploration, which allows us to sort the spaceships by age or the 

order of exploration of the planets. The names of the first spaceship that explored the 

planets are Mercury, Mariner10-1974; Venus, Mariner2-1962; The Earth, not 

included; Mars, Mariner4-1965; Jupiter, Pioneer10-1972; Saturn, Pioneer11-1979; 

Uranus, Voyager2-1986; Neptune, Voyager2-1989. It is important to realize that 

although all these data contain numbers, for example, in the case of Mars 4-1965, 

they are actually qualitative data since the numbers are identifying and cannot be 

performed on the same arithmetic operations. What these qualitative data allow us is 

to order the data; thus, for example, the order of exploration of the planets is Venus, 

Mars, Jupiter, Mercury, Saturn, Uranus, and Neptune. 

For Logical Characteristics:

• Logical data examples can be whether the planet has satellites or not. The data on 

whether or not the planets have satellites are Mercury, 0; Venus, 0; Earth, 1; Mars, 

1; Jupiter, 1; Saturn, 1; Uranus, 1; Neptune, 1. As mentioned above, there are 

different options to treat logical data. In this case, discrete quantitative data were 

used, with values of 0 for the absence of satellites and 1 for the existence of 

satellites.
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Another example is whether the planet is solid or not. The data on whether the 

planet is solid or not are Mercury, true; Venus, true; Earth, true; Mars, true; Jupiter, 

false; Saturn, false; Uranus, false; Neptune, false. In this case, qualitative data were 

used, with the values true for solid and 1 false for not solid. 

3. Give an example of a characteristic with a variable value of its data in an 

experiment and an example of a variable. All the characteristics and data selected 

must be real. 

As examples of variable characteristics, or variables, all those that will be 

described in the previous three exercises can be taken. 

4. Give an example of a characteristic with a constant value of its data in an 

experiment and an example of a variable. All the characteristics and data selected 

must be real. 

As an example of a characteristic with constant data in an experiment, the one 

corresponding to the number of suns around which the planets orbit can be taken, the 

result will always be 1 for all of them, so it is a constant characteristic. 

5. Given an example of each one of the concepts experiment, population and sample 

using the existence or absence of satellites can be taken from a planet. 

The random experiment consists of observing whether a planet has satellites or 

not. It is a random experiment because there is no law that determines it, and each 

planet must be observed to determine if it has satellites or not. As an example of a 

deterministic experiment, we could take the measurement of the duration t of the 

translation period of the planets around the sun. Knowing those of a set of input 

characteristics and the equation of angular motion, the values of the characteristic 

can be obtained, and they will always be the same for the same input values. 

To see the difference between what a population and a sample is, suppose that the 

object of study is composed only of the Mercury and Venus planets; that is, the 

population is made up of only these two planets. In this case, the conclusion is, with 

complete certainty, that the planets do not have satellites. Now suppose that the 

study population is all the planets of the solar system and we have as a sample, that 

is, we are only going to observe the eight planets, Mercury and Venus, the conclu-

sion for the sample is, as in the previous case, that the planets do not have satellites, 

but is that conclusion valid with absolute certainty for the population? Clearly, not, 

because we know, although we have not observed it, that the rest of the planets do 

have satellites, and that conclusion would be wrong, so we could only extend that 

conclusion to the population also indicating the probability, or the degree of certainty 

that we believe for that statement. 

1. The rotation period data, in days, of the planets of the solar system are Mercury, 

58; Venus, 0.4; Earth, 1; Mars, 1; Jupiter, 0.4; Saturn, 0.4; Uranus, 0.7; and 

Neptune, 0.7. From these new data, we give the absolute frequency of these data 

and which kind of data they are. Give also the absolute frequency of the 

qualitative data of the principal gaseous component in the atmosphere of the
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planets of the solar system; and the absolute frequency of the logical data of the 

existence or not of satellites in each planet.

• The data of the rotation period are quantitative continuous data, and if they are 

analysed, it can be seen that the value 0.4 is repeated 3 times on Venus, Jupiter, 

and Saturn; data 0.7 appears 2 times on Uranus and Neptune; 1 appears 2 times on 

Earth and Mars; and 58 appears 1 time on Mercury. If we take the equation fi = ni, 

we can see that i takes 4 different values i1 = 0.4; i1 = 0.7; i3 = 1; i4 = 58, and the 

frequencies for each of them are f1 = 3; f2 = 2; f3 = 2; f4 = 1.

• If the main component of the atmosphere is observed, we are analysing qualita-

tive nominal data, and it can be seen that the potassium value, K, is observed 

1 time in Mercury; the nitrogen data, N, is observed 1 time on Earth; the carbon 

dioxide data, CO2, is observed twice on Venus and Mars; and the hydrogen 

value, N, is observed 4 times in Jupiter, Saturn, Uranus, and Neptune. If we take 

the equation fi = ni, we can see that i takes 4 different values i1 = K; i2 = N; 

i3 = CO2; i4 = H, and the frequencies for each of them are f1 = 1; f2 = 1; f3 = 3; 

f4 = 4.

• When we observe if the planet has satellites or not, we are analysing logical data, 

and it can be seen that the absence of satellites is observed 2 times, Mercury and 

Venus, and the existence of satellites is observed 6 times, on Earth, Mars, Saturn, 

Uranus, and Neptune. If we take the equation fi = ni, we can see that i takes 

2 different values i1 = Not Satellites; i2 = Satellites, and the frequencies for each 

of them aref1 = 2; f2 = 6 

2. Calculate the relative frequency of the three previous groups of data.

• For the quantitative data rotation period, to calculate the relative frequency, we 

start from the absolute frequency and divide it by the number of data, as the 

equation is fri = ni/nT, where nT is the total number of data, and we know for 

the calculation of the absolute frequency that i takes 4 different values i1 = 0.4; 

i1 = 0.7; i3 = 1; i4 = 58, the relative frequencies for each one of them are 

fr1 = 
3 
8 
= 0:375; fr2 = 

2 
8 
= 0:25; fr3 = 

2 
8 
= 0:25; fr4 = 

1 
8 
= 0:125. It can be easily 

verified that 
m 

j= 1 

frj = 1 $ 0:375 þ 0:25þ 0:25þ 0:125= 1

• For the qualitative data, the principal component of the atmosphere, as in the 

previous case, to calculate the relative frequency, we start from the equation 

fi = ni/nT, and we know for the calculation of the absolute frequency that 

i takes 4 different values i1 = K; i2 = N; i3 = CO2; i4 = H and, in consequence, 

the relative frequencies for each one of them are fr1 = 
1 
8 
= 0:125; 

fr2 = 
1 
8 
= 0:125; fr3 = 

2 
8 
= 0:25; fr4 = 

4 
8 
= 0:5.

• For the logical data, if they have satellites or not, i takes 2 different values 

i1 = Not Satellites; i2 = Satellites, and the relative frequencies for each of them 

are fr1 = 
2 
8 
= 0:25; fr2 = 

6 
8 
= 0:75:
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3. Calculate the accumulated absolute and relative frequency of the three previous 

groups of data. 

First, it must be noted that it is impossible to calculate the cumulative relative 

frequency for all three previous groups of data because it can only be calculated for 

quantitative characteristics, and for this reason, we calculate the cumulative absolute 

frequency and the cumulative relative frequency only for the rotation period.

• To calculate the accumulated absolute frequency of the rotation periods of the 

planets, we apply the equation fak = 
k 
j= 1f j, from the smallest to the highest 

value of the data. We start with the smallest rotation period i1 = 0.4, and 

the equation for this initial value remains as fa1 = 
1 
j= 1f 1 ; consequently, the 

value is fa1 = f1 = 3. Next, we calculate the accumulated absolute frequency 

for the next value in order of magnitude, 0.7, in this case 

fa2 = 
2 
j= 1f i = f 1 þ f 2 = 3þ 2= 5, and finally, we calculate the 

remaining two: fa3 = 
3 
j= 1f i = f 1 þ f 2 þ f 3 = 3 þ 2þ 2= 7, and 

fa3 = 
4 
j= 1f i = f 1 þ f 2 þ f 3 þ f 4 = 3 þ 2þ 2þ 1= 8, and as 8 is the total 

number of data, the calculation is correct.

• To calculate the accumulated relative frequency of the rotation periods of the 

planets, we apply the equation frak = 
k 
j= 1frj, from the smallest to the highest 

value of the data. We start with the smallest rotation period i1 = 0.4, and the 

equation for this initial value remains as fra1 = 
1 
j= 1fr1; consequently, the value 

is fra1 = f1 = 0.375. Next, we calculate the accumulated absolute frequency for 

the next value in order of magnitude, 0.7, in this case 

fra2 = 
2 
j= 1fri = fr1 þ fr2 = 0:375þ 0:25= 0:625, and finally, we calculate the 

remaining two: fra3 = 
3 
j= 1fri = fr1 þ fr2 þ fr3 = 0:375þ 0:25þ 0:25= 0:875 

and fra3 = 
4 
j= 1fri = fr1 þ fr2 þ fr3 þ fr4 = 0:375þ 0:25þ 0:25þ 0:125= 1. 

As 1 is the amount that we must obtain when we calculate the accumulated 

relative frequency of the highest value, the calculation is correct. 

4. Give the frequency distribution for any of the previously calculated frequencies. 

The frequency distribution, as we saw in the theory of the lesson, is the set of pairs 

of data formed by the different data values observed and each one of their associated 

frequencies. Since the statement of the exercise asks us for any of them, we are going 

to select the last one calculated in the previous exercise, the frequencies of the 

rotation period of the planets, the values are {0.4, 0.7, 1, 58} and their corresponding 

accumulated relative frequencies are {0.375, 0.625, 0.875, 1}, and the asked fre-

quency distribution is {(0.4, 0.375), (0.7, 0.625), (1, 0.875), (58, 1). 

5. Perform a data grouping and give the equivalence classes, first using the grouping 

criteria described in the lesson, a second with arbitrary decisions, and a third for
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tens, in only the smaller ones, those whose radius is lower than 50 km, using data 

from the satellites of Uranus.48 For the third grouping criteria, calculate the 

absolute frequency of each class. The characteristic that we are going to analyse 

is the radius in kilometres of the satellites. They are Cordelia, 13; Ophelia, 16; 

Bianca, 22; Crésida, 33; Desdemona, 29; Juliet, 42; Portia, 55; Rosalinda, 27; 

Belinda, 34; Luna-1986 U10, 20; Puck, 77; Miranda, 235; Ariel, 578; Umbriel, 

584; Titania, 788; Oberon, 761; Calíbano, 30; Luna-1999 U1, 20; Sycorax, 60; 

Luna-1999 U2, 15.

• To solve this exercise first, we use the recommended criteria: 

1. First step: Determine the number of equivalence groups or classes. As there are 

n = 20 satellites and the recommended criterion is nc ≤ 0.1n, the class number 

should be nc ≤ 2; consequently, the number of classes is 2. For the classes to 

have the same or similar amplitude, the first class between the first value and 

the Miranda would be taken whose amplitude would be “Amplitude” = 235-

13 = 222, and the second class would be between Ariel and Titania, with an 

amplitude of 788–578 = 220. 

However, other classes could also be defined, such as a class per hundred, and 

there would be 8 classes, of which 4 would have data: 0–100, 200–300, 500–600 and 

700–800. 

2. Second step: Obtaining the amplitude of the classes. The recommended criterion 

in this case is to obtain classes of equal amplitude, for which the first thing to do is 

sort the data by magnitude. The result of this ordering for the satellites of Uranus 

is Cordelia, 13; Luna-1999 U2, 15; Ophelia, 16; Luna-1986 U10, 20; Luna-

1999 U1, 20; Bianca, 22; Rosalinda, 27; Desdemona, 29; Calíbano, 30; Crésida, 

33; Belinda, 34; Juliet, 42; Portia, 55; Sycorax, 60; Puck, 77; Miranda, 235; Ariel, 

578; Umbriel, 584; Oberon, 761; Titania, 788. Next, the range of the observed 

data is calculated as the difference between the largest of the observed data, which 

in this case is Titania, with 788 km, and the smallest, which is Cordelia, with 

13 km, so that the range is r = vmax - vmin = 788 - 13 = 775; and once the rank 

is obtained, we divide its value by the number of classes to obtain the amplitude, 

that is, ac = 
r 
nc 
= 

775 
2 

= 387:5. 

3. Third step: Obtaining the borders and the limits of the classes. To obtain the limits 

of the two classes, we start from the ordered data and take as the lower limit of the 

first class the lowest observed value, so the lower limit of the first class is 

Cordelia, 13. At the lower limit of the first class, the amplitude is added to it to 

obtain the upper limit of the first class. The result is 13 + 387.5 = 400.5, so the 

upper limit of the first class will be Miranda, 235, since its distance to the value 

400.5 is 165.5, which is lower than Ariel’s distance, 578, to the value 400.5, 

which is 177.5. Consequently, Ariel, 578 will be the lower limit of the second 

48 In this case, we cannot use the data of the planets of the solar system because there are very few.
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class. The upper limit of the second class is Titania 788, which is the highest value 

observed. Since there are no more classes, the third step is finished. The boundary 

between classes: In this case, there is only one: 

b iþ1,1ð Þ þ b i,kð Þ  
2 

= 
578þ 235 

2 
= 406:5 

4. Fourth step: Determination of the representative of the data group or class brand. 

To calculate the mark of the two classes, the limits of both are taken, and the 

equation mc = 
lsþli 
2 

is applied in both cases. For the first class, the mark is 

mc = 
ls þ li 
2 

= 
13þ 235 

2 
= 124, 

and for the second class, the mark is 

mc = 
ls þ li 
2 

= 
578þ 788 

2 
683 

This step completes the grouping of the data in the two equivalence classes 

using the usual criteria. 

Once grouped, the data have been reduced by 90%, it has gone from 20 data to 

two. Once the grouping is done, only the data would be worked: 124 and 683.

• Second, we are going to group them with arbitrary criteria. The above grouping is 

correct and has been done using the usual general criteria, but it may not be the 

most correct or the most useful if the specificity of the data being analysed is 

considered. If the data are observed, it can be seen that there are 14 of them below 

100 km in radius and 11 of them below 50, so although the class mark is 

124 because the upper limit is 235 and the calculation has been moved toward 

higher values, it seems that this value is not sufficiently representative of the data 

contained in the class. Taking into account the above, so that the marks of the 

classes are more representative of the data included in the class, arbitrary criteria 

will be taken both in the selection of the number of classes, as in the amplitude of 

the same and in the limits of the classes. The grouping process is as follows: 

1. First step: Determine the number of equivalence groups or classes. It is 

arbitrarily decided to take four equivalence classes in the tens in which there 

are radius data. 

2. Second step: Obtaining the amplitude of the classes. The width of the classes is 

also arbitrarily determined to be 100 km. 

3. Third step: Obtaining the borders and the limits of the classes. The limits are 

established as the minimum and maximum values of the defined classes; 

consequently, they are 0 and 100 for the first class, 200 and 300 for the second, 

500 and 600 for the third, and 700 and 800 for the fourth.
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4. Fourth step: Determination of the representative of the data group or class 

brand. Once we have the limits, the marks of the classes are established using 

the equation mc = 
lsþli 
2 

; therefore, they are.49 

mc1 = 
ls þ li 
2 

= 
0þ 100 

2 
= 50 

mc = 
ls þ li 
2 

= 
200 þ 300 

2 
= 250, 

mc = 
ls þ li 
2 

= 
500þ 600 

2 
= 550, and 

mc = 
ls þ li 
2 

= 
700þ 800 

2 
= 750: 

In this case, once grouped, the data have been reduced by 80%, since it has 

gone from 20 to 4 data points, but although it is a lower percentage, the class 

marks are much more representative of the data that the class contains, so these 

grouping criteria, in this particular case, would be better than the usual ones.

• Third, for tens, in only the smaller ones, those whose radius is lower than 50 km. 

The obtained set is 13, 15, 16, 20, 20, 22, 27, 29, 30, 33, 34, 42. 

1. First step: Determine the number of equivalence groups or classes. It has been 

decided in the statement of the case to take five equivalence classes in the tens 

in which there are radius data, from 0 to 50, but we will not consider the first 

class between 0 and 10 because we have no data in that class. 

2. Second step: Obtaining the amplitude of the classes. The width of the classes 

has also been decided in the statement of the problem as 10 km. 

3. Third step: Obtaining the borders and the limits of the classes. The limits are 

established as the minimum and maximum values of the defined classes; 

consequently, they are 10 and 20 for the first class, 20 and 30 for the second, 

30 and 40 for the third, and 40 and 50 for the fourth. The values in the limits of 

each class can be arbitrarily joined to one of the two classes, closing the classes 

by the left or the right, but in all of them, we must have the same closure. In 

this case, we have decided to close by the left, which means that, for example, 

the two 20 belong to the second class. The classes are [10,20), [20,30), [30,40), 

[40,50). 

4. Fourth step: Determination of the representative of the data group or class 

brand. Once we have the limits, the marks of the classes are established using 

the equation mc = 
lsþli 
2 
; therefore, they are 15, 25, 35, and 45. 

49 This case is an academic example to better understand the concepts, in a real case, it would be 
impossible to have a class with only one value, nor with few values, so the problem that the only 
value of the class does not match the brand of the class is not going to occur in an environment 
real work.
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In this last part of the exercise, we must calculate the absolute frequency of each 

class, and to do that, we must count the number of observations in each class:

• We start for the first [10, 20), and we observe three values between its limits of 

10 and 20: 13, 15, and 16. For that reason, the absolute frequency of class 1 is: 

fC1 = 3.

• For the second [20, 30), and we observe five values between its limits of 20 and 

30, they are: 20, 20, 22, 27, and 29. As can be observed, the value 20 has been 

counted in this class because it is close to the left. For that reason, the absolute 

frequency of class 2 is fC2 = 5.

• For the third [30, 40), we observe three values between its limits 30 and 40: 

30, 33, 34. For that reason, the absolute frequency of class 3 is fC3 = 3.

• For the last [40, 50), we observe only one value between its limits 40 and 50, that 

is, 42. For that reason, the absolute frequency of class 4 is fC4 = 1. 

1. Calculate the mode of the data of the radio in km of the satellites of Uranus.50 

Remember that the data are Cordelia, 13; Ophelia, 16; Bianca, 22; Crésida, 33; 

Desdemona, 29; Juliet, 42; Portia, 55; Rosalinda, 27; Belinda, 34; Luna-

1986 U10, 20; Puck, 77; Miranda, 235; Ariel, 578; Umbriel, 584; Titania, 788; 

Oberon, 761; Calíbano, 30; Luna-1999 U1, 20; Sycorax, 60; Luna-1999 U2, 15. 

The mode is the most frequent value in the data, that is, the value with the 

highest absolute frequency, and if we analyse the data from the satellites of 

Uranus, we can observe that all of them have an absolute frequency of 1, which 

means that all of them appear only one time, with only one exception, the value 

20, for which there are two observations, Luna-1986 U10 and Luna-1999 U1, 

which means that the mode for the set of data of the satellites of Uranus is 2. 

2. For the smallest satellites of Uranus, with radius lower than 50 km, calculate the 

arithmetic mean for data without grouping and grouping by tens. 

If we extract the data of the smaller satellites of Uranus from the data of the 

satellites of Uranus, we obtain the set 13, 15, 16, 20, 20, 22, 27, 29, 30, 33, 34, 42. 

If we apply the calculus equations, the arithmetic mean is: 

xa = 

n 

i= 1 

xi 

n 
= 

12 

i= 1 

xi 

12 

= 
13þ 15þ 16 þ 20þ 20þ 22þ 27þ 29þ 30þ 33 þ 34þ 42 

12 
= 

= 
301 

12 
= 25:08 

Alternatively, using the equation with the absolute frequencies, we use not the 

12 values but the 11 different values because the value 20 is repeated twice: 

50 In this case, we cannot use the data of the planets of the solar system because there are very few.
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xa= 

11 

i=1 

f ixi 

Fn 
= 

1:13þ15þ16þ2:20þ22þ27þ29þ30þ33þ34þ42 

Fn 

Fn= 
11 

i=1 
f i=1þ1þ1þ2þ1þ1þ1þ1þ1þ1þ1=12 

xa = 
301 

12 
= 25:08 

Once we have calculated the mean without groups, now we are going to 

calculate it using groups of ten. For this, we use the frequency of the classes 

calculated in the previous exercise. We have four classes, the first between 10 and 

20 with a mark of the class in 15, and the rest in the following three tens, with 

marks 25, 35, and 45. For each one of those classes, we have the following 

frequencies: 3, 5, 3, 1. If we use the equation for the calculation of the arithmetic 

mean with classes and their frequencies, we have: 

xa = 

4 

i= 1 

f ixi 

Fn 
= 

3 ∙ 15þ 5 ∙ 25þ 3 ∙ 35þ 1 ∙ 45 
Fn 

Fn = 
4 

i= 1 
f i = 3þ 5þ 3 þ 1= 12 

xa = 
320 

12 
= 26:67 

If we compare the arithmetic means obtained with all the data and with data 

grouped in classes, we can see that they are different, the first is 25.08 and the 

second 26.67, which is logical because the procedures and the equations used to 

calculate both of them are different, the first is correct because it uses all the 

information and the second is only an approximation, but it is not very far from 

the correct value and reduces the cost of the calculus, or computation, because it 

reduces the number of operations, for that reason it is interesting to use it. 

3. For the smallest satellites of Uranus, calculate their variance. 

We remember that the equation to calculate the variance is: 

s2 = 

n 

i= 1 

xi - xð Þ2 

n 
= 

m 

j= 1 

f j xj - x 
2 

m 

j= 1 

f j 

The first does not use the absolute frequencies, and the second uses them. We 

apply the first to solve the problem:
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s2 = 
13- 25:08ð Þ2 þ . . .þ 2 20- 25:08ð Þ2 þ 42- 25:08ð Þ2 

12 
= 71:91 

4. For the smallest satellites of Uranus, calculate their standard or typical deviation 

for data without grouping and grouped by tens. 

We remember that the equation to calculate the standard deviation is: 

s= 

n 

i= 1 

xi - xð Þ2 

n 
= 

m 

j= 1 

f j xj - x 
2 

m 

j= 1 

f j 

We use the first to calculate the standard deviation with the data without 

grouping: 

s= 
13- 25:08ð Þ2 þ . . .  þ 20- 25:08ð Þ2 þ . . .  þ 42- 25:08ð Þ2 

12 
= 8:48 

And the second, with frequencies for the data grouped by tens: 

s= =  
3: 15- 26:67ð Þ2 þ 5 25- 26:67ð Þ2 þ 3 35- 26:67ð Þ2 þ 45- 26:67ð 2 

12 
= 7:07 

5. Analyse the representativeness of the mean for the following set of data of the 

rotation period of the Solar System planets: {Mercury, 58; Venus, 0.4; Earth, 1; 

Mars, 1; Jupiter, 0.4; Saturn, 0.4; Uranus, 0.7; Neptune, 0.7}. 

In the previous exercises, the mean, the variance, and the standard deviation have 

been calculated, but the last ones have not been used to analyse how good the mean 

is as representative of the data set. To better understand the concepts of arithmetic 

mean and standard deviation and the use of the standard deviation to know how good 

the mean is as representative of the data and if it is valid to use it for that, we calculate 

both measurements first for all the data in the set and then for all the data except 

Mercury. For all the data applying the equations, we have: 

xa = 

n 

i= 1 

xi 

n 
= 

8 

i= 1 

xi 

8 
= 

58þ 0:4þ 1þ 1 þ 0:4þ 0:4þ 0:7þ 0:7 
8 

= 
62:6 
8 

xa = 7:83
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If we would use frequencies, the equation would be: 

xa = 

m 

j= 1 

f ixi 

Fm 
= 

m 

j= 1 

f jxj 

Fm 
= 

1:58 þ 3:0, 4þ 2:1þ 2:07 
Fn 

Fn = 
m 

j= 1 
f j = 

4 

j= 1 
f j = 1þ 3þ 2þ 2= 8 

xa = 
62:6 
8 

= 7:83 

Both results are the same, but the second has less calculus than the first, and it is 

important to note that i goes up to 8 because it takes into account all eight data points, 

but j goes up to 4 because it takes into account only the different four data points. For 

that reason, we use n for the limit of the first and m for the limit of the second. 

Now, let us calculate the standard deviation: 

s= 

n 

i= 1 

xi - xð Þ2 

n 
= 

58- 7:83ð Þ2 þ 0:4- 7:83ð Þ2 þ 0:4- 7:83ð Þ2 þ 0:4- 7:83ð Þ2 

þ 1- 7:83ð Þ2 þ 1- 7:83ð Þ2 þ 0:7- 7:83ð Þ2 þ 0:7- 7:83ð Þ2 
8 

= 
2877:61 

8 
= 18:97 

Let us now calculate it for all data except Mercury. Applying the equations, we 

have for the mean: 

xa = 

7 

i= 1 

xi 

7 
= 

0:4þ 1þ 1þ 0:4þ 0:4 þ 0:7 þ 0:7 
7 

= 
4:6 
7 

= 0:66 

For the standard deviation: 

s= 

n 

i= 1 

xi - xð  Þ2 

n 
=



120 Data

0:4- 0:66ð Þ2 þ 0:4- 0:66ð Þ2 þ 0:4- 0:66ð Þ2 þ 1- 0:66ð Þ2 

þ 1- 0:66ð Þ2 þ 0:7- 0:66ð Þ2 þ 0:7- 0:66ð Þ2 
8 

= 
0:51 
7 

= 0:07 

As seen, in both cases, values for the mean and the standard deviation have been 

obtained because when applying the equations, results will always be obtained, but 

the meaning, that is, the representativeness of both results, is very different. If the 

values are observed carefully, it can be seen that the Mercury data are clearly very 

different from the rest of the values since all the others have a value equal to or less 

than 1, with a minimum of 0.4, and Mercury has a value of 58, that is, it is 58 times 

greater than the largest of the rest of the values and 145 times greater than the 

smallest of the rest of the values. Therefore, when the average is calculated, the 

weight of mercury is very large and causes an average of almost 8 days to be 

obtained, which is very different from all values, including mercury, and therefore 

is a meaningless value that does not represent the whole. To corroborate this 

conclusion, when the standard deviation is calculated, it is seen that it is a very 

large value, almost three times higher than the mean. 

In the second calculation, when the Mercury value is eliminated, the mean 

obtained is 0.56, which is quite representative of the values of that subset, since 

there are two values that are 1, two that are 0.7, and three that are 0.4, so in this case 

the mean makes sense and all the values of the set could be substituted for the mean, 

since only by observing the mean, without seeing any other value, we would know 

that the rotation periods of the planets of the solar system are lower than those of the 

Earth and are approximately 60% of that period. In addition, when the standard 

deviation is calculated, a value that is eight times lower than the mean is obtained, so 

it can be seen that said mean is a very good representative of the data, since they 

differ very little around it. 

6. For the smallest satellites of Uranus, order them and calculate their range. 

We remember that the data of the satellites of Uranus are Cordelia, 13; 

Ophelia, 16; Bianca, 22; Crésida, 33; Desdemona, 29; Juliet, 42; Portia, 55; 

Rosalinda, 27; Belinda, 34; Luna-1986 U10, 20; Puck, 77; Miranda, 235; Ariel, 

578; Umbriel, 584; Titania, 788; Oberon, 761; Calíbano, 30; Luna-1999 U1, 20; 

Sycorax, 60; and Luna-1999 U2, 15. For these data, the statement of problem 

only asks us for the smallest ones, and we know that those ones are those with a 

radius less than 50 km, that is, the following twelve: Cordelia, 13; Ophelia, 16; 

Bianca, 22; Crésida, 33; Desdemona, 29; Juliet, 42; Rosalinda, 27; Belinda, 34; 

Luna-1986 U10, 20; Calíbano, 30; Luna-1999 U1, 20; Luna-1999 U2, 15. 

And we now must order them using the value of their radius, from the lowest 

to the highest that is: Cordelia, 13; Luna-1999 U2, 15; Ophelia, 16; Luna-

1999 U1, 20; Luna-1986 U10, 20; Bianca, 22; Rosalinda, 27; Desdemona, 29; 

Calíbano, 30; Crésida, 33; Belinda, 34; Juliet, 42.
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Once we have ordered them, we can calculate their range as the rest of the 

highest values less the lowest ones are Juliet, 42 and Cordelia, 13, and the range is 

range= 42- 13= 29 

7. For the smallest satellites of Uranus, calculate their median. 

To calculate the median of the smallest satellites of Uranus, we must start from 

their ordination, done in the previous exercise, that is, Cordelia, 13; Luna-

1999 U2, 15; Ophelia, 16; Luna-1999 U1, 20; Luna-1986 U10, 20; Bianca, 22; 

Rosalinda, 27; Desdemona, 29; Calíbano, 30; Crésida, 33; Belinda, 34; Juliet, 

42, and apply the equations of calculus of the median, that are: 

~x= 

xn=2 þ x n=2ð Þþ1 

2 
if n is even 

and 

~x= x nþ1ð Þ=2 if n is odd 

As we have 12 satellites, n = 12, is even and the equation to be applied is the first 

one, the result is: 

~x= 

xn=2 þ x n=2ð Þþ1 

2 
= 

x6 þ x7 
2 

= 
22þ 27 

2 
= 24:5 

x6 is 22 because the ordered set is (13, 15, 16, 20, 20, 22, 27, 29, 30, 33, 34, 42), 

and the sixth value is 22. 

8. For the smallest satellites of Uranus, calculate their quartiles. 

To solve this problem, we start again from the ordered set of values of the 

Uranus satellites (13, 15, 16, 20, 20, 22, 27, 29, 30, 33, 34, 42) and apply the 

equation to calculate the quartiles, which are: 

if nc =2 ℕ : ~xc = x nc½ ]þ1 nc½ ] integer part of nc 

if nc 2 ℕ : ~xc = 
xnc þ xncþ1 

2 

c means quartile, and it will take the values 1/4, 2/4, and 3/4; and n is the total 

number of data. 

We start calculating the first quartile, in this case n = 12 and c = 1/4, which 

means that: 

nc= 12: 
1 

4 
= 3 2 ℕ 

and we must apply the second equation
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~xc = 
xnc þ xncþ1 

2 
→~x1 

4 
= 

x3 þ x4 
2 

= 
16þ 20 

2 
= 18 

We are not going to calculate the second quartile because it is the same as the 

median, and we have calculated it in the previous exercise. 

For the third: 

nc= 12: 
3 

4 
= 9 2 ℕ 

and we must apply the second equation 

~xc = 
xnc þ xncþ1 

2 
→~x3 

4 
= 

x9 þ x10 
2 

= 
30 þ 33 

2 
= 31:5 

9. For the smallest satellites of Uranus, calculate the percentile 54. 

We start again from the ordered set of data (13, 15, 16, 20, 20, 22, 27, 29, 

30, 33, 34, 42) and apply the equation to calculate the percentile. As with the 

quartiles, we have two: 

if np =2 ℕ : ~xp = x np½ ]þ1 np½ ] integer part of np: 

if np 2 ℕ : ~xc = 
xnp þ xnpþ1 

2 

For that reason, the first calculation that we must perform is np to know which 

equation applies 

np= 12: 
54 

100 
= 6:48 =2 ℕ 

Consequently, the equation is: 

~xp = x np½ ]þ1 →~x54=100 = x 6:48½ ]þ1 = x6þ1 = x7 = 27 

Exercises Solved in R 

In this section, previous exercises 6–19 will be solved using the R software. 

Once we have presented the R environment and the RGUI, we are ready to start to 

solve using R the cases that have been theoretically solved in this lesson about Data 

and its description, applying all the concepts introduced in the lesson, that is, for 

each of the files, we are going to calculate all the magnitudes seen in the subject. We 

are going to obtain the frequencies, the mean, which will be the arithmetic; the



measures of dispersion, standard deviation and variance, and the measures of 

ordering, median and quartiles, including percentile 54. To solve this exercise, we 

will use a file of data that will be of type .txt, that is, plain text, and it will be made up 

of the data from the minor satellites of Uranus that we have used in the theoretical 

description of the subject, which we will call satellites.txt.51 Note that exercises 1–5 

cannot be solved in R, so we begin with exercise 6. 
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10. The rotation period data, in days, of the planets of the solar system are Mercury, 

58; Venus, 0.4; Earth, 1; Mars, 1; Jupiter, 0.4; Saturn, 0.4; Uranus, 0.7; and 

Neptune, 0.7. These new data give the absolute frequency. 

Remember that the first step to work in R is to create the file that contains the data 

of the rotation periods and save it with a name, for example, periods.txt: 

Planet Period 

1 Mercury 58 

2 Venus 0.4 

3 Earth 1 

4 Mars 1 

5 Jupiter 0.4 

6 Saturn 0.4 

7 Uranus 0.7 

8 Neptune 0.7 

Once we have saved the above data in a file, the next step is to load the file with 

the command: 

p< - read:table } periods:txt} 

To obtain the absolute frequency of the variable Period, which we call 

freqabsperiod, we use the table () function, and as an argument, we introduce the 

variable for which we want to obtain its absolute frequency, which is Period. The full 

instructions are as follows: 

> freqabsperiod< - table p $ Periodð Þ  

To see the result, we enter 

> freqabsperiod 

51 (Satellite name, radius in km): Cordelia, 13; Ophelia, 16; Bianca, 22; Crésida, 33; Desdemona, 
29; Juliet, 42; Rosalinda, 27; Belinda, 34; Luna-1986 U10, 20; Calíbano, 30; Luna-999 U1, 20; 
Moon 1999 U2, 15.
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0.4 0.7 1 58 

That result is the same as the result that we obtained in the handmade exercise: the 

value 0.4 is repeated 3 times, on Venus, Jupiter, and Saturn; data 0.7 appears 2 times, 

on Uranus and Neptune; 1 appears 2 times, on Earth and Mars; and 58 appears 

1 time, on Mercury. Therefore, the frequencies for each one of the four possible 

values (0.4, 0.7, 1, 58) are f1 = 3; f2 = 2; f3 = 2; f4 = 1. 

11. Calculate the relative frequency of the previous data. 

We remember that there is no function in R to calculate the relative frequency, so 

we generate one that we call freqrelperiod. To define a function, we will again use 

the function function () to which we will give as an argument the input variable that it 

will have, which will be x, and then, between braces, we will put the definition of the 

function. The complete instruction will be 

freqrel< - function xð Þ  table xð Þ=length xð Þf  

As we know the freqrel function would only work in this execution of the 

program, if we wanted to save it to use it in other executions, we would use the 

dump () function that would save it in the working directory, and the complete 

instruction would be: 

dump } freqrel} , file= } freqrel:R} 

As we know, to load the function in other executions of the program, we would 

use the source () function, and the complete instruction would be: 

source } freqrel:R} 

Next, for the variable x, we assign the value of the rotation period of the planets, 

and the complete instruction is: 

x= p $ Period 

Finally, we calculate the value of the relative frequency function to which we will 

assign the name freqrelperiod, and the complete instruction is: 

freqrelperiod< - freqrel xð Þ  

To see the result, we enter 

Freqrelperiod
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0.4 0.7 1 58 

0.375 0.250 0.250 0.125 

That result is the same as the result that we obtained in the handmade exercise. 

It can be easily verified that the sum of the relative frequencies is equal to 1. 

12. Calculate the accumulated absolute and relative frequency of the previous data. 

To calculate the accumulated relative frequency, which we call freqrel-

acumperiod, we do the same as in the case of the absolute frequency, and we use 

the cumsum ( ) function. In this case, we introduce the relative frequency of the 

rotation period as an argument. The complete instruction is: 

freqrelacumperiod< - cumsum freqrelperiodð Þ  

To see the result, we enter 

freqrelacumperiod 

0.4 0.7 1 58 

0.375 0.625 0.875 1.000 

That result is the same as the result that we obtained in the handmade exercise. 

Remember that 1 is the amount that we ever must obtain when we calculate the 

accumulated relative frequency of the highest value. 

13. Give the frequency distribution of the previously calculated frequencies. 

The frequency distribution is directly obtained from the above exercises: 

0:4, 0:375ð Þ, 0:7, 0:625ð Þ, 1, 0:875ð Þ, 58, 1ð Þf : 

14. Perform data grouping and give the equivalence classes using data from the 

satellites of Uranus.52 Calculate the absolute frequency of each class. The 

characteristic that we are going to analyse is the radius in kilometres of the 

satellites. They are Cordelia, 13; Ophelia, 16; Bianca, 22; Crésida, 33; Desde-

mona, 29; Juliet, 42; Portia, 55; Rosalinda, 27; Belinda, 34; Luna-1986 U10, 20; 

Puck, 77; Miranda, 235; Ariel, 578; Umbriel, 584; Titania, 788; Oberon, 761; 

Calíbano, 30; Luna-1999 U1, 20; Sycorax, 60; Luna-1999 U2, 15. 

Remember that the first step to work in R is to create the file that contains the data 

of the radius of the satellites and save it with a name, for example, satellites.txt: 

52 In this case, we cannot use the data of the planets of the solar system because there are very few.
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Name Radius 

1 Cordelia 13 

2 Ofelia 16 

3 Bianca 22 

4 Cresida 33 

5 Desdemona 29 

6 Julieta 42 

7 Rosalinda 27 

8 Belinda 34 

9 Luna-1986 U10 20 

10 Calibano 30 

11 Luna-999 U1 20 

12 Luna-1999 U2 15 

Once we have saved the above data in a file, the next step is to load the file with 

the command: 

s< - read:table } satellites:txt} 

We group the data into four intervals as follows: 

10, 20½ Þ  
20, 30½ Þ  
30, 40½ Þ  
40, 50½ Þ  

To do that, the first thing that we have to do is to define a vector L that will contain 

the extremes of the intervals: 

L= 10þ 10* 0 : 4ð Þ  

Next, we use the function cut to generate the intervals: 

s int= cut s $ Radius, breaks=L, right= FALSEð  

Finally, to obtain the absolute frequency of each class, we enter: 

table s intð Þ  

[10,20) [20,30) [30,40) [40,50)
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15. Calculate the mode of the data of the radius in km of the satellites of Uranus.53 

Remember that the data are Cordelia, 13; Ophelia, 16; Bianca, 22; Crésida, 33; 

Desdemona, 29; Juliet, 42; Portia, 55; Rosalinda, 27; Belinda, 34; Luna-

1986 U10, 20; Puck, 77; Miranda, 235; Ariel, 578; Umbriel, 584; Titania, 

788; Oberon, 761; Calíbano, 30; Luna-1999 U1, 20; Sycorax, 60; Luna-

1999 U2, 15. 

Since the mode is the most frequent value in the data, that is, the value with 

the highest absolute frequency, we calculate the absolute frequencies of the 

variable Radius. The instruction is: 

table s $ Radiusð Þ  

13 15 16 20 22 27 29 30 33 34 42 

As we can see, each satellite has an absolute frequency of 1, which means that all 

of them appear only one time, with only one exception, the value 20, for which there 

are two observations, Luna-1986 U10 and Luna-1999 U1, which means that the 

mode for the set of data of the satellites of Uranus is 2. 

16. For the smallest satellites of Uranus, with radius lower than 50 km, calculate the 

arithmetic mean for data without grouping. 

To calculate the mean, which we call mr, we use the mean ( ) function, and as an 

argument, we introduce the variable that in this case, when found within a matrix, we 

know that it is s $ Radius, the complete instruction is: 

mr< -mean s $ Radiusð Þ  

To see the result, we enter: 

mr 

17. 25.08333, which is the same as the result that we obtained in the handmade 

exercise. 

18. For the smallest satellites of Uranus, calculate their variance. 

The variance is calculated with the function var (), so the instruction will be: 

varr< - var s $ Radiusð Þ  

To see the result, we enter: 

53 In this case, we cannot use the data of the planets of the solar system because there are very few.
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varr 

78:44697 

In this case, the result is not the same as the result obtained in the handmade 

exercise, which was 71.91, because the formula used in the R software divides by 

11 (n–1) instead of dividing by 12 (n). Therefore, to obtain the same results, you 

have to perform the operation: 

varr= varr* 11=12 

We check that we already obtain the same as in the handmade exercise by 

introducing varr again. 

19. For the smallest satellites of Uranus, calculate their standard or typical deviation. 

The standard deviation is calculated with the function sd (), so the instruction 

will be: 

sdr< - sd s $ Radiusð Þ  

To see the result, we enter: 

sdr 

8:857029 

In this case, the result is not the same as the result obtained in the handmade 

exercise, which was 8.48, because the formula used in the R software divides by 

11 (n–1) instead of dividing by 12 (n). Therefore, to obtain the same results, you 

have to perform the operation 

sdr= sqrt sdr2
*
11=12 

We check that we already obtain the same as in the handmade exercise by 

introducing sdr again. 

20. Analyse the representativeness of the mean for the following set of data of the 

rotation period of the Solar System planets: {Mercury, 58; Venus, 0.4; Earth, 1; 

Mars, 1; Jupiter, 0.4; Saturn, 0.4; Uranus, 0.7; Neptune, 0.7}. 

To analyse the representativeness of the mean, the first step is to calculate the 

mean with the following instruction: 

mp< -mean p $ Periodð Þ
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To see the result, we enter: 

mp 

7:825 

The next step is to obtain the standard deviation as follows: 

sdp< - sd p $ Periodð Þ  

sdp 

20:2753 

As we saw in the handmade exercise, if the values are observed carefully, it 

can be seen that the Mercury data are clearly very different from the rest of the 

values since all the others have a value equal to or less than 1, with a minimum 

of 0.4, and Mercury has a value of 58, that is, it is 58 times greater than the 

largest of the rest of the values and 145 times greater than the smallest of the rest 

of the values. Therefore, when the average is calculated, the weight of mercury 

is very large and causes an average of almost 8 days to be obtained, which is 

very different from all values, including mercury, and therefore is a meaningless 

value that does not represent the whole. To corroborate this conclusion, when 

the standard deviation is calculated, it is seen that it is a very large value, almost 

three times higher than the mean. 

21. For the smallest satellites of Uranus, order them and calculate their range. 

The instruction order allows us to order the data indicated as an argument. In 

this case, we want to order the data from the lowest to the highest, so the second 

argument must be set to false, as follows: 

os< - order s $ Radius, decreasing= FALSEð  

Since the output of that instruction is the index of each element in the vector, 

we have to enter the following instruction to obtain the ordered data: 

s $ Radiusð Þ  os½ ]
13 15 16 20 20 22 27 29 30 33 34 42 

Finally, to calculate the range, we use the command: 

max s $ Radiusð Þ- min s $ Radiusð Þ  
29
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That result is the same as the result that we obtained in the handmade 

exercise. 

22. For the smallest satellites of Uranus, calculate their median. 

To obtain the median of the radius, we must enter the following instruction: 

medianr< -median s $ Radiusð Þ  

To see the result, we enter: 

medianr 

24:5 

That result is the same as the result that we obtained in the handmade 

exercise. 

23. For the smallest satellites of Uranus, calculate their quartiles. 

To obtain the first quartile, we have to enter the following instruction: 

quar1r< - quantile s $ Radius, 0:25ð Þ  

To see the result, we enter: 

quar1r 

19 

To obtain the second quartile, we have to enter the following instruction: 

quar2r< - quantile s $ Radius, 0:5ð Þ  

To see the result, we enter: 

quar2r 

24:5 

We can see that the second quartile coincides with the median. 

Finally, to obtain the third quartile we have to enter the following instruction: 

quar3r< - quantile s $ Radius, 0:75ð Þ  

To see the result, we enter 

quar3r
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30:75 

We see that in this case, the results are not the same as in the handmade 

exercise because the equations used in the R software are different. 

24. For the smallest satellites of Uranus, calculate the percentile 54. 

To obtain the 54th percentile, we have to enter the following instruction: 

quar54r< - quantile s $ Radius, 0:54ð Þ  

To see the result, we enter 

quar54r 

26:7 

We see that in this case, the results are not the same as in the handmade 

exercise because the equations used in the R software are different. 

Annex. Data Extended Concepts 

Frequency 

Extended concepts about frequency 

Absolute Frequency 

Another, more mathematical formal definition of the absolute frequency is the 

following: Let be an m-tuple b. For each element of b, bi, the absolute frequency 

of bi is equal to the number of elements of its equivalence class, and each different 

value of b constitutes an equivalence class. The equivalence classes of the m-tuple b 

will be written as the n-tuple a. Each of the elements of a, ai will correspond to the 

subset of elements of b belonging to the equivalence class whose representative is 

a_i. The cardinal of that subset corresponds to the absolute frequency of ai. There-

fore, a bijective correspondence can be established between the n-tuple a and the 

n-tuple f corresponding to the absolute frequencies of each of the elements of a. 

We will present a complete example of calculating the absolute frequency of an 

m-tuple of data b. Suppose that b= 2, 2, 3, 8, 9, 9, 9, 6, 7, 7, 7, 7f , with which 

m = 12 because we have 12 data points, that is, we have a 12-tuple. Starting from 

the tuple b, we construct the tuple a as the equivalence classes of b, that is, the 

different values of b. Consequently, the tuple a is equal to a= 2, 3, 8, 9, 6, 7f . Each 

element of a corresponds to a subset of elements of b belonging to the equivalence 

class whose representative is ai. Consequently, for a1 = 2, it corresponds to the
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subset of 2 elements formed by b1 and b2, whose value is 2. For a2 = 3 corresponds a 

subset of only element b3 whose value is 3. For a3 = 8 corresponds also a subset of 

only element b4 whose value is 8. For a4 = 9, corresponds to the subset of 3 elements 

formed b5, b6 and b7 whose value is 9. For a5 = 6 there also corresponds a subset of 

only element b8 whose value is 6. And finally for a6 = 7 there corresponds a subset 

of 4 elements formed by b9, b10, b11 and b12. The cardinals of each subset are the 

absolute frequencies corresponding to each element of a= 2, 3, 8, 9, 6, 7f , conse-

quently the set of absolute frequencies is f = 2, 1, 1, 3, 1, 4f g. By using the values of 
the absolute frequencies, we went from having to work with 12 data to work with 

6 data. 
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From the concept of absolute frequency, the concept of weight can be defined, as 

follows: Let a be an n-tuple, if, for its data analytics treatment, we want to give a 

different importance to each of the elements of a, the concept of element weight is 

used, in such a way that a bijective correspondence is established between the 

n-tuple a and the n-tuple w corresponding to the weights of each of the elements 

of a. The statistical treatment, as will be seen later, of the absolute frequency and the 

weight of the elements of a is analogous. For this reason, the mathematical expres-

sions will refer only to the weights w. To obtain them as a function of the absolute 

frequencies, we only have to change w by f . 

Let’s see a complete example of defining the weight of an n-tuple of data 

a. Suppose that a= 2, 3, 8, 9, 6, 7f g, with which n = 6 because we have 6 data, 

that is, we have a 6-tuple. Now suppose that for our study the importance of all the 

values of a is not the same (for example in the case of test scores with different 

values) and that the first value is worth twice as much as the second and the third and 

the fifth, the fourth value is worth three times as much as the second, third, and fifth, 

and the sixth value is worth four times as much as the second, third, and fifth. This 

can be reflected by a bijective association of a new tuple of weights w= 

2, 3, 8, 9, 6, 7f g with the tuple a. 

Relative Frequency 

Using again the concept of n-tuple as with the absolute frequency, the definition of 

relative frequency is the following one: 

The relative frequency is the number of occurrences of a given data divided by the 

amount of data. From a more formal point of view, it is defined as: The n-tuple f 

corresponds to the absolute frequencies of each of the elements of a. If each of the 

elements of f is divided by the cardinal54 of f , that is, between m, the n-tuple f r 
corresponding to the relative frequencies of each of the elements of a is their relative 

frequencies. 

54 See in the definition of n-tuple how the n-tuple f was defined.
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The n-tuple w corresponds to the weights of each of the elements of a: If each of 
the elements of w is divided by the cardinal of w, we obtain the n-tuple wr 

corresponding to the relative weights of each of the elements of a. 

The treatment of the relative frequency and relative weight of the elements of a is 

analogous. For this reason, the mathematical expressions will refer only to the 

relative weights wr. To obtain them as a function of the relative frequencies, we 

only have to change wr by f r. 

Cumulative Frequency 

Using the concept of tuple all the previous definitions of frequency are 

complemented with the concept of frequency and its associated definitions. The 

accumulated frequency is: with the data ordered by magnitude, the sum of the 

absolute or relative frequencies of the data below the data plus that of the data. 

From a more formal point of view it is defined as: Given two n-tuples a and f , the 

accumulated absolute frequency of a with frequency f up to the value ak is: 

Fk a; f = 
k 

i= 1 
f 

Given two n-tuples a and w the cumulative weight of a a with weight w up to the 

value ak is: 

Wk a;wð Þ= 
k 

i= 1 
w 

Given two n-tuples a and f r the cumulative relative frequency of a a with a 

relative frequency f r up to the value ak is: 

Frk a; f r = 
k 

i= 1 
f r 

Frequency Distribution 

From a more formal point of view, it is defined as: The pairs of tuples a; f and 

a; f r are called frequency distributions. The first is the absolute frequency distri-

bution and the second the relative frequency distribution
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Mean 

Extended concepts about Mean 

Geometric Mean 

Other55 concepts related to the concept of mean that can be useful in the description 

of the set of data that is being analysed are introduced in this section. They are other 

definitions of the mean, needed in specific situations and other definitions of the data 

dispersion. For all the means for data grouped in equivalence classes, the concept of 

data is changed to that of class. 

The Geometric56 mean must be used in specific situations, for example, when the 

data in the set are related by a function in which each data in the ordered set is 

obtained from the previous one multiplied by an index, that are growing data. The 

calculation equation is: 

xg = 

n 

i= 1 

xi 

1=n 

And using absolute frequencies, of the j different values, the equation is: 

xg = 

m 

j= 1 

x 
f j 
j 

1= 
m 

j= 1 

f j 

If dataset has only two data with different values, it is called as Proportional 

Mean, and its equation is: 

xg = 

2 

i= 1 

xi 

1=2 

If weights are used, the equation for the calculus of the geometric mean is: 

55 They have not been introduced in the previous section about the mean because they are 
significantly less used than the concepts present there and maintain a rhythm of the reading and 
study have prevalence. For this reason they are presented in this last section of the lesson. 
56 From a geometric point of view, the geometric mean of the sides of a rectangle gives the side of a 
square of equal area. The geometric mean of 3 numbers a, b, and c is the length of a face of a cube 
whose volume is the same as the cuboid whose sides are the length of the initial numbers.
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xg = 

n 

i= 1 

a
wi 

i 

1= 
m 

i= 1 

wi 

Moore established in 1965 that the number of transistors in an integrated circuit 

would double every year. In 1975, he amended his own law and stated that it would 

double every two years. Taking into account the following data on processors, 

creation dates, and number of transistors, reasonably indicate whether, in 1973, 

Moore had reason to think about modifying his law statement. (Processor name, 

creation date, number of transistors): 4004, 1971, 2300; 8008, 1972, 3500; 8080, 

1973, 4500; 8086, 1978, 29,000; 286, 1982, 134,000; 386, 1985, 275,000 

The solution is: In 1971, the 4004 processor had 2300 transistors. In 1972, the 

8008 processor had 3500. Consequently, the growth rate during 1971 was: 

3500 = 2300.x1 → x1 = 1.52. In 1973 the 8080 processor had 4500 transistors. 

Consequently, the growth rate during 1972 was: 4500 = 3500.x2 → x2 = 1.29. The 

mean to apply is geometric because the indices multiply the previous value: 

xg = 

2 

i= 1 

x
f i 
i 

1=F2 

= 

1, 521 :1, 291
2 

F2 = 
2 

i= 1 
f i = 1þ 1= 2 

xa = 1, 96= 1, 4 

1, 4< 2=1,4:1,4= 1, 96 ~ 2 

He had reasons to change his law 

Harmonic Mean 

The harmonic mean57 is used in same specific problems, for example in cinematics. 

The calculation equation is: 

xh = 
n 

n 

i= 1 

1 
xi 

And using absolute frequencies, of the j different values, the equation is: 

57 The first documents on the use of the Harmonic mean belong to the Egyptian civilization. They 
described the decomposition of a fraction into an equivalent sum of unit fractions, the original 
fraction being the harmonic mean of the denominators of the unit fractions.
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xh = 

n 

i= 1 

f i 

n 

i= 1 

f i 
xi 

If weights are used, the equation for the calculus of the geometric mean is: 

xh = 
Wn 

n 

i= 1 

wi 

ai 

The first flight of the Boeing 747 took place between New York and London on 

January 21, 1970, at a speed of 895 km/h. If one-tenth of Moore’s law of 1975 had 

been applied to aviation and the speed of airplanes had doubled every 20 years since 

then, what would be the average speed of a round-trip flight between New York and 

London, if the first leg were made at the speed of 1970 and the return at the speed of 

2010? 

Solution: In 1970, the speed was 895 km/h. The speed doubles every 20 years. 

Consequently, from 1970 to 2010 it would have doubled twice: 895.2.2 = 3580 km / 

h 

The average to be applied at speeds is the harmonic. 

xar = 
F2 

2 

i= 1 

f i 
xi 

= 

2 
1 

895
þ 1 

3580 

F2 = 
2 

i= 1 
f i = 1þ 1= 2 

xa = 1432 km=h 

Potential Mean 

Once the Arithmetic, Geometric, and Harmonic means are known is the moment to 

introduce the Potential Mean, because is their natural extension and include inside all 

of them, as we are going to see from its equation: 

xp = 

n 

i= 1 

xr i 

n 

1=r 

, si  r 2 ℝ
*

n 

i= 1 

xi 

1=n 

, si  r= 0 

And using absolute frequencies, of the j different values, the equation is:
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xp = 

n 

i= 1 

xr i 

n 

1=r 

, si  r 2 

m 

j= 1 

x 
f j 
j 

1= 
m 

j= 1 

f j 

, si  r= 0 

We can see that depending on the values of R we have:

• If r = 1, we have the Arithmetic mean

• If r = 1, we have the Geometric mean

• If r = - 1, we have the Harmonic mean

• And there is another particular case that is if r = 2 that is called Quadratic Mean 

and its equation is: 

xc = 

n 

i= 1 

x2 i 

n 

1=2 

, si  r= 2 

Mean Deviation 

As we saw, in the standard deviation we elevated to the square the differences 

between each value and the mean to the square to avoid that those values which the 

mean was higher than the data compensate those ones which the data were lower 

than the mean, and obtain a low value for the standard deviation being all the values 

very different from the mean and, in consequence, to avoid to say that taking into 

account the low value of the standard deviation to say that the mean is a good 

representative of the data when it is not. 

Another possibility to avoid using the square of the difference and in consequence 

do not need to use the squared root is to use the absolute value of the differences 

between the mean and each value. If we do that, we have a new definition for the 

deviation, the mean deviation, and a new equation for its calculus, that is: 

s= 

n 

i= 1 

xi - xj j  

n 
= 

m 

j= 1 

f j xj - x 

m 

j= 1 

f j 

The mean deviation is less used than the standard deviation because reasons related 

to its use for inference problems, where the standard deviation is more suitable.
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In this third chapter, we are going to see the essential aspects related to the concept of 

Probability. As in the previous chapters and the coming ones, it is structured in three 

sections. 

Section A introduces, in a theoretical and, at the same time, practical way, all the 

basic theoretical knowledge related to the concept of Probability that a Data Analyst 

should know in depth, from its definition to the related concepts that will be applied 

in the analysis of the data set under study. 

Section B presents the computer-based solving of the same examples used in 

section A to introduce the theoretical knowledge. 

Section C will consist of a set of statements of exercises about Probability for 

which detailed solutions can also be found in this section of the chapter.1 

In this chapter, as in the previous chapter, the reader can find an Annex with an 

extended version of some of the concepts treated in the chapter, such as the 

Kolmogorov or Axiomatic Probability. 

A. Theory 

This first section of the chapter is structured in six subsections: 1. Introduction, 

2. Event, 3. Set Theory Axioms and Operations, 4. Laplace or Classic Probability, 

5. Bayesian Probability, 6. Probability Distribution of Random Variables. The basic 

knowledge related to the concept of data and the initial description of the available 

data are presented in detail. 

1 As was said in the first two chapters, but it is very important in order to obtain the best results for 
the learning process throughout the use of the book, that the reader tries to solve the exercises by 
himself before seeing their solutions, and that only once solved check if the obtained solutions are 
correct. 
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Introduction 

Mastering the concept of probability and all the knowledge associated with it is 

fundamental in the study of Data, since it allows us to study and analyse its concepts 

not only to the observed data, or certain data but also to carry out studies or 

inferences about the data not observed, or probable, that is to say, make an inference. 

That is, the conclusions obtained for a sample can be extended to a population. In 

addition, the knowledge of probability allows a better understanding of many Data 

Science concepts, such as the support and confidence parameters in association 

studies. Consequently, understanding probability is essential when studying data 

science. 

In the previous chapter, it was studied that one or more characteristics define an 

object and that the data are the values that this or those characteristics have when 

observations of the same obtained in an experiment are made. However, as has 

already been advanced in the previous chapter, both concepts, characteristics, and 

data, can be expanded when they belong to a sample that does not contain the whole 

population. It introduces the concept of probability into the study, since from the 

concept of probability, the values of the data of the characteristics with which he 

works may not only be the values obtained in the observations, and therefore totally 

true, but they may also be unobserved or probable values, and therefore with a 

percentage of uncertainty. This will lead to the characteristics, although they con-

tinue to have exactly the same definition as in the previous chapter, to be called 

random variables. 

Considering what was said in the previous paragraph, it is easy to deduce that the 

introduction of the concept of probability and all the knowledge associated with it is 

very important in the study of statistics since it allows us to apply its concepts not 

only to the observed data or truth but also to carry out studies or inferences on the 

unobserved or probable data. In other words, the conclusions obtained for a sample 

can be extended to a population. This extension is known as performing statistical 

inference. In the following subsections, the concept will be deepened, and all the 

basic knowledge about probability that is essential to know to apply it in the study of 

data science will be introduced. 

In this chapter, the fundamentals of probability theory will be studied. Before 

studying the concept of the random variable and its use in data science through 

probability functions, which will be seen in the next chapter, it is essential to 

understand in depth the concepts of event and probability and all the mathematics 

associated with them. This chapter begins by introducing the concept of a random 

event, which is very important to understand well before approaching the concept of 

probability. Next, we will study classical or Laplace probability, in which we will 

study the definition of probability and the associated concepts and the properties of 

probability. The next subsection presents the conditional probability from which the 

Bayesian probability is introduced. For those readers interested in a more rigorous 

mathematical approach to the concept of probability, in the annex under the title of 

Kolmogorov’s axiomatic probability, advanced concepts of probability will be



presented. In this subsection, the concepts related to the basic probability will be 

deepened, with a greater mathematical component, and new ones will be introduced. 

In addition, in the annex, the aspects of combinatorial mathematics necessary to 

solve the counting aspects implicit in the study of probability problems are intro-

duced. In this chapter, we use games of chance and especially the throwing of dice as 

the domain of the examples. 
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Event 

In this first part of the chapter, the event concept and the related concepts are 

introduced, which are necessary/important to understand the concept of probability. 

We begin this topic by studying the concept of random events and the concepts 

associated with them. However, before introducing the concept of a random event, 

we have to remember the definition of a previous concept that was introduced in the 

previous chapter, namely, the concept of a random experiment, which we remember 

can be defined as conducting an experiment is, according to the dictionary, “test and 

examine practically the virtue and properties of something”, and random, is “that it 

depends on chance”; thus, we can define a random experiment as a test or practical 

test of something that depends on chance. 

From the previous definition of the experiment, we can understand the definition 

of a random event. An event can be defined as follows: “In a random experiment, a 

subset of the total possible results”; and an event can also be defined as “a set of 

results of interest”. 

From the definition of a random experiment, it can be concluded that the result to 

be produced cannot be known a priori, but what can be known a priori is the set of all 

elementary results that can be produced. Taking this into account, we can define an 

elemental event as each of the simplest results that can occur in conducting a random 

experiment. An elemental event is each of the simplest results that can occur in 

conducting a random experiment. Another interesting concept associated with the 

elemental event is provided, which is that of the Basic Cell and which is defined as “a 

term proposed by Mahalanobis to name the smallest area for which a random 

variable can be considered to have a sufficiently precise meaning”. 

To see an example of the concepts seen of event and elementary event as was said 

in the introduction to the chapter, the experiment of rolling a die will be used: In the 

experiment of rolling a die, an example of an event is to obtain an even number, the 

event will be made up of the numbers {2,4,6}. In the same experiment of rolling a 

die, an elemental event is rolling a 2. 

Once the concept of the elementary event has been defined, the mathematics of 

set theory can be applied to the study of events associated with a random experiment. 

From here on, we introduce the definitions associated with the concept of the event 

using the usual structure and order of definition of the concepts of Set Theory. The 

first consequence of this application is the definition of a set as a group of objects that 

fulfil the property of membership. The membership property is the basic property of 

sets and establishes that an element belongs to a set if it either appears in a list that



specifies all the elements that belong to the set or meets the requirements expressed 

in one or more sentences. Membership is denoted as x 2 A when element x belongs to 

set A and x =2 A when element x does not belong to set A. Sets are denoted with 

capital letters A, B, C,. . . . 
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Applied to a random experiment, the property of belonged allows defining the set 

sample space, E or Ω as the one whose elements are the elementary events of the 

random experiment. The sample space is denoted as E and each of the elementary 

events as ei, in such a way that the sample space is E = {e1. . .en}. 

The example of the sample space in the experiment of rolling a die is the set 

{1, 2, 3, 4, 5, 6} of the possible elemental outcomes in the rolling. 

The definition of the sample space allows defining the concepts of certain event, 

complementary event, and impossible event, whose definitions are:

• Sure event is the one that is always verified, that is, it is that event such that 

whenever the experiment is carried out, some of the elementary events that 

compose it are obtained. From its definition, it follows that the safe event is E. 

An example of a sure event in the experiment of rolling a die is the set {1, 2, 3, 

4, 5, 6} of all the possible elemental outcomes in the rolling. The roll of a die is {1, 

2, 3, 4, 5, 6}, which is the sample space. In rolling a die, many possible outcomes can 

occur, such as: A: obtain a 2, the subset of E is {2}, which is itself an elementary 

event; B: obtain an even number, the subset of E is {2, 4, 6}, in this case, it is not an 

elementary event; C: get a number other than 1 or 2, the subset of E is {3,4,5,6}, in 

this case, it is not an elementary event either. In the three events of the example, it 

can be verified that the elementary events that form them coincide with one or more 

elements of the sample space. Following the previous example, A has 2, B has 2, 4, 

and 6, and C has 3, 4, 5, and 6. If this is extended to any possible result, it can be 

concluded that the random experiment cannot be carried out to roll a dice without 

obtaining some element of the sample space, so the sample space constitutes the sure 

event.

• Complementary event of a given event A is verified whenever A is not verified. 

The complementary event is denoted as A: 
Following the previous example, the complementary of the event A = {2} is 

A= 1, 3, 4, 5, 6f g, since whenever A is not verified, some of the A elements are 

verified.

• Impossible event is one that is never verified, that is, it is that event such that 

whenever the experiment is carried out, none of the elementary events that 

compose it are ever obtained. In the same way that to define a set, the property 

of membership of set theory was used, in order to define the impossible event, the 

first axiom of sets,2, 3 the axiom of existence. 

2 The six (6) axioms of set theory will be discussed in detail in the chapter. 
3 We are going to indicate the axiom number in parentheses.
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The Axiom of Existence (1) implies that there exists a set that has no elements. 

Such a set is called empty and is denoted as ∅. Applied to a random experiment, it 

allows defining the impossible event as one that is never verified, that is, it is an 

event such that whenever the experiment is carried out, none of the elementary 

events that compose it is ever obtained. From which it follows that the impossible 

event is the empty set ∅. From the sure event and complementary event defini-

tions, it follows that E =∅ and ∅=E 

To see an example of the concept of an impossible event in rolling a dice, it would 

be not to obtain a number between 1 and 6, which cannot be given; therefore, it is a 

set without any element or empty ∅. 

Sets Theory Axioms and Operations 

In the previous subsection, when we introduced the concept of the impossible event, 

we had to introduce the first axiom of set theory, the Axiom of Existence, but to 

understand in depth most of the concepts related to probability, we needed to 

introduce more definitions from set theory, more axioms, such as the axioms of 

extensionality, pair, and union, and set operations, such as union and intersection 

of sets. 

The Axiom of Extensionality (2) states the following: If every element of A is an 

element of B and every element of B is an element of A, then A = B; that is, if two 

sets have the same elements, then they are identical. This allows us to define the 

motto: there is only one empty set or impossible event. From this axiom, the 

inclusion relationship between sets can be defined as follows: A is a subset of B if 

all the elements of A belong to B, but not vice versa, that is, not all the elements of B 

belong to A, or what is the same A is a subset of B if for all x 2 A x  implies that 

x 2 B x. The relation of inclusion of A in B is denoted as A ⊆ B. The relation of 

incluision verifies the following properties:

• Reflective. A ⊆ B

• Transitive. If A ⊆ B and B ⊆ C B, it is verified that A ⊆ C

• If A ⊆ B and B ⊆ A, the extensionality axiom A = B is verified.

• If A⊆B→B⊆A. 

To see an example of the inclusion relation, we can continue using the previous 

example with A = {2} and B = {2, 4, 6}, which means A ⊂ B, because all 

elementary events, that is, 2, which are part of A, are also part of B, since 2 is an 

element of B, but not the inverse, since B also has events 4 and 6 that are not part of 

A. Or what is the same, as long as A is given, that is, a 2 is obtained, B will also be 

occurring, but not always if B is given, A will be given, because they may be giving a 

4 or a 6, which are not part of A.
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After we have introduced the second axiom, we introduce the third and the fourth 

axioms, pair and union, respectively, because we need to know two of them before 

introducing the operations that can be done with sets. 

The Axiom of Pair (3) is the third axiom of set theory, and it states that for all 

A and B, there exists a set C such that x 2 C x if and only if x 2 A x or  x 2 B. 
The Axiom of Union (4) is the fourth axiom of set theory, and it states that for any 

set S, there exists a set U such that x 2 U if and only if x 2 A, for any A 2 S. 
The pair and union axioms are necessary to define the union operation between 

sets and the extensionality to guarantee that it is unique. In addition to the pair and 

union axioms, it is necessary to define the union operation between sets; extension-

ality is also necessary to guarantee that it is unique. Once we have seen the axioms of 

extensionality, pair and union, we are going to define the four operations union, 

intersection, difference, and symmetric difference, of sets. 

1. Union or sum of sets is defined as follows: Let A and B be two sets, the union of 

A and B is defined, A [ B as the set whose elements belong to A or B, or 

otherwise, let A and B2 P(E), [: P(E) × P(E) → P(E)/(A, B) → A[B. The Union 
of sets is denoted4 as [. Applied to a random experiment with sample space E and 

two sets of P(E), the set A[B can be defined as that composed of all the 

elementary events that make up A or B or both. Consequently, event A[B is  

verified if at least one of the two events, A or B. 

To see an example of the Union of sets, we will follow the previous example 

about the rolling of a dice in which the sets or events A, B, and C were: A, get a 

2, consequently the subset of E is {2}; B: get an even number, the subset of E is {2, 

4, 6}; and C: get a number other than 1 or 2, the subset of E is {3, 4, 5, 6}. The union 

of events A and C, A [ C, is  A [ C = {2, 3, 4, 5, 6 }. 

Intersection of sets is defined as follows: Let A and B be two sets, define the 

intersection of A and B, A\B as the set whose elements belong to A and B, or 

otherwise, let A and B2 P(E), \: P(E) × P(E) → P(E)/(A, B) → A\B. The 
intersection of sets is denoted as \. Applied to a random experiment with sample 

space E and two sets of P(E), the set A\B can be defined as that composed of all 

the elementary events that make up A and B, and it is necessary that they belong 

to A and B at the same time. The event A\B is verified if the two events, A and B, 
are verified when performing the experiment. The definition of the intersection of 

sets allows us to define incompatible events as those whose intersection is the 

empty set. Events A and B are said to be incompatible if A\B = Ø. 

To see an example of the Intersection of sets, we will follow the previous example 

of the intersection of the events B = {2, 4, 6} and C = {3, 4, 5, 6}, B\C, is 
B\C = {4, 6}. The intersection of A and C is A\C = Ø, so they are incompatible 

events, which is logical if we pay attention to the definitions of both events since 

event A is to obtain a 2 and event C is to obtain a number other than 1 and 2. 

4 The symbol [ can also be written as a plus with a period above it _[.
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Difference of sets is defined as follows: Let A and B be two sets, define the 

difference of A and B, A-B as the set whose elements belong to A and not to B, or 

otherwise, they are A and B 2 P(E), A-B: {x 2 A and x =2 B}. Using the 
intersection operation and the definition of a complementary set of a given set, 

we have that A-B = A \B complementary (the difference of sets is denoted as -). 

Applied to a random experiment with sample space E and two sets of P(E), the set 

AB can be defined as that composed of all the elementary events that compose A 

and do not compose B; it is necessary that they belong to A and not to B. Event 

AB is verified if, when performing the experiment, event A is verified and not 

event B. 

To see an example of the Difference of sets following the previous example, the 

difference of events B and C, B-C, is B-C = {2}. The difference between A and B is 

A-B = Ø because all the elementary events in A are also in B. 

Symmetric difference of sets is defined as follows: Let A and B be two sets, define 

the symmetric difference of A and B, A △ B as the set whose elements belong to 

A and B, minus those that belong to both at the same time, or otherwise, using the 

union and intersection operations, let A and B 2 P(E), A △ B:{x 2 (A [ B) and x 
=2 (A \ B)}. Using the difference operation, we have that “A △ B = (A-B) [ 
(B-A). The difference of sets is denoted as △. Applied to a random experiment 

with sample space E and two sets of P(E), the set A △ B can be defined as that 

composed of all the elementary events that compose A and compose B, but do not 

compose A and B at the same time, it is necessary that they belong to A and B, but 

not to both at the same time. Event A-B is verified if, when performing the 

experiment, events A and B are verified, but not through common elementary 

events but through noncommon ones. 

To see an example of the Symmetric Difference of sets following the previous 

example, the symmetric difference of events B and C, B-C, is B △ C = {2, 3, 5}. The 

symmetric difference between A and B is A-B = {4,6}. 

The Axiom Power Set (5) is the fifth axiom of set theory, and it states that for any 

set S, there exists a set P such that A⊂ P if and only if A⊆ S. As the set P is uniquely 

determined, the set of all subsets of S can be called the power set or parts of S, which 

is denoted P(S). Applied to a random experiment with sample space E, the set of 

parts of E can be defined as one whose elements are all possible subsets of E. In the 

set theory, for any set A, the set of parts of A, P(A), is the set formed by all the 

subsets that can be formed with the elements of A. The set P(E) with the inclusion 

relation (P(E), ⊂) is a partially ordered set, where E is the maximal and ∅ is the 

minimal. 

Each element of P(E), that is, each subset of E, is one of the different events or 

results, both elementary and non-elementary, that can occur when performing the 

random experiment; that is, it is the set of all possible results that can be given when 

conducting the experiment, so P(E) is called the event space of the random exper-

iment. From this, it is logical to ask: how many are the elements of P(E)? The 

solution is calculated using combinatorics. If the cardinal of E is n, that is, the 

number of elementary events or elements of E is n, a set of n elements contains n 

m



subsets of m elements each, since they are combinations of n elements taken from m 

to m. They are combinations and not variations because two subsets are different 

only if they have one or more different elements, not if the elements are listed in a 

different order. Since the number of subsets of E would be the sum of all the possible 

subsets that could be formed with the elements of E, subsets that could have from 

0 to  n elements, the sum would be n 

0 
þ n 

1 
þ . . .þ n 

n- 1 
þ n 

n 
= 2n . 

Therefore, the number of elements of P(E) is 2n . 
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To see an example of the set Parts of E, we take the same E as in the example of 

the E of the rolling of a die, that is {1,2,3,4,5,6}, starting for this, in roll of a die, the 

set of parts of E is: 

P(E) = {∅, 1, 2, 3, 4, 5, 6, {1,2 }, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, 

{2,6}, {3.4}, {3.5}, {3.6}, {4.5}, {4.6}, {5.6}, {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, 

{1,3,4}, {1,3,5}, {1,3,6}, {1,4,5}, {1,4,6}, {1,5,6}, {2,3,4}, {2,3,5}, {2,3,6}, 

{2,4,5}, {2,4,6}, {2,5,6}, {3,4,5}, {3,4,6}, {3,5,6}, {4,5,6}, {1,2,3,4}, {1,2,3,5}, 

{1,2,3,6}, {1,2,4,5}, {1,2,4,6}, {1,2,5,6}, {1,3,4,5}, {1,3,4,6}, {1,3,5,6}, {1,4,5,6}, 

{2,3,4,5}, {2,3,4,6}, {2,3,5,6}, {2,4,5,6}, {3,4,5,6}, {1,2,3,4,5}, {1,2,3,4,6}, 

{1,2,3,5,6}, {1,2,4,5,6}, {1,3,4,5,6}, {2,3,4,5,6}, {1,2,3,4,5,6}}. 

The number of elements of parts of E on the roll of a die is 

2n = 26 = 64 

In addition to the axioms described in detail before, due to their clear application 

to the study of the probability of events, in the set theory, one more axiom is defined, 

other than the sixth, the Understanding axiom (6), which has not been dealt with in 

the text, as it is not of such obvious utility to its domain. 

Laplace or Classic Probability 

The formal axiomatic mathematical definition of the concept of probability from set 

theory was given by the Russian mathematician Andrei Nikolayevich Kolmogorov, 

and it can be found in the Annex about Advanced Concepts of Probability in this 

chapter for those readers interested in a deeper mathematical knowledge on proba-

bility. In this subsection, we introduce the definition of probability known as the 

classical definition of probability or Laplace probability, and this definition will be 

sufficient for the scope of this book. The properties of probability, the probability of 

joint occurrence of events, the Bayesian probability, and the probability distributions 

will also be introduced in this chapter. 

The classical definition of probability says that the probability of the occurrence 

of an event A is equal to the number of cases in which A appears, nA, divided by the 

total number of cases, nT. The mathematical equation for its calculation is:
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p Að Þ= 
nA 
nT 

To give some examples of the classic or the Laplace definition of probability, we 

are going to follow using the roll of a die and try to answer different questions using 

the definition of probability. 

The first one is: What is the probability of rolling a 5 on a die? 

If the classical definition of probability is taken: p Að Þ= nA=nT , the number of 

favourable cases, that is, in which A is obtained, which in this case is to obtain a 

5, and which consequently is 1, and the possible cases, which in the case of rolling a 

die are 6, since it is possible to obtain:5 1, 2, 3, 4, 5, or 6. Therefore, the probability of 

obtaining a 5 in the roll of a die is: 

p Að Þ= 
nA 
nT 

= 
1 

6 
= 0:16 

Or what is the same6 a 16%. 

What is the probability of obtaining an even number when rolling a die? 

In this case, the event obtaining an even number is formed by the set A = {2, 

4, 6}, and consequently, the number of favourable cases is 3, and the possible cases, 

as in the previous case, are 6 since the sample space is the same. Therefore, the 

probability of obtaining an even number in the roll of a die is: 

p Að Þ= 
nA 
nT 

= 
3 

6 
= 0:5 

Or what is the same a 50%. 

Once we have seen the concept of Classical probability, we are going to see the 

properties it fulfils. To do that, if A and B belong to a sample space on which a 

classical probability is applied, it is verified:7 

1. The probability of obtaining an event, A, is always greater than or equal to 0 and 

less than or equal to 1. 

0≤P Að Þ≤ 1 

2. The probability of obtaining the complementary event A of a given event, A, is 

equal to 1 minus the probability of obtaining A. 

5 As the concept of sample space is already known, it is observed that what can be obtained is the 
sample space of the experiment. 
6 Sometimes, to see the result clearer, the same is given as a percentage. If this is the case, the result 
is a 1 chance of rolling a 5 on the roll of a die. 
7 The proof of each of them can be found in the later section of the chapter Advanced Concepts of 
Probability.
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P A = 1-P Að Þ  

3. If event A is contained in event B, the probability of obtaining event A is less than 

or equal to the probability of obtaining event B. 

A⊆B⟶P Að Þ≤ P Bð Þ  

4. The probability of obtaining the union of two events A and B is equal to the sum 

of the probabilities of obtaining each of the two events minus the probability of 

obtaining the intersection of both events. 

P A  [ Bð Þ=P Að Þ þ  P Bð Þ-P A \ Bð Þ  

5. The probability of obtaining the empty set is zero. 

P ∅ð Þ= 0 

Now we are going to present an example of each one of the properties of the 

probability, all the examples will continue to be about the throwing of a die: 

1. 0 ≤ P(A) ≤ 1: Continuing with the example that we are using of the roll of the 

dice, the lowest probability that we can obtain is 0, which is the probability of 

obtaining a value other than 1, 2, 3, 4, 5, or 6, which, applying the classical 

probability equation, is: 

p Að Þ= 
nA 
nT 

= 
0 

6 
= 0 � 0% 

but you cannot get a negative probability. The highest probability that can be 

obtained is the certainty that it is going to happen, which will be obtained when 

calculating the probability of the coincident event with the sample space since it 

includes everything that can occur, that is, the event A = {1, 2, 3, 4, 5, 6}. If the 

classical probability equation is applied, we have: 

p Að Þ= 
nA 
nT 

= 
6 

6 
= 1 � 100% 

It is immediate to see that you cannot have an nA greater than 6, so the division 

can never give a value greater than one. 

2. P A = 1-P  Að  Þ: To see an example of this property, we return to the second of 

the examples that have been exposed to see the concept of classical probability: 

what is the probability of getting an even number on the roll of a die? As seen in 

this case, the event to obtain an even number is formed by the set A = {2, 4, 6}, as 

the sample space is E = {1, 2, 3, 4, 5, 6}, so its complementary set is
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A= 1, 3, 5f g. The probability of A that was calculated in the previous example is 

50%. If the probability of A is now calculated, it is obtained that the number of 

favourable cases is 3, and the possible cases, as in the previous case, are 6 since 

the sample space is the same. Therefore, the probability of obtaining an odd 

number in the roll of a die is: 

p A = 
n
A 

nT 
= 

3 

6 
= 0:5 � 50% 

That is, 

P A = 1-P Að Þ= 0:5 

3. A ⊆ B ⟶ P(A) ≤ P(B): To expose an example of this property, we need two sets, 

A and B, in such a way that A is contained in B. We take B as the event to obtain a 

number less than 6 in the roll of a die, which is formed by the elements B = {1, 

2, 3, 4, 5}. We are going to take as a set B the event to obtain an odd number, 

which, as we know from the previous exercise, is formed by the events A = {1, 

3, 5}. Therefore, it is immediate to check that A ⊆ B. If we calculate the 

probabilities of both events, it is also immediate to check that the probability of 

obtaining A is less than or equal to the probability of obtaining B since the 

probability of obtaining B is: 

p Bð Þ= 
nB 
nT 

= 
5 

6 
= 0:83 � 83% 

and obtaining A will always have a lower number of favourable cases, since A is 

contained in B, 

p Að Þ= 
nA 
nT 

= 
3 

6 
= 0:5 � 50% 

4. P(A [ B) = P(A)  +  P(B) - P(A \ B): As example sets for this property, we take 

the events to obtain a number less than four and an odd number. These sets are 

A = {1, 2, 3} and B = {1, 3, 5}. From them, the first thing we obtain is their 

union: A [ B = {1, 2, 3, 5}. Once we have the three events, we apply the classical 

probability calculation equation to obtain their probabilities: 

p Að  Þ= 
nA 
nT 

= 
3 

6 
= 0:5 � 50% 

p  Bð  Þ= 
nB 
nT 

= 
3 

6 
= 0:5 � 50%
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p A [ Bð Þ= 
nA[B 
nT 

= 
4 

6 
= 0:66 � 66% 

As seen immediately, the probability of A [ B is not equal to P(A) + P(B), 
which would give 1 but is 0.66. The reason that the intersection has to be removed 

is that when we calculate the probability of obtaining A, we are including as 

favourable cases obtaining a 1 and a 3, and when we calculate the probability of 

obtaining B, we also include them, so if we simply add the probabilities, we are 

including them twice, while if we calculate the probability of the union, we only 

include them once. For this reason, we subtract the probability of the intersection 

to remove one of the two times we count them by adding the probabilities of the 

two individual sets. 

p A \ Bð Þ= 
nA\B 
nT 

= 
2 

6 
= 0:33 � 33% 

P A [ Bð Þ=P Að Þ þ P Bð Þ-P A \ Bð Þ= 0:5þ 0:5- 0:33= 0:66 

5. P(∅) = 0:In∅, the toss of a die, as seen when studying the complementary set of 

a given die, is formed by the complementary event of its sample space. Since the 

sample space of the roll of the dice is E = {1, 2, 3, 4, 5, 6}, its complement is 

formed by the rest of the numbers plus zero. Consequently, if we apply the 

classical definition of probability seen above, in this case, the favourable 

cases, A, would be those in which an element of the sample space was not 

obtained, that is, those in which a different number of {1, 2, 3, 4, 5, 6}, which 

will be none because it is impossible, that is, nA = 0. Consequently, 

p Að Þ= 
nA 
nT 

= 
0 

6 
= 0 

Thus far, we have seen concepts associated with the probability of a single event, 

but the probability of the occurrence of more than one event, from 2 to n, can also be 

studied. We study the concepts associated with the appearance of two events because 

this knowledge can be applied to any number of events. The probability of joint 

appearance of two events is defined as follows: Let A and B be two events that 

appear together, and the probability of appearance of A, having given B, p(AjB), is 
defined as: 

p AjBð  Þ= 
nA\B 
nB 

From the previous definition, the concepts of independent and dependent events 

can be defined as follows:
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• Independent Events. Two events are independent if the occurrence of one of them 

does not change the probability of occurrence of the other: 

p AjBð Þ= p Að Þ→ p A  \ Bð Þ= p Að ÞP Bð Þ

• Dependent Events. Two events are dependent if the occurrence of one of them 

changes the probability of occurrence of the other. The conditional probability 

deals with obtaining the probability of events whose appearance is influenced by 

the appearance of other events. Thus, if A and B are two dependent events, the 

probability of appearance of A, having given B, is defined as: 

p AjBð Þ≠ p Að Þ→ p A \ Bð Þ= p AjBð ÞP Bð Þ  

Since then, 

p AjBð Þ= p BjAð Þ→ p AjBð Þp Bð Þ= p BjAð Þp Að Þ  

To understand what means independent and dependent events and their differ-

ences, we solve the two following examples: There are two urns, A and B, with 

10 balls. In urn A, there are 4 white balls and one back ball. In urn B, there are 

2 white balls and 3 black balls. It must be calculated as follows: 

(a) Probability of obtaining two white balls in two extractions made one in each urn. 

As each extraction is made in an urn, the two events are independent. 

The probability of obtaining a white ball in urn A is the number of favourable 

cases, which is 4 because there are four white balls, divided by the number of 

possible cases, which is 5 because there are 5 balls in urn A. 

P Að Þ= 
nwhite UA 

N 
= 

4 

5 
= 0:8 

If we apply the same reasoning to urn B, we have: 

P Bð Þ= 
nwhite UB 

N 
= 

2 

5 
= 0:4 

As the extraction of the balls in each urn does not affect the other and the 

events are independent, the join probability of both events is: 

P A \ Bð Þ=P Að ÞP Bð Þ= 0, 8:0, 4= 0, 32 

(b) Calculate the probability of obtaining two white balls in two extractions made in 

the same urn, A. 

As the extraction is made in the same urn, the events are dependent.
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The probability of obtaining a white ball in urn A is the number of favourable 

cases, which is 4 because there are four white balls, divided by the number of 

possible cases, which is 5 because there are 5 balls in urn A: 

P Að Þ= 
nwhite UA 

N 
= 

4 

5 
= 0:8 

As the extraction is made in the same urn, the first event alters the probability 

of the second, because as one ball has been extracted in the previous step, the 

number of favourable and possible cases has been both changed, now there 

3 favourable cases in 4 possible cases, and the probability is: 

P BjAð Þ= 
nwhite UA 

N 
= 

3 

4 
= 0:75 

As the extraction of the first ball in the same urn affects the extraction of the 

second ball in the same urn, the events are dependent, and the join probability of 

both events is: 

P A \ Bð Þ=P BjAð ÞP Að Þ= 0, 8:0, 75= 0, 6 

It is interesting to note that the conditional probability provides the probability of 

the occurrence of event A when event B has occurred, regardless of whether the 

probability of occurrence of B is high or low, that is, B may have a low probability of 

appearance, but if almost every time that B happens A also happens, then the 

probability of appearance of A given B will be very high.8 This conclusion can 

also be reached by developing the equation of the conditional probability: 

p AjBð Þ= 
p A \ Bð Þ  
P Bð Þ  = 

nA\B 
nT 
nB 
nT 

= 
nA\B 
nB 

From the dependence and independence of events, we can establish the concepts 

of A posteriori probability and A priori probability. 

P(A|B) is the probability of occurrence of A being happened B, and it is the 

A posteriori probability. 

P(B) is the probability of occurrence of B without anything happening before, and it 

is the A priori probability. 

From these two definitions, if there is a set of previous exclusionary events 

A priori (Ai) that modify the occurrence probability of other event A posteriori 

(B), the Total Probability Theorem is verified. 

8 The previous conclusion will have an interesting application in the study of the confidence 
parameter in the association studies.
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P Bð Þ= 
n 

i= 1 
P BjAið ÞP Aið Þ  

As an example of the total probability theorem, we can take the same urns and 

balls as in the previous example, and we calculate the probability of obtaining a 

white ball when a ball of any a ball is drawn from either of the two urns. 

If we apply the total probability theorem: 

P Bð Þ= 
n 

i= 1 
P BjAið ÞP Aið Þ  

And the event B is to obtain a white ball. 

First, its probability is conditioned by the chosen urn, which can be written as 

P(Ai), and second, the probability of obtaining a white ball in each urn can be written 

as P(B|Ai). With these definitions, the problem can be solved in the following way: 

Probability of selecting urn A: P A1ð Þ= 
favourable cases 
possible cases 

= 
one urn 
two urns 

= 
1 
2 

Conditioned probability of choosing a white ball if urn A has been selected: 

P BjA1ð Þ= 
nwhite UA 

N 
= 

4 

5 
= 0:8 

Probability of selecting urn B: P A2ð Þ= 
1 
2 

Conditioned probability of choosing a white ball if urn B has been selected: 

P BjA2ð Þ= 
nblancas UB 

N 
= 

2 

5 
= 0:4 

Consequently, the probability of selecting a white ball for any urn is: 

P Bð Þ= 
2 

i= 1 
P BjAið ÞP Aið Þ=P BjA1ð ÞP A1ð Þ  

þP BjA2ð ÞP A2ð Þ= 0, 8:0, 5þ 0, 4:0, 5= 0, 4þ 0, 2= 0, 6 

Bayesian Probability 

Thus far, we have the following equations: 

P A \ Bð  Þ=P AjBð ÞP Bð Þ=P BjAð ÞP Að Þ  

P  AjBð  Þ= 
P  A  \ Bð  Þ  
P  Bð  Þ
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P Bð Þ= 
n 

i= 1 
P BjAið ÞP Aið Þ  

From where we can obtain the Bayes Probability: 

P AijBð Þ= 
P Ai \ Bð Þ  
P Bð Þ  = 

P BjAið ÞP Aið Þ  
B 

= 
P BjAið ÞP Aið Þ
n 
i= 1P B  AiÞj P Aið Þð 

Bayes’ Theorem allows us to know the A priori (Ai) probability in terms of what 

happened A posteriori (B), and it is, in consequence, a total change of paradigm 

because it is the opposite of what we have been doing until now. 

To see an example of the Bayes Theorem, we calculate the probability that once a 

white ball is obtained, it comes from urn A. 

We apply the Bayes Theorem to obtain the probability A priori that the white ball 

comes from urn A from the known A posteriori fact that we have a white ball. The 

Bayes probability equation is: 

P AijBð Þ= 
P BjAið ÞP Aið Þ
n 
i= 1P B  AiÞj P Aið Þð 

B event is to have obtained a white ball. To have obtained a white ball conditions 

the selection of the urn Ai. The probability of having chosen Ai when B has been 

obtained is P(Ai|B). From these definitions, we have: 

Probability of selecting urn A: P A1ð Þ= 
favourable cases 
possible cases 

= 
one urn 
two urns 

= 
1 
2 

Conditioned probability of choosing a white ball if urn A has been selected: 

P BjA1ð Þ= 
nwhite UA 

N 
= 

4 

5 
= 0:8 

Probability of selecting urn B: P A2ð Þ= 
1 
2 

Conditioned probability of choosing a white ball if urn B has been selected: 

P BjA2ð Þ= 
nblancas UB 

N 
= 

2 

5 
= 0:4 

Consequently, by applying the Bayes probability, we have the probability that the 

white ball comes from urn A: 

P  A1jBð  Þ= 
P  BjA1ð  ÞP  A1ð  Þ  
2 
i= 1P  B  AiÞj P  Aið  Þð

= 
P  BjA1ð  ÞP  A1ð  Þ  

P  B  A1ÞP  A1ð  Þ þ  P  B  A2ÞP  A2ð  Þjðjð 

= 
0, 8:0, 5 

0, 8:0, 5 þ 0, 4:0, 5 = 
0, 4 

0, 6 
= 0:67
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Probability Distribution of Random Variables 

We will start this subsection by introducing the concept of Random Variable and 

their associated knowledge, and after that, we will introduce probability distribu-

tions, both discrete and continuous. 

Random Variable 

In the topic dedicated to Data, the concept of characteristic, or attribute, and that of 

data associated with a characteristic, and its frequency were studied in detail, and the 

concept of a statistical variable was presented. At this point, we remember that its 

definition is A real function defined on a finite population or a sample, which takes 

the values of each of the modalities of an attribute and to which it associates a 

frequency distribution. Once the concepts of probability have been seen, the concept 

of a statistical variable can be extended to the concept of a random variable, and a 

random variable can be defined as: “variable associated with a certain law or 

probability distribution, in which each of the values that it can take corresponds to 

a specific relative or probability frequency”. 

That is, when you have all the data of a characteristic, that is, when a sample is 

being studied, the frequency distributions of the values of said characteristic will be 

known, so, in that case, what you have is a statistical variable. On the opposite, when 

you do not have all the data of a characteristic, that is, when a population is being 

studied, the probability distributions of the appearance of the data of that character-

istic will be known, so, in that case, what is has is a random variable. 

Probability Distributions 

From that definition of a random variable, we can conclude that before beginning to 

study in depth the concept of discrete or continuous probability distributions, it is 

very important to remember the concept of Frequency Distribution, and a frequency 

distribution is formed by the pairs composed of each data and its frequencies. If it is 

the absolute frequency, it will be called the absolute frequency distribution, and the 

same is true for the rest of the types of frequencies seen, both for discrete data and for 

data groupings. If we associate this definition with that of a statistical variable, it is 

immediate to conclude that each statistical variable will have its frequency distribu-

tion. Among the types of frequencies defined, in this subsection, we will stop at the 

relative frequency, which we remember is defined for the appearance of a certain 

value of a data as the number of times that value appears between the number of data. 

Now we are going to present an example of a frequency distribution using the 

values of numbers of rainy days in May in Madrid, Spain, in the 1940–1960 period: 

{0,0,0,0,0,8,15,8,12,9,9,9,10,2,2,2,6,8,8,8,9,6} From these data, we are going to



answer the following questions: What are the relative frequencies of the values of 

rainy days in May? How many days will it rain in May of any year? 
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From the information contained in this data set, we obtain the relative frequency 

of each data point, for which we use the well-known equation: 

fri = 
ni 
nT 

and we apply it to each value other than the ones we have in the set, containing the ni: 

n1 0ð Þ= 5, n2 8ð Þ= 5, n3 15ð Þ= 1, n4 12ð Þ= 1, n5 9ð Þ= 4, 

n6 10ð Þ= 1, n7 2ð Þ= 3, n8 6ð Þ= 2 

and 

nT = 22 

Therefore, the relative frequencies of the values are: 

fr1 = 
n1 
nT 

= 
5 

22 
= 0:227, fr2 = 

5 

22 
= 0:227, fr3 = 

1 

22 
= 0:045, 

fr4 = 
1 

22 
= 0:045, fr5 = 

4 

22 
= 0:182, fr6 = 

1 

22 
= 0:045, 

fr7 = 
3 

22 
= 0:136, fr8 = 

2 

22 
= 0:091, 

With these data, the first question is answered, but it is important to emphasize the 

fact that all these values are completely true, that is, the proportion of times that in 

the period 1940–1960 it did not rain in May in Madrid was approximately 23% of 

the years, and that is for sure. And the number of rainy days is a statistical variable. 

Regarding the second question, it cannot be answered from the information provided 

in the statement of this question since the conclusions obtained are only applicable to 

the period studied 1940–1960. It could be said that in this period, the most common 

number of rainy days in May was none or 8. 

When what is studied are not statistical variables but random variables, we do not 

know the frequency of appearance of the data or values that the variable may have, 

but rather the probability of appearance of each data or value, so what we do is not a 

distribution of frequencies, which we do not know, but a distribution of probabilities, 

which is what we know. [RAE2014] defines distribution as follows: 4. f. Mat. 

Function that represents the probabilities that define a random variable or a random 

phenomenon. 

As an example of the probability distribution, we can take the probabilities of 

rainy days in May in Madrid as p(0) = 22.7%, p(2) = 13.6%, p(6) = 9,1%, 

p(8) = 22.7%, p(9) = 18.7%, p(10) = 4.5%, p(12) = 4.5%, p(15) = 4.5%. From 

these data, how many days will it rain in May of any year?
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In this example, unlike the example of relative frequencies, what we have are the 

probabilities of different numbers of days of rain in May and those probabilities are 

applicable to any month of May of any year, so with these data can be answered to 

the question they ask us, which is the same as the one they asked us in the absolute 

frequencies example and in that case we could not answer. The answer would be that 

it will most likely rain, since it is approximately 88%, compared to 22% that it will 

not rain, and it will most likely rain 8 or 9 days. 

From the two previous examples on relative frequency and probability, the 

immediate reflection that arises is: from the data on the number of rainy days in 

May provided over 22 years, the relative frequencies of occurrence of a different 

value of rainy days, but how were the probabilities given in the probabilities example 

obtained? If the numbers of the relative frequencies obtained and those of the 

probabilities provided are compared, it is seen that they are similar, so the only 

thing that has been done is to assume that the relative probabilities of the different 

values obtained from the studied population, the data from the years 1940–1960 are 

not only valid for said population but are also valid if that period is taken only as a 

sample and all subsequent or previous years are taken as a population, in such a way 

that the relative frequencies become the probabilities of appearance of the 

different values. 

The conclusion of what is stated in the previous paragraph is that a possible way to 

obtain the probabilities of the appearance of a set of values of a variable is to take a 

sample of them and obtain the probabilities from the relative frequencies that are 

calculated in it. This is a valid way to do so, but the correction of its results, that is, 

the degree of success that we will have when approximating the probabilities by the 

relative frequencies, will depend on some factors, which will be discussed in more 

detail in later chapters, and between those in which the size of the sample and its 

representativeness play a predominant role. However, when there are few values in 

discrete random variables, it is possible to give the values of the probability of each 

value. An example of this type of case is the one used in the examples above with rainy 

days in a month. In the examples, the probabilities of eight values were given, but the 

maximum that could be given would be 31 values, since the months do not have more 

than those days. However, if the discrete variable has many values or if it is a 

continuous variable, it is impossible to give the probabilities of the values in this 

way, and the only way is to use mathematical functions, which allow obtaining the 

probabilities of each value as an output variable, having used the value itself as the input 

variable of the function. These functions are called Probability Distribution Functions. 

Depending on the type of characteristic, which in this case will be random 

variables that are being analysed, dictated or continuous, there will be either a 

discrete or continuous probability distribution. In this chapter, we will study the 

main distributions of each kind. The distributions to be studied are those that appear 

in a more generalized way, but in a specific study, a distribution that is not one of the 

general ones can be obtained. Discrete probability distributions and in the next the 

continuous
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• Discrete probability distributions are usually called Probability Functions, 

p xið Þ= p x= xið Þ

• And continuous probability functions are often called Density functions, 

p xið Þ= f x= xið Þ  

Associated with the concept of the probability distribution of a random variable, 

the concepts of Probability Function and Density Function have just been presented. 

In addition to these two concepts, there is another concept that is fundamental in 

working with the probability distributions of random variables: and that is Distribu-

tion Function. A distribution function is a discrete or continuous mathematical 

function that specifies for each value of the sample space of a discrete or continuous 

random variable the probability of the appearance of said value and of all those less 

than it: 

F xið Þ= p x≤ xið Þ  

From this definition, it is immediate to conclude that the value of the distribution 

function of the highest value in the population studied must be equal to 1 since it will 

provide the sum of the probability of obtaining all the values of the population. 

To better understand this conclusion, it is possible to return to what has been seen 

above and think of the probability of appearance of each value as the extension to a 

population with unknown data of the relative frequencies obtained for values of a 

population with all known data. The relative frequency of a certain value is obtained 

as the quotient of the times that this value appears between the total number of data 

available, so if we add all the relative frequencies, the result must be 1. Consequently, 

if the value of the distribution function were calculated at the highest value for the 

population and it did not turn out to be 1, the mathematical function that is being 

considered as a probability function or a density function is not actually one. 

If it is a discrete random variable: 

F xkð Þ= p x≤ xkð Þ= 

k 

i= 1 

p xið Þ  

And if xn is the largest value in the sample space, 

F xnð Þ= 

n 

i= 1 

p xnð Þ= 1 

If it is a continuous random variable:
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F xkð Þ= p x≤ xkð Þ= 

k

-1 
xidx 

If xn is the largest value in the sample space, 

F xnð Þ= 

þ1

-1 
xdx= 1 

As an example of the probability distribution and the density function, we can 

take a die that is rolled three times, and the probability function and the distribution 

function must be calculated to obtain an even number. 

The first thing to understand is why they ask us for a probability function and not 

a density function. The reason is that only 4 discrete values can be obtained, or 

0 even numbers are obtained in the three throws, or 1 is obtained, or 2 are obtained, 

or 3. In other words, only the probabilities of obtaining four discrete values can be 

given, and consequently, it is a probability function. Next, we must obtain the 

function obtaining the probabilities of each option. 

The sample space is: E = {eee, eeo, eoo, ooo, ooe, oee, oeo, eoe} 

and since these are three independent events since a subsequent roll of the die does 

not influence any previous roll at all, the probability of intersection of the three is the 

product of the probabilities of each one. 

p eeeð Þ= p A \ B \ Cð Þ= p Að Þp Bð Þp Cð Þ  

Consequently, the first thing we have to calculate is the probability of obtaining 

an even and odd number. In each die, there are three even numbers and three odd 

numbers, the number of favourable cases in each case is 3, and the number of 

possible cases is 6, so applying the classic definition of probability, we obtain: 

p eð Þ= p oð Þ= 
ne 
nT 

= 
no 
nT 

= 
3 

6 
= 0:5 � 50% 

Therefore, 

p eeeð Þ= p eð Þp eð Þp eð Þ= 0:5 � 0:5 � 0:5= 0:125 

It is the same for the rest of the possibilities: 

p eeeð Þ= p eeoð Þ= p eooð Þ= p oooð Þ= p ooeð Þ= p oeeð Þ= p oeoð Þ  
= p eoeð Þ= 0:125 

Once these values have been obtained, the probability function can be defined as 

follows: The probabilities of the four possible outcomes have to be obtained: 0, 1,



2, and 3. The probability of obtaining 0 even numbers is very easy to calculate, and 

only p(ooo) is given, which is 0.125. The probability of obtaining an even number is 

given by the events p(eoo), p(ooe), and p(oeo). Since they are disjoint events, the 

probability of the union of the three events is obtained by adding their probabilities: 
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p eooð Þ \  p ooeð Þ \  p oeoð Þ= p eooð Þ þ  p ooeð Þ þ p oeoð Þ  
= 0:125 þ 0:125þ 0:125= 0:375 

and the same happens for the probability of obtaining two even numbers: 

p eeoð Þ \  p oeeð Þ \  p eoeð Þ= p eeoð Þ þ  p oeeð Þ þ  p eoeð Þ  
= 0:125 þ 0:125 þ 0:125= 0:375 

Finally, to obtain three even numbers, the same probability is obtained as to 

obtain none. 

p oooð Þ= p oð Þp oð Þp oð Þ= 0:5 � 0:5 � 0:5= 0:125 

Once this last result has been calculated, the probability function can be given as: 

pðxÞ= f ðxÞ, x 2 f0, 1, 2, 3g= 

0:125 if x= f0, 3g 
0:375 if x= f1, 2g 
0 if  x= other value 

Then, the distribution function is obtained by applying its definition: 

F xkð Þ= p x≤ xkð Þ= 

k 

i= 1 

p xið Þ  

FðxÞ= f ðxÞ, x 2 f0, 1, 2, 3g= 

0:125 if x≤ 0 

0:5 if  0< x≤ 1 

0:875 if 1< x≤ 2 

1 if  x≥ 3 

as it can be verified that x4 = 3 is the largest value of the sample space: 

F x4ð Þ= 

4 

i= 1 

p xið Þ= 1 

Therefore, it can be concluded that p(x) is a function probability 

Next, we present an example of a density function and its associated distribution 

function. Obtaining a density function from data observed in an experiment, as we



have done in the previous example, is a very complicated process that is beyond the 

scope of this text, but what we can determine from the concepts seen is, on the one 

hand, if a function proposed as a density function is truly such; and on the other 

hand, we can obtain the distribution function associated with a density function and 

the density function associated with a distribution function. We will present an 

example of each of these tasks. 
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If you have the following mathematical function: 

f xð Þ= 

mx2 if 0< x≤ 2 

3-mx if 2< x≤ 4 

0 if x= other value 

We are going to see what value m must have to be a probability density function, 

and we are going to calculate the probability distribution function. 

As explained above, for the sum, in this case the integral, to be a probability 

density function, of the probabilities of all the values of the function, that is, all R, 

must be 1. 

F xnð Þ= 

þ1

-1 
xdx= 1 

to obtain m, we apply it to the function we are studying: 

F xnð Þ= 

0

-1 
0dxþ 

2 

0 

mx2 dxþ 
4 

2 

3-mxdxþ 
þ1 

4 

0dx= 1 

The result of these integrals is: 

0þ m x
3 

3 

2 

0 

þ 3x 
4 

2

-m 
x2 

2 

4 

2 

þ 0= 1 

m 
8 

3 
þ 3 4- 2ð Þ-m 

16 

2
-

4 

2 
= 1 

m 
8 

3 
þ 6- 6m= 1 

m 
8 

3
-m 

18 

3 
= - 5

-m 
10 

3 
= - 5→m= 1:5 

That is, for m = 1.5, the studied function can be a probability density function; for 

any other m, it is not.
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Next, we obtain its distribution function, with m = 1.5 determined in the 

previous step. 

f xð Þ= 

3 

2 
x2 if 0< x≤ 2 

3-
3 

2 
x if  2< x≤ 4 

We have to define it in all the intervals of existence of the function, that is, 

(-1, 0), (0, 2), (2, 4), and (4, +1). In each interval, we will have to define it for the 

variable used, in this case x, so in order to integrate over x we will make a change of 

variable to t. It must also be remembered that the distribution function will include, 

in addition to the probability of the appearance of the value in which it is being 

calculated, that of all values lower than it, and consequently the integral in an interval 

must include that of all intervals less than the same. We are going to obtain the 

function in each interval:

• (-1, 0)  

F x≤ 0ð Þ= 

0

-1 
0dx= 0

• (0, 2) 

F 0< x≤ 2ð Þ  = 

0

-1 

0dx þ 
x 

0 

3 

2 
t2 dt 

= 0 þ 3 
2 

t3 

3 

x 

0 

= 

= 
x3 

2

• (2, 4) 

F 2< x≤ 4ð Þ  = 

0

-1 

0dxþ 
2 

0 

3 

2 
t2 dt þ 

x 

2 

3-
3 

2 
tdt 

= 0þ 3 
2 

t3 

3 

2 

0 

þ 3t x 2 þ 3 
2 

t2 

2 

x 

2 

= 

= 4þ 3x- 6-
3 

4 
x2 þ 3= 

= 1þ 3xþ 3 
4 
x2
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• (4, 1 ) 

F x> 4ð Þ  = 

0

-1 

0dxþ 
2 

0 

3 

2 
t2 dt þ 

4 

2 

3-
3 

2 
tdt þ 

x 

4 

0dx 

= 0þ 3 
2 

t3 

3 

2 

0 

þ 3t 4 2 þ
3 

2 

t2 

2 

4 

2 

þ 0= 

= 4 þ 12- 6-
3 

4 
16þ 3= 

= 1 

which is the result that it must give because the probabilities of all the values have 

already been added. 

Consequently, the definitive distribution function is: 

F xð Þ= 

0 if  x≤ 0 

x3 

2 
if 0< x≤ 2 

1þ 3x þ 3 
4 
x2 if 2< x≤ 4 

1 if  x≥ 4 

Each experiment that is carried out to determine the probability of the appearance 

of the different values of a random variable, both discrete and continuous, may 

provide a different probability or density function specific to the study being carried 

out, which must be established in said study. However, there is a set of distributions, 

both discrete and continuous, of great importance since they appear a large number 

of times in different types of studies and must be specifically studied. 

Discrete Probability Distributions 

These distributions, as we will see below, are related, and we are going to study them 

in an approximate order of complexity, starting with the simplest. In this subsection, 

we will study the probability functions, that is, the distribution functions associated 

with discrete random variables, and in the next subsection, we will study the density 

functions, that is, the distribution functions associated with continuous random 

variables. Before we begin, we recall the general equation of a probability and 

distribution function for discrete variables: 

Probability function: 

p xið Þ= p x= xið Þ



Distribution function: 

F xkð Þ= p x≤ xkð Þ= 

k 

i= 1 

p xið Þ  
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If xn is the largest value in the sample space, 

F xnð Þ= 

n 

i= 1 

p xnð Þ= 1 

The discrete probability distributions that we are going to study are the Bernoulli, 

Binomial, Geometric, and Poisson distributions. 

Bernoulli Probability Distribution 

The Bernoulli probability distribution, or function, is one of the simplest that can be 

defined since its sample space is composed of only two values, 0 and 1, E = {0, 1}, 

and the probabilities of appearance of the two values are complementary and 

constant, that is, the probability of appearance of value 0 is p, and the probability 

of appearance of value 1 is q; and q = 1–p. In addition, said probabilities of 

appearance must be constant whenever the same experiment is carried out and the 

experiments must be independent, that is, the result of one does not influence the 

result of the next. 

The definition of the probability function is: 

p xið Þ= p x= xi; x1 = 0, x2 = 1ð Þ= p1- x : qx 

The Bernoulli probability function allows statistical studies to be carried out on 

those populations in which the variable studied in all its elements can only be 

classified into two categories, for example, correct elements and failed elements. 

Next, we present an example of a density function and its associated. To see an 

example of Bernoulli’s distribution function, we are going to use again the roll of a 

dice and different events that can be obtained. We start with a simple one: we are 

going to obtain the probability function of obtaining an even number when rolling a 

die, as seen the variables are 0, corresponding to obtaining an even number and 

1, corresponding to obtaining an odd number or not obtaining an even number. Once 

0 and 1 have been defined, then to fully define the function, p and q must be 

obtained, where p is the probability of obtaining an even number or 0, and q is its 

complementary, that is, the probability of not obtaining it. If the equation for 

obtaining the classical probability is applied to its calculation, the following is 

obtained:



Þ

A. Theory 165

p evenð Þ= 
neven 
nTotal 

= 
3 

6 
= 0:5 

and since the probability of odd is complementary, it is also 0.5. Consequently, the 

function is: 

p xið Þ= p x= xi; x1 = 0, x2 = 1ð Þ= p1- x : qx = 0:51- x :0:5x 

As you can see, it is a very simple function. 

We are now going to see another example, slightly more complicated and that 

will serve as a basis for seeing in the next subsection an example in which the famous 

De Mere problem will be solved. We calculate the Bernoulli function of obtaining a 

six in the roll of a die. In this case, taking into account that the case we are looking 

for, that is, the one corresponding to the variable 0, is obtaining a six, p and q will be: 

p evenð Þ= 
nsix 
nTotal 

= 
1 

6 
= 0:17 

and since the probability of not obtaining a six is complementary, it is 

q = 1 - 0.17 = 0.83. Consequently, the function is: 

p xið Þ= p x= xi; x1 = 0, x2 = 1ð Þ= p1- x : qx = 0:161- x :0:87x 

From the Bernoulli probability distribution, a set of associated probability distri-

butions can be defined, among which two of the most used are those defined in the 

two subsequent subsections: the Binomial and Geometric distribution functions. 

Binomial Probability Distribution 

The Binomial probability distribution, or function, extends the sample space used by 

the Bernoulli distribution to the set formed by the n elements that make up the 

population, {0,1,2, . . ., n}, but as in Bernoulli’s case, the observed characteristic can 

only be classified into two categories and the probabilities of appearance of the two 

categories are complementary and constant. That is, the probability of appearance of 

category A is p, and the probability of appearance of category B is q; and q = 1 - p. 

In addition, the probability of appearance of the categories must be constant and the 

events of each experiment must be independent. Hence, it is considered a distribu-

tion derived from that of Bernoulli. 

The definition of the probability function is: 

p  xið  Þ= p  x= xi = r; x1 = 0, 1, 2, . . . , r, . . . nð = 
n 

r 
pr : qn- r
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The probability function is obtained from Bernoulli’s function by applying the 

property of the probability of independence of events and combinatorial calculus. 

Let us see how it is obtained: 

The Bernoulli function allows us to obtain the probability of the appearance of the 

desired event in a single experiment by means of the function: 

p xið Þ= p x= xi; x1 = 0, x2 = 1ð Þ= p1- x : qx 

If two experiments are carried out, as they must be independent, the probabilities 

of the appearance of the desired events are multiplied, and the sample space is 

enlarged because the elementary event sought may no longer only appear or not but 

may also appear twice. We calculate the probability that it appears:

• Once: We will have for the first experiment: 

p x0ð Þ= p1- 0 : q0 = p 

but as it has already appeared in the first experiment in the second it cannot appear 

so both will have: 

p x1ð Þ= p1- 1 : q1 = q 

Then, the probability of occurrence once in two experiments will be the 

multiplication of both probabilities, which is: 

p 1ð Þ= p:q

• Twice: We will have for the first experiment: 

p x0ð Þ= p1- 0 : q0 = p 

and in the second the same, therefore, we will have: 

p x0ð Þ= p1- 0 : q0 = p 

Then, the probability of occurrence once in two experiments will be the 

multiplication of both probabilities, which is: 

p 2ð Þ= p:p= p2

• No time: We will have for the first experiment: 

p  x1ð  Þ= p1- 1 : q1 = q
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and in the second the same, therefore, we will have: 

p x1ð Þ= p1- 1 : q1 = q 

Then, the probability of occurrence once in two experiments will be the 

multiplication of both probabilities, which is: 

p 0ð Þ= q:q= q2 

Let us now see what happens if we calculate the probability of obtaining two 

desired events in three observations. Following the previous construction rule, we 

would have for two experiments: 

p x0ð Þ= p1- 0 : q0 = p 

and for the other one: 

p x1ð Þ= p1- 1 : q1 = q 

Thus, the total probability is: 

p 2ð Þ= p:p:q 

Following this construction law, one more example is the probability for 

17 desired events in 21 observations: 

p 17ð Þ= p17 : q4 

From these reflections, it can be deduced that the general expression of the 

probability function that gives the probability of obtaining k desired observations 

in n observations is: 

p kð Þ= pk : qn- k 

And with this result, it seems that we already have the binomial function, but we 

still have to do one more reflection and that is to include all the possible placements 

of probabilities that allow us to obtain the same result, that is, if we return to the 

example seen above in which we were looking for the probability of obtaining two 

desired observations in three experiments and we saw that it was: 

p 2ð  Þ= p:p:q



but in this case, it had been assumed that the rst two observations were the desired
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ones and the third not, but the permutation of observations that give us the desired 

could have been another, for example, having obtained first the unwanted one and 

then the two desired ones: 

p 2ð Þ= q:p:p 

or first the desired one, then the unwanted one and then the desired one again. 

p 2ð Þ= p:q:p 

In other words, there would be three placements that give us the desired joint 

observation. 

That is, we have permutations with repetition. To calculate the permutations with 

repetition, the following equation is used: 

Pα,β,...,κ = 
n! 

α!β! . . . κ! 

As in this case, we only have two different sets of elements, p that is repeated k 

times and q that is repeated (n–k) times (it would be ppppqqqq . . .  ppqqqq, or 

another permutation), the equation remains: 

Ppq = 
n! 

k! n- kð Þ! 

Equation that matches the definition of the combinatorial number: 

n 

k 

In the case that we have used to introduce the concept, we had two desired 

observations in three possible ones, so the placements were as follows: 

n 

k 
= 

3 

2 
= 

3! 

2!1! 
= 3! 

Thus, the final version of the binomial function is: 

p kð  Þ= 
n 

k 
pk qn- k 

The Binomial probability function allows statistical studies such as how many 

elements of the desired category will be observed when performing n experiments.
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We are now going to see some examples of binomial distributions, and we are 

going to start with the binomial distribution linked to the famous De Mere problem: 

What is more likely: to get at least a six in 4 tosses given or get a double six in 

24 rolls of a die? The first thing we do is establish the probability of observing a six, 

which is 1/6 = 0.17, and its complement, which is 5/6 = 0.83, and then we construct 

the binomial probability function: 

p kð Þ= 
n 

k 
pk qn- k 

= 
n 

k 
0:17k 0:83n- k 

From this function, we answer De Mere’s first question: What is the probability of 

getting at least one six in four tosses of a die? 

The probability of obtaining a six in four rolls is obtained from the binomial 

probability function: 

p kð Þ= 
4 

1 
0:171 0:834- 1 

= 0:388 

Since it is at least one six, we also have to calculate the probability of obtaining 

2, 3, and 4 sixes, and we do it in the same way: 

p 2ð Þ= 
4 

2 
0:172 0:834- 2 

= 0:116 

p 3ð Þ= 
4 

3 
0:173 0:834- 3 

= 0:015 

p 4ð Þ= 
4 

4 
0:174 0:834- 4 

= 0:0007 

As there is no intersection between the events, the probability of obtaining any of 

them, that is, their union, is the sum of their probabilities: 

p 1 [ 2 [ 3 [ 4ð Þ= 0:388þ 0:116 þ 0:015þ 0:0007= 0:519 

Once the first question has been answered, we are going to see the solution to the 

second: What is the probability of obtaining at least one double six in 24 rolls of 

two dice? 

As it would be very long to solve it by the direct probability that they ask us, we 

are going to solve it by calculating the probability of the complementary event, 

which is what is the probability of not getting a double six in 24 rolls of two dice? 

The first thing we do is define the binomial function for this experiment. The 

probability that we have to define in the function is that of obtaining a double six on a 

roll of two dice and its complementary. Applying the equation for obtaining the 

probability is:
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p DoubleSixð Þ= 
nDoubleSix 
nTotal 

= 
1 

36 
= 0:028 

We remember because it was already seen in a previous exercise that the total 

number of possible results in the roll of two dice is 36. 

Consequently, the binomial function in this case is: 

p kð Þ= 
n 

k 
pk qn- k 

= 
n 

k 
0:028k 0:0972n- k 

Therefore, the probability of not rolling any double six in 24 rolls is: 

p 0ð Þ= 
24 

0 
0:0280 0:097224 = 0:505 

And consequently the probability of obtaining at least a double six is: 

1- p 0ð Þ= 1- 0:505= 0:495 

and with this solution, we can already answer De Mere’s problem and say that it is 

more likely to get a six in 4 tosses of a die than a double six in 24 tosses of a die. 

Geometric Probability Distribution 

The distribution, or Geometric probability function, is another distribution based on 

Bernoulli’s, which, like the binomial distribution, extends the sample space used to 

the set formed by all natural numbers plus zero, ℕ , but as in the case of Bernoulli and 

Binomial, the observed characteristic can only be classified into two categories, and 

the probabilities of appearance of the two categories are complementary and con-

stant, that is, the probability of appearance of category A is p, and the probability of 

appearance of category B is q; and q = 1 - p. The Geometric probability function 

allows statistical studies of the type, which is the probability of observing r correct 

elements until observing a failed element. 

The definition of the probability function is: 

pðxiÞ= pðx= xi = r; fxi = 0, 1, 2, . . . , r, . . .gÞ= p:qr- 1 

As an example of applying the Geometric distribution function, we are going to 

continue using the roll of a die, and we are going to solve the question, what is the 

probability of rolling a die ten times without obtaining a six double to the eleventh? 

As we know from the previous examples, the probability of obtaining a double 

six is p= 
1 
6 
= 0:16. We have called p the probability of obtaining a double six 

because it would be the “failed” element, since we are going to calculate how many 

times, we would get other “correct” results before obtaining the double six, and



consequently the probability of not obtaining it is q = 1- 0.16 = 0.83 = 0.16 so the 

geometric probability function will have the form: 
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p rð Þ= p � qr- 1 
= 0:16 � 0:8310 = 0:024 � 2:4% 

As you can see, it is very difficult to make ten rolls of a die without first having 

rolled a double six, and there is a 98% probability that it will not pass. 

Poisson Probability Distribution 

The sample space of the Poisson probability distribution, or function, is made up of 

all natural numbers plus zero, ℕ , and the observed characteristic can also have any 

value pertaining to the numbers natural. 

The definition of the probability function is: 

pðxiÞ= pðx= xi = r; fxi = 0, 1, 2, . . . , r, . . .gÞ= 
λr 

r!e- λ 

The Poisson probability function allows us to carry out statistical studies of the 

type that is the probability of the appearance of r elements of the population in an 

interval of duration, length or quantity or another fixed magnitude. The process is 

stable, that is, the average number of events per unit of time, length, quantity, etc., is 

constant. 

As an example of applying the Poisson probability distribution, we will solve the 

following example. 

An average of 3 cars arrive at a gas station per minute. Determine: 

(a) What is the probability function? 

(b) Probability that 2 cars will arrive in one minute. 

(c) Probability that 12 cars will arrive in five minutes. 

It is a process that quantifies the number n of elements of the population that are 

observed in an interval of fixed duration. 

Since we observe 1 minute and there is an average of 3 arrivals in 1 minute, we 

are looking for average numbers of arrivals in different intervals. 

(a) Consequently, the probability function is a Poisson function with λ = 3: 

p rð Þ=P x= rð Þ= 
3r 

r! 
e- 3 

(b) The probability that 2 cars will arrive in one minute is calculated as follows: 

p 2ð  Þ=P  x= 2ð  Þ= 
32 

2! 
e- 3 

= 0,224→ 22, 4%
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(c) The probability that 12 cars will arrive in five minutes is calculated as follows: 

λ0 = λ � 5= 3 � 5= 15 

p 12ð Þ= 
1512 

12! 
e- 15 

= 0, 0828→ 8, 28% 

Continuous Probability Distributions 

In the previous subsection, we studied the probability functions, that is, the distri-

bution functions associated with discrete random variables, and in this subsection, 

we studied the density functions, that is, the distribution functions associated with 

continuous random variables. Before starting, let us remember its general equation 

and that of its associated distribution function: 

Density function: 

p xið Þ= f x= xið Þ  

Distribution function: 

F xkð Þ= p x≤ xkð Þ= 

k

-1 
xidx 

If xn is the largest value in the sample space, 

F xnð Þ= 

þ1

-1 
xdx= 1 

We will begin by studying the most widely used distribution, which is the Normal 

distribution, and then we will discuss three other basic functions for use in statistics, 

t of Students, Pearson’s chi-square, and F of Fisher. 

Normal Distribution 

The sample space of the Normal density distribution, or function, is made up of all 

real numbers plus zero, ℝ, and the observed characteristic can also have any value 

pertaining to real numbers. 

The definition of the density function is: 

p  xið  Þ= f  x= xið  Þ= 
1 

σx 2π
p exp -

1 

2σ2 x 
xi - μxð Þ2
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but to be able to treat it more easily you can change the variable to z: 

z= 
x- μx 
σx 

with the following density function: 

p zið Þ= f z= zið Þ= 
1 

σx 2π
p exp -

z2 i 
2 

Furthermore, the distribution function of z is tabulated. 

The normal density function allows statistical studies to be carried out when the 

results of an experiment are due to a very large set of independent causes, which act 

by adding their effects, each individual effect being of little importance with respect 

to the set, since in those cases it is expected that the probability of appearance of the 

values of the characteristic, or random variable, studied in the experiment will follow 

a normal distribution. 

The normal density function has at least three derived density functions: 

Pearson’s Chi-square, Student’s t, and Fisher’s F. They are considered functions 

derived from the normal distribution because the construction of the corresponding 

variables requires at least one normal distribution. 

As an example of applying the Normal probability distribution, we will solve the 

following example. 

It is known that, due to the filling processes, the content of a 33 cl is not exactly 

33 cl in all cans but is normally distributed with a mean of 33 cl and a standard 

deviation of 2 cl. Determine: 

(a) The density function. 

(b) What is the probability that the content of a can is greater than 35 cl? 

(c) If a pack consists of 6 cans, what is the probability that the content is less than 

192 cl? 

The statement indicates that the values of the variable content of the can are 

normally distributed with a deviation of 2 cl about an average of 33 cl. 

(a) Consequently, the density function is a Normal (33, 2): 

p xið Þ= f x= xið Þ= 
1 

2 2π
p exp -

1 

8 
xi - 33ð Þ2 

(b) The content of a can be greater than 35 cl: 

p  x≥35ð  Þ=p  z≥
35-33 

2 
=1-p  z≤1ð  Þ=1-0,8413=0,1587→15,87%
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(c) Content of 6 cans less than 192 cl: 

Central Limit Theorem: The sum of n variables that are normally distributed 

μ, σ, also has a normal distribution with mean n�μ and standard deviation √n�σ 

p z< 
192- 6:33 

6
p 

:2 
= p z< - 1, 22ð Þ= p z> 1, 22ð Þ= 1- p z< 1, 22ð  

= 1- 0, 8888= 11, 12% 

Pearson Chi-Squared Distribution 

If we have n independent random variables x1 . . .  xn and each one of them has a 

normal density function with mean 0 and standard deviation 1, N (0, 1) and is 

defined as the random variable x= x2 1 þ . . .þ x2 n, x has a Pearson Chi-square density 
function. The definition of Pearson’s Chi-square density function is: 

f xð  Þ= p xð Þ= f x; x 2 ℝð Þ  
x n 

f xð Þ= 

e- 2x2
- 1 

2 
n 
2Γ 

n 

2 

si x≥ 0 

0 si x< 0 

with n degrees of freedom. The sample space of the Chi-square distribution is made 

up of all the real numbers plus zero, ℝ, and the observed characteristic can also have 

any value belonging to the real numbers. 

In addition, its distribution function is tabulated. 

As an example of applying the Pearson Chi-Squared probability distribution, we 

will solve the following example. 

If a variable is distributed in χ^2 with 7 degrees of freedom, obtain: 

(a) p u> χ2 7 = 0:025 

(b) p u≤ χ2 7 = 0:5 

(c) p χ2 7 ≤ u≤ χ2 7 = 0:9 

(a) p u> χ2 7 = 0:025→ p u≤ χ2 7 = 0:975→ u= 16:01 

(b) p u≤ χ2 7 = 0:5→ u= 6:35 

(c) p χ2 7 ≤ u≤ χ2 7 = 0:9→ p u≤ χ2 7 = 0:05→ u= 2:17 

p  u≤ χ2 7 = 0:95→ u= 14:07
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t-Student Distribution 

If you have 2 independent random variables x1, x2, x1 with a normal density function 

with mean 0 and standard deviation 1, N (0, 1), and x2 distributed according to a 

Chi-square function with n Pearson degrees of freedom, χ2 n, and defined from them 

the random variable: 

t= 
x 
y 

n 

, 

t has a density function t of student. The definition of the density function t of 

student is: 

f xð Þ= 

Γ 
nþ1 
2 

Γ 
n 
2 

: 
1þ t2 

n 

nþ1 
2 

nπ
p 8t 2 ℝ 

with n degrees of freedom. The sample space of the Chi-square distribution is made 

up of all the real numbers plus zero, ℝ, and the observed characteristic can also have 

any value belonging to the real numbers. 

In addition, its distribution function is tabulated. 

As an example of applying the t-Student probability distribution, we are going to 

solve the following example. 

If a variable is distributed in t-Student with 9 degrees of freedom, obtain: 

(a) p(t ≤ t1) = 0.95 

(b) p(t > t1) = 0.025 

(c) p(t ≤ t1) = 0.995 

(d) p(t ≤ t1) = 0.9 

(a) p(t ≤ t1) = 0.95→t1 = t9(0.95) = 1.833 

(b) p(t > t1) = 0.025→p(t > t1) = 0.975→t1 = t9(0.975) = 2.262 

(c) p(t ≤ t1) = 0.995→t1 = t9(0.995) = 3.250 

(d) p(t ≤ t1) = 0.9→t1 = t9(0.995) = 1.383 

F of Fisher Distribution 

If we have 2 independent random variables x1, x2, distributed according to a 

Chi-square function with n Pearson, x1 with m degrees of freedom, χ2 m, and x2 with 

n degrees of freedom, χ2 n.  It  is  defined the random variable:
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F = 

x 
m 
y 

n 

= 
xn 

ym 

It has a function of Fisher’s density with m degrees of freedom in the numerator 

and n degrees of freedom in the denominator, Fm, n defined as: 

f xð Þ= 

Γ 
mþ n 
2 

Γ 
m 

2 
Γ 

n 

2 

m 

n 

m 
2 F 

m 
2
- 1 

1þ m 
n 
F 

mþn 
2 

si F ≥ 0 

0 si F < 0 

The sample space of the Chi-square distribution is made up of all the real numbers 

plus zero, ℝ, and the observed characteristic can also have any value belonging to 

the real numbers. 

In addition, its distribution function is tabulated. 

As an example of applying the Fisher probability distribution, we will solve the 

following example. 

If a variable is distributed in F of Fisher with 3 degrees of freedom in the 

numerator and 4 degrees of freedom in the denominator, obtain: 

(a) p(F ≤ F3, 4) = 0.975 

(b) p(F ≤ F3, 4) = 0.25 

(a) p(F ≤ F3, 4) = 0.975→F3, 4(0.975) = 9.9792 

(b) p F ≤F3,4ð Þ= 0:25→F3,4 0:250ð Þ= 1 
F4,3 0:750ð Þ  = 

1 
2:3901 = 0:4184 

B. Computer-Based Solving 

Probability Exercises solved in R 

In this subsection, the R environment will be used to solve the same cases that had 

been solved theoretically in the previous subsection. As many of the theoretical 

contents are only calculated by arithmetic calculations, we start with the examples in 

discrete probability distributions. 

1. What is more likely: to get at least a six in 4 tosses given or get at least a double 

six in 24 rolls of a die? 

Case 1: get at least a six in 4 tosses. 

The probability that a number 6 will come up is 1/6, so p=1/6, the number of tests 

to be carried out or attempts, that is, size is 4, and the number of successes or values 

for which we want to know the probability is 1. We set them into the dbinom() 

function and obtain:
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dbinom(x, size, prob) = dbinom(1,4,1/6) = 0.388 

Since it is at least one six, we also have to calculate the probability of obtaining 

2, 3, and 4 sixes, and we do it in the same way: 

dbinom(x, size, prob) = dbinom(2,4,1/6) = 0.116 

dbinom(x, size, prob) = dbinom(3,4,1/6) = 0.015 

dbinom(x, size, prob) = dbinom(4,4,1/6) = 0.0007 

As there is no intersection between the events, the probability of obtaining any of 

them, that is, their union, is the sum of their probabilities: 0.519 

Case 2: get at least a double six in 24 tosses. 

We are going to solve it by calculating the probability of the complementary 

event, which is what is the probability of not getting a double six in 24 rolls of 

two dice? 

The probability of obtaining a double six on a roll of two dice is 1/36, so p = 1/36. 

The number of tests to be carried out or attempts is 24, and the number of successes 

is 0. Therefore, the probability of not rolling any double six in 24 rolls is: 

dbinom(x, size, prob) = dbinom(0, 24,1/36) = 0.505 

Consequently, the probability of obtaining at least a double six is 0.495. 

With this solution, we can already say that it is more likely to get a six in 4 tosses 

of a die than a double six in 24 tosses of a die. 

2. An average of 3 cars arrive at a gas station per minute. Determine: 

(a) Probability that 2 cars will arrive in one minute. 

(b) Probability that 12 cars will arrive in five minutes. 

(a) The probability that 2 cars will arrive in one minute. 

> dpois(2,3) 

[1] 0.224 

(b) The probability that 12 cars will arrive in five minutes. 

> dpois(12,15) 

[1] 0.0828 

3. It is known that, due to the filling processes, the content of a 33 cl it is not exactly 

33 cl in all cans, but is normally distributed with a mean of 33cl and a standard 

deviation of 2cl. Determine: 

(a) What is the probability that the content of a can is greater than 35 cl? 

(b) If a pack consists of 6 cans, what is the probability that the content is less than 

192 cl? 

The statement indicates that the values of the variable content of the can 

are normally distributed with a deviation of 2 cl about an average of 33 cl.
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(a) The content of a can be greater than 35 cl: 

> 1-pnorm(35, mean = 33, sd = 2) 

> 1-pnorm((35-33)/2) 

[1] 0.1587 

(b) Content of 6 cans less than 192 cl: 

Central Limit Theorem: The sum of n variables that are normally distrib-

uted μ, σ, also has a normal distribution with mean n�μ and standard deviation 
√n�σ 

> 1-pnorm(192, mean = 33�6, sd = 6
p

�2) 
> 1-pnorm((192–198) / ( 6

p
�2)) 

[1] 0.1112 

4. What is the probability of rolling a die ten times without obtaining a six double to 

the eleventh? 

The probability of obtaining a double six is p= 
1 
6 
= 0:16. We have called p the 

probability of obtaining a double six because it would be the “failed” element, 

since we are going to calculate how many times, we would get other “correct” 

results before obtaining the double six, and consequently the probability of not 

obtaining it is q = 1 - 0.16 = 0.83 = 0.16. 

>dgeom(10,0.16) 

[1] 0.024 

5. If a variable is distributed in χ^2 with 7 degrees of freedom, obtain: 

(a) p u> χ2 7 = 0:025 

(b) p u≤ χ2 7 = 0:5 

(a) p u> χ2 7 = 0:025 

qchisq(1-0.025,7) 

[1] 16.01276 

(b) p u≤ χ2 7 = 0:5 

qchisq(0.5,7) 

[1] 6.345811 

6. If a variable is distributed in t-Student with 9 degrees of freedom, obtain: 

(a) p(t ≤ t1) = 0.95 

(b) p(t > t1) = 0.025 

(c) p(t ≤ t1) = 0.995 

(d) p(t ≤ t1) = 0.9 

(a) p(t ≤ t1) = 0.95 

qt(0.95,9) 

[1] 1.833113
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(b) p(t > t1) = 0.025 

qt(1-0.025,9) 

[1] 2.262157 

(c) p(t ≤ t1) = 0.995 

qt(0.995,9) 

[1] 3.249836 

(d) p(t ≤ t1) = 0.9 

qt(0.9,9) 

[1] 1.383029 

7. If a variable is distributed in F of Fisher with 3 degrees of freedom in the 

numerator and 4 degrees of freedom in the denominator, obtain: 

(a) p(F ≤ F3, 4) = 0.975 

(b) p(F ≤ F3, 4) = 0.25 

(a) p(F ≤ F3, 4) = 0.975 

qf(0.975,3,4) 

[1] 9.979199 

(b) p(F ≤ F3, 4) = 0.25 

qf(0.25,3,4) 

[1] 0.418391 

C. Probability Exercises Solved 

This subsection has two parts. In the first part, a set of exercises solved in detail are 

presented to allow you to check if all the knowledge has been correctly acquired. The 

advice is to try to solve the exercises by yourself, and then to get the solution to 

check it with the proposed one by the book. This procedure will make this subsection 

truly useful for you. In the second part, the same exercises will be solved in R. 

Hand-Made Exercises 

1. There are two urns with 10 balls. In urn A, there are 4 white balls and 1 black ball. 

In urn B, there are 2 white balls and 3 black balls. Calculate the probability of 

choosing randomly: 

(a) A ball from urn A 

(b) A ball form urn B 

(c) A white ball 

(d) A black ball
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Applying the definition of probability, we have the following solutions: 

(a) 1:P Að Þ= 
nA 
N 
= 

5 
10 

= 0:5 

(b) 2:P Bð Þ= 
nB 
N 
= 

5 
10 

= 0:5 

(c) 3:P whiteð Þ= 
nwhite 
N 

= 
6 
10 

= 0:6 

(d) 4:P blackð Þ= 
nblack 
N 

= 
4 
10 

= 0:4 

2. With the same urns as in the previous exercise, verify that all the probabilities 

calculated in exercise 1 accomplish the probability property. 0 ≤ P(A) ≤ 1 

P Að Þ= 0:5;P Bð Þ= 0:5;P whiteð Þ= 0:6;P blackð Þ= 0:4 

3. With the same urns as in the previous exercises, verify that the probabilities to 

choose ball from both urns are complementary, and that choose white or black 

ball are also complementary ¿Are complementary the possibilities to be a ball 

form urn A and black? 

From the property of probability P A = 1-P Að Þ  
That means that P(A) = 1- P(B) = 0.5 and P(white) = 1 - P(black) = 0.6 

In the case of the last question (A) ≠ 1- P(negra)→0.5 ≠ 1- 0.4. They are not 

complementary because don’t belong to urn A doesn’t mean that the balls are 

black, because in urn B there are black and white balls. 

4. Calculate the probability of choosing randomly a. A white ball from urn A 

and b. A ball that was white or from urn A. 

First, we calculate question a and apply the definition of probability only to 

urn A. 

P white Að Þ= 
nwhite A 

N 
= 

4 

10 
= 0:4 

Next, we can apply the property of probability 

P A [ Bð Þ=P Að Þ þ  P Bð Þ-P A \ Bð Þ  

for solving the question b. that it is the probability of the union of two events, 

white ball and urn A, both of them are valid, because the or means union. The 

probability of the intersection of both events has been calculated in question a. 

P white [ Að Þ=P whiteð Þ þ  P Að Þ-P white \ Að Þ→ 0:6þ 0:5- 0:4= 0:7 

5. Verify that the probability of choosing a white ball from urn A is lower than 

choosing a ball from urn A. 

From the property of probability, if A ⊂ B = P(A) ≤ P(B) the statement of the 

exercise must be accomplished.
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P white Að Þ= 0:4≤P Að Þ= 0:5 

6. Calculate the probability that any of the balls was a. white or black; and b. that is 

not from any urn. 

From the properties of probability, as black and white are or the sample space: 

P(E) = 1. How all the balls belong to one of the two urns: P(∅) 

7. Now, we will present an exercise of conditioned probability with the roll of a 

dice. In this case, since there must be two events, although, as indicated at the 

beginning of the topic, the roll of dice will be kept as the domain in which the 

examples will be carried out, the roll of a dice cannot be used but at least you have 

to roll two dice. Consequently, the exercise will consist of calculating the 

probability of obtaining in two consecutive throws of a die the same result in 

both dice in the second toss, event A, and an odd number in the first toss, event B. 

To solve the exercise, we first define the possible cases or sample space of the 

roll of two dice: E = {{1,1}, {1,2}, {1, 3}, {1.4}, {1.5}, {1.6}, {2.1}, {2.2}, 

{2.3}, {2.4}, {2.5}, {2.6}, {3.1}, {3.2}, {3.3}, {3.4}, {3.5}, {3.6}, {4.1}, {4.2}, 

{4.3}, {4.4}, {4.5}, {4.6}, {5.1}, {5.2}, {5.3}, {5.4}, {5.5}, {5.6}, {6.1}, {6.2}, 

{6.3}, {6.4}, {6.5}, {6.6}}. That is, it is composed of 36 possible cases. 

To solve the exercise, we apply the equation of the probability of two events 

p AjBð Þ= 
p A  \ Bð Þ  
P Bð Þ  

We start by obtaining the probability of B, for which we use the classical 

probability equation: 

p Bð Þ= 
nB 
nT 

where nT = 36. The number of favourable cases will be those in which an odd 

number was obtained in the first roll, which if we take the sample space will be 

{{1,1}, {1,2}, {1,3}, {1.4}, {1.5}, {1.6}, {3.1}, {3.2}, {3.3}, {3.4}, {3.5}, 

{3.6}, {5.1}, {5.2}, {5.3}, {5.4}, {5.5}, {5.6}}. That is, there are 18 favourable 

cases, nB = 18. 

Therefore, the probability of obtaining event B is: 

p Bð  Þ= 
nB 
nT 

= 
18 

36 
= 0:5 

Next, we calculate p(A \ B), for which, to obtain the intersection of both 
events, in the previous set, we select only those in elements in which the values 

coincide, and we obtain the set {{1.1}, {3.3}, {5.5}}. That is, there are 

3 favourable cases, nA \ B = 3. Thus, the probability is:
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p A \ Bð Þ= 
nA\B 
nT 

= 
3 

36 
= 0:083 

Consequently, the requested probability of obtaining two equal numbers on 

the second roll of a die when an odd number has been obtained on the first roll is: 

p AjBð Þ= 
p A \ Bð Þ  
P Bð Þ  = 

0:083 
0:5 

= 0:166 � 16:6% 

8. We have the following data:

• The probability that someone was ill with a specific illness is 0,001, that is, 

1 person in 1000.

• The probability that someone who was ill of that illness has a positive test of 

the illness is 99%, that is, 0,99.

• The probability that someone who was not ill of that illness has a positive test 

is 2%, that is, 0,02. 

With these data, the probability that someone who had obtained a positive test 

of the illness was truly ill of the illness must be obtained. 

How it is a problem in which we know that someone has obtained a positive 

test of the illness we are in A Posteriori probability problem and we apply the 

Bayes theorem to solve it. 

Probability of being ill of the illness: P(A1)= 0,001 

The probability of not being ill with the illness is complementary to the previous 

probability: P(A2)= 0,999 

Conditional probability of being ill if a positive test of the illness is obtained: 

(B|A1)= 0,99 

Conditional probability to not be ill if a positive test of the illness is obtained: P(B| 

A2)= 0,02 

Consequently, if we apply the equation of calculation of the Bayes probability, 

we obtain: 

P A1jBð Þ  = 
P BjA1ð ÞP A1ð Þ  
2 
i= 1P B  AiÞj P Aið Þð 

= 
P BjA1ð ÞP A1ð Þ  

P B  A1ÞP A1ð Þ þ  P B  A2ÞP A2ð Þjðjð 

= 
0, 99:0, 001 

0, 99:0, 001þ 0, 02:0, 999 = 
0, 00099 

0, 02097 
= 0:047 ffi 5% 

which is very surprising from the statement of problem.
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9. We have the following probability density function: 

f xð Þ= 
m � 1- x4 if 0< x< 1 

0 otherwise 

(a) Calculate m. 

(b) Calculate the mean and the variance. 

(a) 
1

-1 

f xð Þdx= 1→ 

1 

0 

m 1- x4 dx= 1→mx 
1 

0

-
mx5 

5 

1 

0 

= 1 

m � 1-m � 0ð Þ- m � 1
5 

5
-m � 0

5 

5 
= 1 

m-
m 

5 
= 1→m= 

5 

4 
= 1:25 

(b) μx =E xð Þ= 

1

-1 
x � f xð Þdx= 

1 

0 

x � 1:25 � 1- x4 dx= 1:25 � x2 

2
-

x6 

6 

1 

0 

= 0:4167 

σ2 x = 

1

-1 
x2 � f xð Þdx- μ2 x = 

1 

0 

x2 1:25 � 1- x4 dx- 0:4167ð Þ2 

= 1:25 � x3 

3
-

x7 

7 

1 

0

- 0:4167ð Þ2 = 0:0645 

10. The number of hours of normal operation without failure of software is 750 hours 

with a standard deviation of 8 hours. Calculate: 

(a) The density function. 

(b) The probability of operating at least 760 hours without failure. 

(c) The probability to operate at most 748 hours without failure. 

(d) The probability to run exactly 755 hours without failure (taking only one 

decimal place). 

(a) The density function is a Normal (750, 8): 

p xið Þ= f x= xið Þ= 
1 

8 2π
p exp -

1 

128 
xi - 750ð Þ2 

(b) 760h or more without failures: 

p  x≥ 760ð Þ= p  z≥
760- 750 

8 
= 1- p  z≤ 1, 25ð Þ= 1- 0,894= 0,105→ 10, 5%
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(c) At most 748 hours without failure: 

p x≤ 748ð Þ  = p z≤
748- 750 

8 
= p z≤ - 0, 25ð Þ= 1- p z≤ 0, 25ð Þ  

= 1- 0,598→ 40, 1% 

(d) Exactly 755 hours without failure (1 decimal): 

p x= 755ð Þ ffi p 754,5≤ x≤ 755,5ð Þ= p x≤ 755,5ð Þ- p x≤ 754,5ð Þ  
= p z≤ 0, 6875ð Þ- p z≤ 0, 5625ð Þ= 0,751- 0,712= 0,039→ 3, 9% 

11. The average number of visits to a website is 5 every minute. Determine: 

(a) The probability function. 

(b) The mean and the standard deviation. 

(c) The probability that there are 17 visits in 3 minutes. 

(d) The probability that there are no visitors in 1 second. 

It is a process that quantifies the number n of elements of the population that 

are observed in an interval of fixed duration. 

Since we observe 1 minute and there is an average of 5 visits, we are looking 

for the average number of visits in different intervals. 

(a) Consequently, the probability function is a Poisson function with λ = 5: 

p rð Þ=P x= rð Þ= 
5r 

r! 
e- 5 

(b) The mean and the standard deviation: 

μx = λ= 5 
p 

σx = λ = 2, 24 

(c) Probability of 17 visits in 3 minutes: 

λ0 = λ:3= 5:3= 15 

p 17ð Þ=P x= 17ð Þ= 
1517 

17! 
e- 15 

= 0,084→ 8, 43% 

(d) Probability of no visitors in 1 second: 

λ00 = λ=60= 5=60= 0,083



(b)
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p 0ð Þ=P x= 0ð Þ= 
0,0830 

0! 
e- 0,083 

= 0:92→ 92% 

12. In a quality control, 20 components manufactured by a machine are observed, 

assigning each one a 0 if it is correct and a 1 if it is defective. The results 

obtained are: 0, 0, 0, 1, 0; 0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 0, 0, 0, 1, 0. If this is extended 

to the entire population: 

(a) What is the Geometric probability function? 

(b) What is the probability of getting 9 correct components before the first 

defective? 

(c) What is the probability of getting 19 correct components before the first 

defective? 

(a) The Geometric probability function is: 

p xð Þ= p 1- pð Þx- 1 
= pqx- 1 

= 0, 1 0, 9ð Þx- 1 
x= 0, 1, . . . , n 

We replace x with 10, because there are 9 observations: 

p 10ð Þ= 0, 1 0, 9ð Þ9 = 0, 0387→ 3, 9% 

(c) We replace x with 20, because there are 19 observations: 

p 20ð Þ= 0, 1 0, 9ð Þ19 = 0, 0135→ 1, 35% 

13. A company applies a discount on any invoice that is paid within 30 days of its 

issuance. Of all invoices, 10% received the discount. In an audit of the company, 

12 invoices were randomly selected. What is the probability that, of the 

12 invoices, less than 4 have a discount? 

In this case, we have to use the binomial probability function: 

p n=mð Þ= 
m 

n 
pn 1- pð Þm- n 

= 
m! 

n! m- nð Þ! p
n 1- pð Þm- n 

p 0=12ð Þ= 
12 

0 

1 

10 

0 9 

10 

12 

= 0, 2824 

p 1=12ð Þ= 
12 

1 

1 

10 

1 9 

10 

11 

= 0, 3765 

p 2=12ð Þ= 
12 

2 

1 

10 

2 9 

10 

10 

= 0, 2301 

p 3=12ð Þ= 
12 

3 

1 

10 

3 9 

10 

9 

= 0,085 

If we sum the values, we obtain 0,974 = 97,4%.
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14. A die is tossed eight times. What is the probability that 2 number 6 s come up? 

In this case, we have to use the binomial probability function: 

p n=mð Þ= 
m 

pn 1- pð Þm- n 
= 

m! 
pn 1- pð Þm- n 

p 2=8ð Þ= 
8 

2 

1 

6 

2 5 

6 

8- 2 

= 
8! 

2!6! 

1 

6 

2 5 

6 

6 

= 0, 2625→ 26, 25% 

15. What is the Bernoulli probability function of success for a die roll if only a 6 is 

considered successful? 

p xð Þ= 
1 

6 

x 5 

6 

1- x 

for x= 0, 1→ p 1 � Successð Þ= 
1 

6 
; p 0 � Failureð = 

5 

6 

Exercises Solved in R 

In this subsection, the previous exercises will be solved using the R software. In 

addition, as we did in the section B, we are going to solve only problems after 

probability distributions, that means, since exercise 9 in the hand-made exercises. 

9. We have the following probability density function: 

f xð Þ= 
m � 1- x4 if 0< x< 1 

0 otherwise 

(a) Calculate m. 

We have to check that 
1
-1f xð Þdx= 1 

To solve this type of integral with R, we have to perform a two-step process: 

First, we define the function that we want to integrate. In this case, we are going to 

give it the name “f”, so the instruction is: 

f <- function(x) {1-x^4} 

Second, we use the integrate() function, for which there is no additional package 

to load because it is in the stat package. The integrate() function has the arguments 

(function, lower bound, upper bound), so in this case, it becomes: 

integrate(f,0,1)
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The solution would be, clearing m in the equation, that m is equal to 1 divided by 

the result of the integral: 

1/0.8 

[1] 1.25 

(b) Calculate the mean and the variance. 

The function to calculate the mean is: 

μx =E xð Þ= 

1

-1 
x:f xð Þdx 

First, we have to define the function: 

mf <- function(x) {1.25*(x-x^5)} 

Then, we apply the integrate function: 

integrate(mf,0,1) 

[1] 0.4166667 

The function to calculate the variance is: 

σ2 x = 

1

-1 
x2 : f xð Þdx- μ2 x 

Following the same steps, we first have to define the function: 

vf <- function(x) {1.25*(x^2-x^6)} 

Then, we apply the integrate function: 

integrate(vf,0,1) 

[1] 0.2380952 

Finally, the variance is: 

0.2380952-0.416667^2 

[1] 0.06448381 

10. The number of hours of normal operation without failure of software is 

750 hours with a standard deviation of 8 hours. Calculate: 

(a) The probability of operating at least 760 hours without failure. 

1-pnorm(760, mean = 750, sd = 8) 

1-pnorm((760-750)/8) 

[1] 0.1056498 

(b) The probability to operate at most 748 hours without failure. 

> pnorm(748, mean = 750, sd = 8) 

> pnorm((748-750)/8) 

[1] 0.4012937
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(c) The probability to run exactly 755 hours without failure. 

> dnorm(755, mean = 750, sd = 8) 

[1] 0.04102012 

The average number of visits to a website is 5 every minute. Determine: 

(a) The probability that there are 17 visits in 3 minutes. 

> dpois(17,15) 

[1] 0.08473555 

(b) The probability that there are no visitors in 1 second. 

>dpois(0,5/60) 

[1] 0.9200444 

12. In a quality control, 20 components manufactured by a machine are observed, 

assigning each one a 0 if it is correct and a 1 if it is defective. The results 

obtained are as follows: 0, 0, 0, 1, 0; 0, 0, 0, 0, 0; 0, 0, 0, 0, 0; 0, 0, 0, 1, 0. If this 

is extended to the entire population: 

(a) What is the Geometric probability function? 

The Geometric function is covered in the R stats package so there is no 

additional package to load. We can work with the Geometric function 

through different functions, but the main one is: 

dgeom (x, prob) 

(b) What is the probability of getting 9 correct components before the first 

defective? 

>dgeom(10,0.1) 

[1] 0.0348 

(c) What is the probability of getting 19 correct components before the first 

defective? 

>dgeom(20,0.1) 

[1] 0.0121 

As it can be seen, the results are not the same as in the handmade exercises 

subsection. The reason is that the function implemented in R is: 

p nð Þ=P x= nð Þ= p 1- pð Þn ; con n= 1, . . .  

where n is the number of correct elements observed without including the 

defective one. Therefore, the correct solutions are: 

> dgeom(9,0.1) 

[1] 0.0387
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> dgeom(19,0.1) 

[1] 0.0135 

13. A company applies a discount on any invoice that is paid within 30 days of its 

issuance. Of all invoices, 10% received the discount. In an audit of the company, 

12 invoices were randomly selected. What is the probability that, of the 

12 invoices, less than 4 have a discount? 

The Binomial function is covered in the R stats package so there is no 

additional package to load. We can work with the Binomial function through 

different functions, of which we will use two: 

– The function dbinom (x, size, prob), whose arguments are: x, value of which 

we want to know the probability; size, number of tests to perform; and prob, 

– And the function pbinom(x, size, prob). It gives us the distribution function, 

that is, the sum of the probabilities of the values less than or equal to x, with 

size, number of tests to be carried out; and prob, value of the probability of 

success. 

In this case, we are going to use both functions to check that we obtain the 

ame result: 

> dbinom(0,12,0.1)+dbinom(1,12,0.1)+dbinom(2,12,0.1)+dbinom(3,12,0.1) 

[1] 0.9743625 

> pbinom(3,12,0.1) 

[1] 0.9743625 

14. A die is tossed eight times. What is the probability that 2 number 6s come up? 

The probability that a number 6 will come up is 1/6, so p= 1/6, the number of 

tests to be carried out or attempts, that is, size is 8, and the number of successes 

or value of which we want to know the probability is 2. We set them into the 

dbinom() function and get: 

dbinom(x, size, prob)= dbinom(2,8,1/6) = 0.26 

15. What is the Bernoulli probability function of success for a die roll if only a 6 is 

considered successful? 

dbern(x, 1/6) 

Next, four additional exercises are solved using R. 

1. Represent the Binomial function for the following cases B1 (0.3, 30); B2 (0.6, 

30), and B3 (0.8, 100). 

To represent the binomial function, we will use the well-known function plot 

() and as an argument, either we do it through a variable B1 or we introduce the 

function that allows us to calculate the binomial function, which is: dbinom (), 

whose arguments are: x, the value of which we want to know the probability, size, 

and number of tests to perform; and prob, the value of the probability of success. 

For B1, we would have
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>B1 = dbinom (x, 30, 0.3). 

However, before calculating it, we will have to determine the value of x. To do 

this, we use the sequence function between 0 and 30, with a step equal to 1. 

> x = seq (0, 30, by = 1). 

Therefore, we can enter any of the following settings for the plot function: 

>plot (B1) 

>plot (dbinom (x, 30, 0.3)) 

> plot (dbinom (seq (0, 30, by = 1), 30, 0.3)) 

obtaining the same result. To obtain the result of the following two cases, we 

introduce the following: 

>plot (dbinom (seq (0, 30, by = 1), 30, 0.6)); 

>plot (dbinom (seq (0, 100, by = 1), 100, 0.8)). 

2. For each of the previous probability distribution functions: 

(a) Calculate the probability that the variable takes the value 20. 

(b) Calculate the probability that the variable takes a value equal to or less 

than 10. 

(c) Calculate the probability that the variable takes a value greater than 25. 

To perform the calculations in subsection (a), we use the dbinom () 

function again, putting the appropriate values for this calculation, which are: 

>ab1 = dbinom (20, 30, 0.3) 

> ab2 = dbinom (20, 30, 0.6) 

> ab3 = dbinom (20, 100, 0.8). 

To perform the calculations in subsection (b), we use a variant that is the 

pbinom () function that gives us the distribution function, and for each case, 

they are: 

>bb1 = pbinom (10, 30, 0.3); 

>bb2 = pbinom (10, 30, 0.6) 

> bb3 = pbinom (10, 100, 0.8). 

Finally, for subsection (c), we use the distribution function again and calculate 

the probability of the complementary event q = 1-p. In this case, it is: 

>cb1 = 1-pbinom (25, 30, 0.3) 

>cb2 = 1-pbinom (25, 30, 0.6) 

>cb3 = 1-pbinom (25, 100, 0.8) 

3. Obtain the normal function, with 50 randomly generated numbers with the 

following mean and standard deviations: (0, 0.5); (0, 1) and (0, 2). 

To represent the normal function, we use the normal function dnorm (). The 

arguments of this function are x, value of which we want to know the probability,
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mean, mean of the normal distribution; and sd, standard deviation. They ask us to 

obtain the value of x randomly, for which we use the rnorm () function. Its 

arguments are n, number of observations; mean and sd. Consequently, to solve 

the problem for the first pair (0, 0.5), we introduce the following instructions: 

>x = rnorm (50, 0, 0.5) 

>d1 = dnorm (x, 0, 0.5) 

>plot (d1). It could also be written synthesized in a single expression: 

>plot (x, dnorm (x, 0, 0.5)) 

For the other two pairs, we have: 

>plot (x, dnorm (x, 0, 1)) 

>plot (x, dnorm (x, 0, 2)) 

We put them all in a single graph to compare them with the instruction: 

>op = even (mfrow = c (2, 2)) 

4. For each of these functions, calculate: 

(a) The value of the probability function at point 0.2. 

(b) The probability that the variable is greater than 1 

To calculate the probability at point 0.2, we use the commands: 

a1 = dnorm (0.2, 0, 0.5) 

a2 = dnorm (0.2, 0, 1) 

a3 = dnorm (0.2, 0, 2) 

To calculate the probability that the variable is greater than 1, we use pnorm () 

and the property of the probability of the complementary event: 

>b1 = 1-pnorm (1, 0, 0.5); 

>b2 = 1-pnorm (1, 0, 1); 

>b3 = 1-pnorm (1, 0, 2). 

Annex: Probability Extended Concepts 

In this section, of the chapter, more mathematically advanced concepts are intro-

duced that will lead to the axiomatic definition of the Kolmogorov probability. When 

dealing with topics of greater mathematical complexity, it will also be in this section 

where concepts that have already been introduced in the previous sections are delved 

into, such as those related to set theory or demonstrations of the properties of 

probability.
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Axiomatic Probability of Kolmogorov 

There are two definitions that we need to go deeper into the probability concepts, the 

fifth axiom of the set theory and the axiom of the power set, which states that for any 

set S, there exists a set P such that A⊂ P if and only if A⊆ S. From the fifth axiom of 

the set theory, since the set P is uniquely determined, the set of all subsets of S can be 

called the power set or sections of S, denoted by P(S), and this is the second 

definition that we must remember now. In the previous subsection, we saw that 

applied to a random experiment with sample space E, the set of parts of E can be 

defined as one whose elements are all possible subsets of E. In set theory, for any 

set A, the set of parts of A, P(A), is the set formed by all the subsets that can be 

formed with the elements of A. The set P(E) with the inclusion relation (P(E), ⊂), is 

a partially ordered set, where E is the maximal and ∅ is the minimal. In the 

footnote,9 we can read, to remember more easily, the rest of the contents introduced 

for the definition of parts of E and the example10 introduced to understand the 

concept. 

Once the set of parts of E has been defined, if set theory is still applied, it can 

be verified that the set powers or parts of a set S, or in our case E, with the 

operations union and intersection of sets and the definition of complementary set 

(P(S),[, \ , Þ has a Boolean Algebra Structure. The fact that P(E) has a Boolean 
Algebra structure leads to the verification of the duality principle, which says that a 

set, an event, can be expressed from others through the operations associated with a 

Boolean Algebra, that is, substituting the union for the intersection and vice versa

9 Each element of P(E), that is, each subset of E, is one of the different events or results, both 
elementary and nonelementary, that can occur when performing the random experiment, that is, it is 
the set of all possible results that can be given when conducting the experiment, so P(E) is called the 
event space of the random experiment. From this it is logical to ask: how many are the elements of 
P(E)? The solution is calculated using combinatorics. If the cardinal of E is n, that is, the number of 

elementary events or elements of E is n, a set of n elements contains 
n 

m 
subsets of m elements 

each, since they are combinations of n elements taken from m to m. They are combinations and not 
variations because two subsets are different only if they have one or more different elements, not if 
the elements are listed in different order. Since the number of subsets of E would be the sum of all 
the possible subsets that could be formed with the elements of E, subsets that could have from 0 to 

n elements, the sum would be: 
n 

0 
þ 

n 

1 
þ . . .þ 

n 

n- 1 
þ 

n 

n 
= 2n . So the number of 

elements of P(E) is 2n . 
10 To see an example of the set Parts of E, we take the E of seen example of the E of the rolling of a 
die, that is {1,2,3,4,5,6}, starting for this, in roll of a die the set of parts of E is: P(E) = {∅,  1,  2,  3,  4,  
5, 6, {1,2 }, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2, 6}, {3.4}, {3.5}, {3.6}, {4.5}, 
{4.6}, {5.6}, {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, {1,3,4}, {1,3,5}, {1,3,6}, {1,4,5}, {1,4,6}, 
{1,5,6}, {2,3,4}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6}, {2,5,6}, {3,4,5}, {3,4,6}, {3,5,6}, {4,5,6}, 
{1,2,3,4}, {1,2,3,5}, {1,2,3,6}, {1,2,4,5}, {1,2,4,6}, {1,2,5,6}, {1,3,4,5}, {1,3,4,6}, {1,3,5,6}, 
{1,4,5,6}, {2,3,4,5}, {2,3,4,6}, {2,3,5,6}, {2,4,5,6}, {3,4,5,6}, {1,2,3,4,5}, {1,2,3,4,6}, 
{1,2,3,5,6}, {1,2,4,5,6}, {1,3,4,5,6}, {2,3,4,5,6}, {1,2,3,4,5,6}}. The Number of elements of 
parts of E on roll of a die is: 2 ^ n = 2  ^  6  = 64.



and the certain event for the impossible, since for every event A, B, C 2 P(S), the 
following five 5 properties are fulfilled:
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• Commutative: A[B = B[A; A\B = B\A
• Associative: A[(B[C) = (A[B)[C; A\(B\C) = (A\B)\C
• Distributive: A[(B\C) = (A[B)\(A[C); A\(B[C) = (A\B)[(A\C)
• Neutral element: A[Ø =A; A\Ø=A

• Complementary element: A[A =E; A\A = Ø 

From property 5, it follows that E=∅. Proof: E=∅. E[E = E, The only 

possibility of this happening is E=∅ 

As the event space set, P(E), is the power set or parts of the sample space set, E, 

and it verifies the operations union and intersection of events and the definition of the 

opposite event (P(E),[, \ , ) can be said to have a Boolean Algebra structure. From 

here on, we are going to go from talking about sets in general to sets of events in 

particular, since the events are the objects the domain of the text, and we understand 

that the bases of set theory on which the concepts used rest are already properly 

established. In formal theory, the events considered must all be sufficiently regular 

sets (Borel-measurable) in some space of possible results of a random system”. 

In addition to the five properties that allow P(E) to be given the Boolean Algebra 

structure, the operations union and intersection of events and the definition of the 

opposite event also allow A, B, C 2 P(E) to fulfil the following five additional 
properties:

• Idempotency: A[A = A; A\A = A

• Identity: A[E = E; A\E = A

• Involution: A double overline = A

• Simplification: A[ (A\B) = A; A\ (A[B) = A

• Morgan’s Laws: 

(a) A [ B=A \ B. Proof: 

If x2 A [ B→x=2 A[B→ x=2 A y  x=2 B→ x2 A y  x2 B→ x2 A \ B 
If x2 A \ B→ x2 A y x2 B→ x=2 A y  x=2 B→ x=2 A[B→ x2 A [ B 

(b) A \ B=A [ B. Proof: 

If x2 A \ B→x=2 A\B→ x=2 A y  x=2 B→ x2 A y  x2 B→ x2 A [ B 
If x2 A [ B→ x2 A y x2 B→ x=2 A y x=2 B→ x=2 A\B→ x2 A \ B 

Once we have seen what refers to the concept of event and before entering the 

concepts of random variable and probability, we are going to see the concept 

σ-algebra on A, where A is any subset of the space of events P(E), A⊆ P(E).11 

11 This definition is valid if E is finite, if E was an infinite set and non-numerable of ℝ the σ-algebra 
was not be defined over A⊆P(E) but it would be of Boel.
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S is said to be a σ-algebra defined on E if it verifies the following two properties: 

1. A2 S → A 2 S. 
If this property is verified by S, two associated conclusions are immediately 

deduced: 

(a) E2 S. Proof: 
By property 5, the complementary element of the event space, A[A = E. 

Since A2S → A 2 S, both A and A as their union, E, belong to S. 
(b) ∅ 2 S. Proof: 

E 2 S y de 1. A2 S →A 2S, and by the definition of a complementary 

element, we know that E=∅; therefore, ∅ 2A. 

2. Aif g1 
i= 1 ⊂ S →[1 

i= 1Ai 2 S 

As an example continuing with the example of the throwing of a die, we are going 

to define two examples of two σ-algebra of the possible ones and we are going to 

verify that they fulfil the properties to be so: 

The first is S = {∅, {1, 2, 3}, {4, 5, 6}, E}. We verify the first property: 

We verify the properties: A2 S → A 2 S. {1, 2, 3} 2 S, the complement of 

{1, 2, 3} is {4, 5, 6}, which also belongs to S; therefore, the first property is true. 

We verify the second property. The second property says that the union of all sets, 

events, contained in S, also belongs to S; consequently, {1, 2, 3} [ {4, 5, 6} = {1, 

2, 3, 4, 5, 6} 2 S, and since {1, 2, 3, 4, 5, 6} = E and E 2 S, the second property also 
holds. Since E belongs to S,∅ must also belong, but we see in the definition of S that 

it does, so S fulfils both properties and is a σ-algebra. 

The second is S = {∅, {1, 2}, {3,4}, {5,6}, {1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, 

E}. The first property is verified since there are the sets ∅ and E, and each of the sets 

of S has its complement, {1, 2} $ {3, 4, 5, 6}, {3, 4} $ {1, 2, 5, 6}, {5,6} $ {1, 
2, 3, 4}. The second property is also verified because all unions of sets of S are also 

found in S, as there are many we put only two examples {1, 2} [ {5, 6} → {1, 2, 5, 

6}; {3, 4} [ {1, 2, 5, 6} → E. 

The definition of a σ-algebra A on an E allows defining a complete system of 

events or partition of E to all set of events Aif g1 
i= 1 ⊂ S that verifies the following 

two properties: 

1. Ai \ Aj = ∅ 8 i ≠ j 

2. [1 
i= 1Ai =E 

As an example of a complete system of events or partition of E, following 

the example of σ-algebra, we will see that two complete systems of events 

or partitions of both σ-algebras can be defined. For the first one is S = {∅, 

{1, 2, 3}, {4, 5, 6}, E}, the partition is {∅, {1, 2, 3}, {4, 5, 6}}, since it is verified 

that Ai \ Aj =∅ 8 i ≠ j, that is, {1, 2, 3} \ {4, 5, 6} =∅, and the intersections with 

the empty set are the empty set; it also fulfils the second property∅ [ {1, 2, 3} [ {4, 

5, 6} = E.
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For the second σ-algebra, the partition is {∅, {1, 2}, {3,4}, {5,6}}, since their 

intersections are ∅ and its union E. As seen, the events with four elementary events 

have been eliminated because the intersections with any other set of events would 

not be empty. 

Once we know the basics of the event concept and σ-algebra, we can get into the 

concepts of random variable and probability. 

Let the pair formed by a sample space E and a σ-algebra S defined on it, (E, S), 

consider a random variable any application v: S → R// A → v (A) such that 8 x 2 R 
∃ a set Ax = {A 2 E / v (A) ≤ x} is an event belonging to the σ-algebra S, or what 

is the same, v-1 ((-1, x)) 2 σ -algebra S. If the map v is S → N, v is called a 

discrete random variable. 

Random variable. The first thing to be very clear is that a random variable is an 

application or function and as an example we will take the application or function 

that gives us the number of sixes obtained in 2 rolls of a die, the well-known 

Chevalier De Mere problem.12 Following the definition, to be a valid random 

variable 8 x 2 R ∃ a set Ax = {A 2 E/v (A) ≤ x}. Being a count of the number 

of times the smallest x that can give is 0, and if it is a random variable, there must be 

a set of the sample space such that the function applied to said set, that is, the number 

of sixes in the set, is less or just like a hill. To check this, the first thing we do is 

determine the sample space of the random experiment. For the rolls of a die, the 

sample space is the known E = {1, 2, 3, 4, 5, 6}. For the rolls of two dice, the 

elemental events will be all possible variations with repetition of 6 elements, which 

are the six faces of the dice, taken two by two, which is the number of dice that are 

rolled each time. They are variations and not combinations because, for example, the 

result of the first die 1 and the second die 4 is different from the result of the first die 

4 and the second die 1. They are repeated because the same result can be given on 

both dice. Consequently, the number of elementary events that we have is Vm. 

n = mn → V6,2 = 62 = 36. The elements and elementary events of the sample space 

are E = {(1,1), (1, 2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), 

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (5.1), (5.2), 

(5.3), (5.4), (5.5), (5.6), (6.1), (6.2), (6.3), (6.4), (6.5), and (6,6)}. Returning to the 

original problem that was to find in E a set such that the number of sixes is less than 

or equal to zero, as can be easily observed, said set exists and is: A0 = {A 2 E / v  

(A) ≤ 1} = v-1 ((-1, 0)) = {(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), 

(2,5), (3,1), (3,2), (3,3), (3,4), (3, 5), (4.1), (4.2), (4.3), (4.4), (4.5), (5.1), (5.2), (5.3), 

(5.4), (5.5)}. 

The next x that we must check is x = 1, there must be an A1 = {A 2 E / v (A) ≤
1} = v-1 ((-1, 1))., That is, the number of sixes is less than or equal to 1, said set 

exists and is A1 = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), 

(2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4.6),

12 The Chevalier (Knight, in French) De Mere, was a Renaissance libertine who posed a famous 
mathematical puzzle: Which is more likely: to get at least a 6 in 4 rolls of a die or to obtain at least 
two 6 in 24 rolls of two dice?
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(5.1), (5.2), (5.3), (5.4), (5.5), (5.6), (6.1), (6.2), (6.3), (6.4), (6.5)}. Finally, the last x 

to check is x = 2, the set also exists, and it can be easily observed that it is E. Any x 

greater than 2 would not make sense by the logic of the experiment. Therefore, it can 

be concluded that the number of sixes obtained in two rolls of a die is a random 

variable, and furthermore, as the values of said variable belong to the natural 

numbers, that is, it is a function S → N, it is a discrete random variable.

196 Probability

Let the pair formed by a sample space E and a σ-algebra defined on it, (E, S), 

called the probabilizable space, define a probability on it for every 

application p: S → S → ℝ
+ , which verifies the following two axioms: 

1. p(E)=1 

2. 8 Aif g1 
i= 1 ⊂ S con Ai \ Aj =∅8i≠ j→p [1 

i= 1Ai = 

1 

i= 1 

p Aið Þ  

In this example, continuing with the example of rolling a die, whose sample space 

we know to be E = {1, 2, 3, 4, 5, 6}, and taking a σ-algebra S defined on it, for 

example, one of those that we verified that they were in the example on σ-algebras 

S = {∅, {1, 2, 3}, {4, 5, 6}, E}, let us see if some applications of S → ℝ
+ can be 

considered probability functions on said probabilizable space. 

The first is: 

p1 : S→ℝ
þ 
: p ∅ð Þ= 0, p Eð Þ= 1, p 1, 2, 3f gð Þ= 7=6, p 4, 5, 6f gð Þ= 1=6½  

To see if p1 is a probability function on the probabilizable space (E, S), we check 

if it verifies the axioms. The verification of the first axiom is immediate since it is part 

of the definition of the application p1, p(E) = 1. The verification of the second axiom 

applies only between the sets ∅, {1, 2, 3}, {4, 5, 6}, which are those that verify 

Ai \ Aj = ∅ 8 i ≠ j, and it must be verified that p [1 
i= 1Ai = 

1 

i= 1 

p Aið Þ, which in 

this case is [1 
i= 1Ai = ∅ [ {1, 2, 3} [ {4, 5, 6} = {1, 2, 3, 4, 5, 6} = E, from 

where p(∅ [ {1, 2, 3} [{4, 5, 6}) = p(E) = 1; on the other hand, p(∅) + p({1, 

2, 3}) + p({4, 5, 6}) = 0 + 6/7 + 1/7 = 1, so it is verified that p1 is a probability map 

over the probabilizable space (E, S). 

The second application that we are going to see is p2: S → ℝ
+ : [ p(∅) = 0, 

p(E) = 1, p({1, 2, 3}) = 1/2, p({4, 5, 6}) = 2/3]. It is easy to see that the second 

axiom does not hold, since p(∅ [ {1, 2, 3} [{4, 5, 6}) = p(E) = 1; and on the other 

hand p(∅) + p({1, 2, 3}) + p({4, 5, 6}) = 0 + 1/2 + 2/3 = 1.16, so what is not verified 

that p2 is a probability map on the probabilizable space (E, S) 

In the definition of the probability function and in the examples about it, it is easy 

to see, on the one hand, that different probability functions can be defined on a 

probabilizable space, all of them equally valid; and on the other hand, that for 

different probabilizable spaces, different equally valid probability functions can be 

defined. For this reason, a definition of probability that is universally valid for any 

probabilizable space is highly valid, and this is verified by the classical definition of
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probability or Laplace probability.13 As was seen in the previous subsection, the 

classical definition of probability says that the probability of the occurrence of an 

event A is equal to the number of cases in which A appears, nA, divided by the total 

number of cases, nT, or what is the same: 
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p Að Þ= 
nA 
nT 

In this example, we are going to prove that the classical Laplace probability 

verifies the axioms of the Kolmogorov probability, that is, if we apply the classical 

definition of probability to the previous example of the rolling of a die whose sample 

space we know is E = {1, 2, 3, 4, 5, 6}; and we take the same σ-algebra S on it, 

S = {∅, {1, 2, 3}, {4, 5, 6}, E}, the only mapping of S →ℝ
+ that can be considered 

classical probability functions on said probabilizable space is pc: S → ℝ
+ : [  

(∅) = 0, p(E) = 1, p({1, 2, 3}) = 1/2, p({4, 5, 6}) = 1/2]. 

It is easy to check, following the same reasoning as the probability examples, that 

it fulfils the Kolmogorov probability axioms. However, now the probability values 

for the events {1, 2, 3} and {4, 5, 6} can no longer be any pair that allows verifying 

the second Kolmogorov axiom, as they were for example 6/7 and 1/7 in the example 

above, but they have to verify the classical definition of probability and can only be 

1/2 and 1/2. To determine this value, the equation p Að Þ= 
nA 
nT 
is applied. In the case of 

the set A = {1, 2, 3}, nA is the number of cases in which, when rolling a die, we 

obtain a result, an elementary event, that belongs to said set, and there are 3 cases, get 

a 1, a 2, or a 3; nT is the number of total cases, and these are as we have already seen 

in several example 6 cases, therefore we have p(A) = 3/6 = 1/2. For the set {4, 5, 6}, 

the reasoning is analogous. 

Once the concepts of sample space, σ-algebra and probability are known, we can 

define a probabilistic space: A triple formed by a sample space, a σ-algebra A 

defined on it, and a probability defined on A, (E, A, p) is called probability or 

probabilistic space. From here, we refer to the probability function using the 

classical definition of probability to define the spaces probabilistic. 

Once we have introduced the concept of probability space, we will show that the 

property application verifies the properties that we listed for classical probability in 

the previous section of the chapter. Consequently, if A and B 2 at (E, A, p), the 
probability application verifies the following five properties: 

1. A⊂B→p(A)≤p(B). 

Proof: If A⊂B→B=A[(A\ B) From the definition of a complementary 

element, we know that A\ A\B) = Ø, so they verify the first part of axiom 

2, which implies that they verify the second part, p(A[(A\B))=p(A)+p(A\B), 

13 It is not a universal definition because, on the one hand, it is not applicable to an infinite set, that 
is, with infinite events; and on the other, it requires that the events be symmetrical, that is, that the 
elementary events that compose them be equiprobable
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which implies that p(B)= p(A)+p(A\B). Since A⊂B→B≥A→ A\B≠Ø→ p 

(A\B)≥0→p(B)≥p(A). 

2. p A = 1- p Að Þ  
Proof: By the definition of a complementary element, we know that A\A= Ø, 

so A and A verify the first part of axiom 2, which implies that they verify the 

second part p(A[AÞ= p(A)+p(A ). By the definition of the complementary 

element, we know that A[A = E, which implies that p(E) = p(A)+p(A ).  

Therefore, by the first axiom, we have 1= p(A)+p(A). 

3. 0≤p(A)≤1 

Proof: There cannot be any A/A⊂ Ø since Ø is the smallest subset in A, which 

implies that p(Ø) is the smallest probability that we can find in A, and by property 

1, we know that p(∅) = 0. There cannot be any A/ / E ⊂A, since E is the largest 

subset in A, which implies that, by property 1, p(E) = 1 is the highest probability 

that we can find in A. Any other set A2A will satisfy that A⊂E, therefore, by 

property 4, p(A) ≤ p(E). 

4. p(A[B)=p(A)+p(B)-p(A\B) 
Proof: A[B=(A\B)[(B\A) [ (A\B), where (A\B), (B\A), (A\B) disjoint 

subsets, that is, their two-by-two intersections give Ø, so they verify the first part 

of axiom 2, which implies that they verify the second part p(A[B) = p((A\B)[ 
(B\A)[ (A\B))=p(A\B)+p(B\A)+p(A\B). On the other hand A=(B\A)[ 
(A\B) which are also disjoint sets and the second axiom can be applied to them, p 

(A)=p(B\A)+p(A\B). The same happens for B, p(B)=p(A\B)+p(A\B). Solv-
ing in these last two equations p(B\A) and p(A\B) and substituting in the first 
one, we have p(A[B)= (p(A)-p(A\B))+ (p(B)-p(A\B))+ p(A\B). 

5. p(∅)=0 

Proof 1: 

From the definition of the complementary element, we know that E\∅ = ∅. 

Therefore, E and ∅ verify the first part of axiom 2, which implies that they verify 

the second part p(E[∅)=p(E)+p(∅). By the neutral element property E[Ø=E, 

which implies that p(E) = p(E)+p(∅)→p(∅)=0. 

Proof 2: 

Let Aif g1 
i= 1= Ø. From the definition of the neutral element, we know that 

Ø\Ø= Ø, so they verify the first part of axiom 2, which implies that they verify 

the second part p [1 
i= 1∅ = 

1 

i= 1 

p ∅ð Þ. By the property of neutral element 

Ø[Ø= Ø, for as many Ø as there are, which implies that p(Ø) = 

1 

i= 1 

p ∅ð Þ→p 

(∅)=k. p(∅), where k is the number of Ø there is, which implies that for the 

equality to be fulfilled, the only possibility is that p(∅) = 0. 

On the basis of a probability space, the probability of joint occurrence of more 

than one event is defined as:
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Let a (E, A, p), let A and B 2A, and let p(B) > 0, the probability of appearance of 

A having given B, p(A | B),14 is defined as the application, p:A→ℝ
+ ,which fulfills 

the following two axioms of probability: 

p: A→ℝ
+ 

p(A|B)=p(A\B)/p(B) 
Conditional probability15 fulfils the two axioms of probability: 

1. p(E) = 1 

2. 8 Aif g1 
i= 1 ⊂A con Ai \ Aj =∅8i≠ j→p [1 

i= 1Ai = 

1 

i= 1 

p Aið Þ  

From the previous definition, it can be defined that two events are independent if 

the appearance of one of them does not change the probability of the appearance of 

the other:16 

p Ai \ Aj = p Aið Þp Aj 8i≠ j 

From the definition of the probability of joint occurrence of events, can be stated 

the Total Probability Theorem as: 

Let (E, A, p) and let Bif g1 
i= 1 ⊂A be a partition of A, such that the probabilities of 

all its elements are known, and let A2A / let p(A| Bi)8i 2ℕ ,$, the probability of A is: 

p Að Þ= 

1 

i= 1 

p AjBið Þp Bið Þ  

14 The probability of A is marked P(A), the probability of A given the event B, which can be an 
elementary event or a set of events, is marked P(A | B) 
15 For an event A there is a probability, called a priori, which is the one it has when more events are 
not taken into account; for said event A there is another possibility, called a posteriori, which is what 
it has when the occurrence of other events is taken into account. If the occurrence of these events 
does not change the prior probability of A and its posterior probability is the same, these events are 
independent of event A. 
16 If two events are independent, the probability of joint occurrence of both is equal to the 
multiplication of their prior probabilities; if there are more events, the joint probability is the 
multiplication of the occurrence of all of them.



Anomaly Detection 

In this fourth chapter, we are going to see the foundations of the identification of 

anomalous data, outliers, and the main techniques used to carry it out, is also known 

as anomaly detection. It is structured as the rest of the chapters in three sections. 

Section A introduces, in a theoretical and, at the same time, practical way, all the 

basic theoretical knowledge related to the concept of anomaly detection or Outliers 

identification that a data analyst must know in depth, from its definition of what 

means the concept to the introduction of some of the most commonly used tech-

niques to identify them. 

Section B presents the computer-based solving of the same examples used in 

section A to introduce theoretical knowledge. Section B presents the computer-based 

solving. The reader continues going into a deep knowledge of R and is presented 

how anomaly detection problems are solved with the use of R. 

Section C will consist of a set of statements of exercises about anomaly detections 

in which detailed solutions can also be found in this section of the chapter.
1 

A. Theory 

The first section of the chapter is structured into four subsections: 1. Introduction, 

2. Anomaly Detection Based on Statistics, 3. Anomaly Detection Based on Proxim-

ity, 4. Anomaly Detection Based on Density. The basic knowledge related to the 

concept of anomalies or outliers and some of the main techniques used to identify 

them are presented in detail. 

1 We repeat again here that in order to obtain the best results for the learning process throughout the 

use of the book, it is very important that the reader tries to solve the exercises by him/herself before 

seeing their solutions and that only once solved they check if the obtained solutions are correct. 
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Introduction 

We are going to study the concept of detecting anomalous events, which can also be 

called anomalies or outliers.2 The studies of anomaly detection or anomalous event 

identification, also called outliers, seek to find and classify as outliers those events 

that are very different3 from the rest of those that make up the studied sample of the 

set P(Ω). To give a measure of how anomalous an event is, the variable score degree 

of outlier, outlier score, or  degree of anomaly have been defined. The way to 

measure the degree of outliers will depend on the technique used. 

Identifying anomalous data is essential for good data analysis. 

The outlier degree is arbitrarily set by the data analyst taking into account the 

study they are conducting. 

Anomalous data can be:

• Erroneous data, coming from measurement errors, must be eliminated because 

they will lead to an analysis of data with erroneous conclusions. Outlier detection 

is often part of data preprocessing, specifically data cleansing. 

Correct data, with a lot of significance, that deviate from the normal must be 

analyzed very carefully because they can lead to important findings. 

To introduce the concept of identifying outliers through an example, we 

use marks in a subject from a group of students. The elementary events are each 

of the marks individually E = {Theory, Laboratory}. The elementary event ratings 

will have values from 0 to 5, where 5 will be the highest possible rating and 0 the 

lowest. The event sample in which the outliers will be searched is made up of the 

following five events, or student grades: 1. {4, 4}; 2. {4, 3}; 3. {5, 5}; 4. {1, 1}; 

5. {5, 4}. The problem to be solved is to identify if one or more of these qualifica-

tions are very different from the rest and, therefore, can be considered outliers. 

Different identification techniques can be used to obtain the outliers. This differ-

entiation is based on the fundamentals of the analysis technique used. Some of the 

best known and most commonly used techniques4 can be classified as follows:

• Based on statistics. Based on statistical knowledge, they use statistical parameters 

to look for anomalous events.

• Based on proximity.5 They look for events that are widely separated from other 

events, so they are based on some definition of distance.

2 From here and in the rest of the text, we will refer to anomalous data as anomalies or outliers since 

both terms are used interchangeably. 
3 An event consisting of multiple individual characteristics can be abnormal even though the 

individual values of each characteristic are not. 
4 Other classifications can be found in the literature. We like this simplified one for the entry level. 
5 In the case of one-, two-, or three-dimensional events, which can be represented graphically, their 

graphical representation is very useful to make a first visual identification of the outliers.



• Based on density.6 They look for events that are located in a spatial zone in which 

there is less density of events than the observed mean for that sample.
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In the next sections of this chapter, we are going to see how each one works in a 

specific way. 

Anomaly Detection Based on Statistics 

These techniques use statistical parameters to look for anomalous events. Two of 

these techniques will be explained: The first one is based on the use of the mean and 

standard deviation, and the second one is based on the use of quartiles. 

Anomaly Detection Based on the Mean and Standard Deviation 

Tchebychev’s inequality establishes that, in any normal distribution, between the 

mean and two standard deviations, there are at least 75% of the data and between the 

arithmetic mean and three standard deviations, 89%. Therefore, it can be used to 

identify anomalous data, establishing as anomalous data those data that are at a 

distance greater than three, or even more, depending on the analyst decision, 

standard deviations from the mean value. 

The identification of anomalous events using the standard deviation technique 

follows a five-step process: 

1. Determination of the degree of outlier or distance at which an event (point) is 

considered an outlier. It is chosen arbitrarily. 

2. As we saw in Chapter 2, “Data”, the arithmetic mean is obtained using the 

equation: 

x= 

n 

i= 1 

xi 

n 

And using frequencies: 

xa = 

n 
i= 1fixi 
n 
i= 1fi 

6 Although the graphical representation of the data can help a lot in the identification of the events 

that can be outliers, using only visual identification is not possible because it cannot be known if the 

identified values exceed the threshold of the chosen outlier degree.
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3. The standard deviation is obtained using the equation: 

s= 

n 
i= 1 xi - xð Þ2 

n 

And using frequencies: 

sa = 

n 
i= 1fi xi - xað Þ2 

n 
i= 1fi 

4. The limits of the interval for the outliers are calculated using the equation: 

xa - dsa, xa þ dsað Þ  

where d is the distance established in step 1. 

5. Outliers are identified as the values that fall outside the range calculated in 

step 4. 

To introduce the mean and standard deviation technique for identifying outliers 

through an example, we use the example described in the introduction in which the 

outliers will be searched in the following five events, or student grades: 1. {4, 4}; 

2. {4, 3}; 3. {5, 5}; 4. {1, 1}; 5. {5, 4}. As this technique can be applied to only one 

variable, it is going to be applied over the theory marks, which are: {4, 4, 5, 1, 5} 

(Fig. 1). 

In the first step, we establish the outlier degree as 1.5, d = 1.5. 

We calculate the arithmetic mean: 
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Fig. 1 Graphical representation of the theory marks data
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xT = 

5 
i= 1xi 

n 
= 

4 þ 4þ 5 þ 1þ 5 
5 

= 3:8 

And from the mean, we calculate the standard deviation: 

sT = 

5 
i= 1 xi - xTð Þ2 

n 

= 
4- 3:8ð Þ2 þ 4- 3:8ð Þ2 þ 5- 3:8ð Þ2 þ 1- 3:8ð Þ2 þ 5- 3:8ð Þ2 

5 
= 1:469 

From these results, and taking into account the degree of outlier taken of 1.5, the 

interval for normal data is: 

x- 1, 5:s, x þ 1, 5:sð Þ= 3:8- 1,5:1,47, 3:8þ 1, 5, 1:47ð = 1:59, 6:00ð  

Consequently, the mark value 1 is outside the interval, in the lower limit, and in 

consequence, it is an anomaly detected and can be considered an outlier (Fig. 2). 

The mean and standard deviation technique for outlier identification is well 

known and used, but it has the problem that the outliers are used to calculate the 

mean and standard deviation and, therefore, impact its own calculation, which 

distorts the result. To solve this problem, other techniques are used, and one of the 

most well-known techniques is based on quartiles. 

Anomaly Detection Based on the Quartiles 

The outlier detection model based on quartiles is based on the previous calculation of 

the data ordering measures and, in particular, in the identification of quartiles. This 
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Fig. 2 Graphical representation of the theory marks data with the outlier



Þ

≡

206 Anomaly Detection

data identification technique is related to and complementary to the data visualiza-

tion technique called Box and Whiskers. 

The identification of anomalous events from the Box and Whiskers technique 

follows a four-step process: 

1. Determination of the degree of outlier or distance at which an event (point) is 

considered an outlier. It is chosen arbitrarily. 

2. The data are ordered, and the quartiles are obtained using the equation: 

~xc = x nc½ ]þ1 if nc =2 ℕ nc½ ] integer part of nc 

~xc = 

x nc½ ] þ x nc½ ]þ1 

2 
fi nc2ℕ 

3. The interval limits for outliers are calculated using the equation: 

Q1 - 1:5 Q3 -Q1ð Þ,Q3 þ 1:5 Q3 -Q1ð Þð  

4. Outliers are identified as the values that fall outside the range calculated in Step 3. 

To introduce the quartiles technique for identifying outliers through an example, 

we use the example described in the introduction and the example of the previous 

method, in which the outliers will be searched in the following five events, or student 

grades: 1. {4, 4}; 2. {4, 3}; 3. {5, 5}; 4. {1, 1}; 5. {5, 4}. As this technique can be 

applied to only one variable, it will be applied over the laboratory marks, which are 

{4, 3, 5, 1, 4} (Fig. 3). 

We calculate the quartiles: 

To do that, we must first organize the values of the observed event by magnitude, 

which is, {1, 3, 4, 4, 5} . {x1, x2, x3, x4, x5} 
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Fig. 3 Graphical representation of the laboratory marks data
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Fig. 4 Graphical 

representation of the 

laboratory marks data 

with the outlier 
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First quartile: n = 5, c = 1/4 in consequence n.c = 5/4 = 1.25 =2 ℕ and the equation 

to calculate the first quartile, where [nc] nondecimal part of nc, is: 

Q1 =~x1 
4 
= x nc½ ]þ1 = x 1:25½ ]þ1 = x1þ1 = x2 = 3 

And the third quartile: n = 5, c = 3/4 in consequence n.c = 15/4 = 3.75 =2 ℕ and the 

equation to calculate the third quartile is: 

Q3 =~x3 
4 
= x nc½ ]þ1 = x 3:75½ ]þ1 = x3þ1 = x4 = 4 

From these results, and taking into account the degree of outlier taken of 1.5, the 

interval for normal data is: 

Q1 - 1:5 Q3 -Q1ð Þ,Q3 þ 1:5 Q3 -Q1ð Þð = 3- 1:5 4- 3ð Þ, 4þ 1:5 4- 3ð Þð  
= 1:5, 5:5ð Þ  

Consequently, if the mark value 1 is outside the interval, it is an anomaly detected 

and can be considered an outlier (Fig. 4). 

Anomaly Detection Based on the Standard Error of the Residuals 

This technique is applied to pairs of data for which a previous statistical regression 

analysis has been performed. The identification of anomalous events using the 

regression technique follows a five-step process: 

1. Determination of the degree of outlier or distance at which an event (point) is 

considered an outlier. It is chosen arbitrarily (usually 3 or 4). 

2. Linear regression is obtained using the equations:
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b= 
xy 

s2 x 

a= y- bx 

where sxy is the covariance of x and y, which can be calculated using the equation: 

sxy = 

n 

i= 1 

xiyi 

n
-

n 

i= 1 

xi 

n 
: 

n 

i= 1 

yi 

n 
= 

n 

i= 1 

xiyi 

n
- x:y 

which in its extended version is: 

sxy = 

n 

i= 1 

m 
j= 1f ijxiyj 

n 

i= 1 

fi

-

n 

i= 1 

fixi 

n 

i= 1 

fi 

: 

m 

j= 1 

f jyj 

m 

j= 1 

f j 

; 

s2 x is the variance of x, and its equation of calculus is: 

s2 x = 

n 

i= 1 

xi - xð Þ2 

n 

3. The standard error of the residuals is obtained using the equation: 

sr = 

n 
i= 1 yi - ycið Þ2 

n 

where yi - yci are the residuals of each value, with yci being the value of each 

y corresponding to each x for each i calculated using the regression equation 

calculated in step 2, that is: 

y= aþ bx 

yci = a bxi 

4. The limits of the interval for the outliers are calculated using the equation: 

d:sr
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Fig. 5 Graphical representation of the theory and laboratory marks data 

5. Outliers are identified as those such that yi - yci > dsr. 

To introduce the standard error of the residuals technique for identifying outliers 

through an example, we use the example described in the introduction and the 

example of the previous methods, in which the outliers will be searched in the 

following five events, or student grades, but with a small change to allow us to obtain 

a function7 and to see the outlier more clearly, the first value has changed to {2, 5}, 

and as a result, we have 1. {2, 5}; 2. {4, 3}; 3. {5, 5}; 4. {1, 1}; 5. {5, 4}. As this 

technique can be applied to two variables, it will be applied over the Theory and 

Laboratory marks (Fig. 5). 

To apply the method of the standard error of the residuals, the first thing that we 

must do is to calculate the regression function that gives us the marks of laboratory as 

a function of the marks of theory. To do that, we must calculate the means of theory 

data and laboratory data, the covariance of both, and the variance of theory. 

To calculate the mean, we use the known equations: 

x= 

n 

i= 1 

xi 

n 
= 

5 

i= 1 

xi 

5 
= 

2þ 4þ 5þ 1 þ 5 
5 

= 3:4 

y= 

n 

i= 1 

yi 

n 
= 

5 

i= 1 

yi 

5 
= 

5þ 3þ 5þ 1 þ 4 
5 

= 3:6 

Now, we calculate the covariance: 

7 To be possible to obtain a function each x must have a different y, it is not possible that the same x 

can have two different y.
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sxy = 

n 
i= 1xiyi 
n

- x:yð Þ= 
2:5þ 4:3 þ 5:5þ 1:1þ 5:4 

5
- 3, 4:3, 6= 

= 
68 

5
- 12, 24= 13:6- 12, 24= 1:36 

Now, we calculate the variance of x: 

s2 x = 

n 
i= 1 xi - xð Þ2 

n 

= 
2- 3:4ð Þ2 þ 4- 3:4ð Þ2 þ 5- 3:4ð Þ2 þ 1- 3:4ð Þ2 þ 5- 3:4ð Þ2 

5 

= 
13:2 
5 

= 2:64 

With the values calculated in the previous steps, we can calculate the parameters a 

and b in the equation 

b= 
sxy 

s2 x 
= 

1:36 
2:74 

= 0:5 

a= y- bx= 3:6- 0,5:3,4= 1:9 

y= 1:9 0:5x 

Once we have the equation of the regression, we can calculate the residuals. To do 

that, we must first calculate the values of y using the equation 

yci = 1:9þ 0:5xi 
yc1 = 1:9 0:5 2  = 2:9 

yc2 = 1:9 0:5 4  = 3:9 

yc3 = 1:9 0:5 5  = 4:4 

yc4 = 1:9 0:5 1  = 2:4 

yc5 = 1:9 0:5 5  = 4:4 

From the yci residuals are calculated as follows: 

r1 = y1 - yc1 = 5- 2:9= 2:1 

In the same way are calculated r2. . .r5, obtaining the following values: 

r2 = y2 - yc2 = 3- 3:9= 0:9
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r3 = y3 - yc3 = 5- 4:4= 0:6 

r4 = y4 - yc4 = 1- 2:4= - 1:4 

r5 = y5 - yc5 = 4- 4:4= - 0:4 

Once we have the residuals, we calculate the standard deviation of the residuals 

with the following equation: 

sr = 

n 
i= 1 yi - ycið Þ2 

n 

= 
5- 2:9ð Þ2 þ 3- 3:9ð Þ2 þ 5- 4:4ð Þ2 þ 1- 2:4ð Þ2 þ 4- 4:4ð Þ2 

7 

= 
2:1ð Þ2 þ 0:9ð Þ2 þ 0:6ð Þ2 þ - 1:4ð Þ2 þ - 0:4ð Þ2 

5 
= 1:24 

Step 4. Calculate the limits of the interval for the outliers: Since the outlier degree 

is d = 1.5, the limits are: 

d:sr = 1,5:1:24= 1:86 

Outlier identification, that is, if for any value: 

yi - ycij j> d:sr = yi - ycij j> 1:86 

The point (1, 1) is identified as an outlier since: 

5- 2:9j j= 2:1> 1:86 

The analysis of outliers is based on the fact that the normal data will all have a 

similar influence on the definition of the regression line, and if any of them are 

missing, the shape of the line will not vary substantially. However, the inclusion or 

not of atypical data does significantly vary the parameters and the shape of the line. 

Since a line has two parameters: The slope and the ordinate at the origin, analogue 

data can vary either the slope or the ordinate at the origin or both at the same time. 

We are going to start studying how to identify bad data that impact the slope that 

the line will have if we eliminate said data and, therefore, if we obtain a line more 

representative of the data that we have. The way to identify atypical data in the 

analysis of the relationship of two variables that may distort the calculation of the 

correct slope of the line is based on obtaining a measure called the degree of 

influence. The degree of influence, id, on the two-variable regression function of a 

given data point is measured by the equation:
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idi = 
1 

n 
þ xi - x2 

n 

i= 1 

xi - x2 

Using the following data [3, 2, 7, 5, 4, 4, 6, 9], obtain the degree of influence of 

the first point of the distribution. 

If we apply the previous equation, the degree of influence is obtained as follows. 

First, the mean has to be calculated: 

x= 
3þ 2þ 7þ 5þ 4þ 4þ 6þ 9 

8 
= 5 

Then the equation of the degree of influence is applied for the first point: 

id1 = 
1 

8
þ 3- 52 

40- 52 
= 0:125- 1:467= - 1:342 

As can be deduced from the calculation equation, the minimum degree of 

influence of any point of the distribution is 1/n, which corresponds to a point 

coinciding with the mean of x, while the maximum degree of influence of any 

point of the distribution is 1, which corresponds to a point that forces the regression 

line to pass through that point. It can also be deduced from the equation that the sum 

of the degrees of influence of all the data in the analysis is equal to 2, so the mean 

degree of influence is 2/n. 

Using the concept of degree of influence, those with a degree of influence of id 

> 6/n, or what is equal to or greater than three, can be catalogued as anomaly 

candidate observations to be equal to or superior to three times the average degree of 

influence. 

The second parameter that can vary the atypical data with respect to the one 

obtained if we only had normal data in the sample is the ordinate at the origin. That 

is, we can have one or more data in the sample whose inclusion in the calculations 

does not vary the slope of the line of fit but does raise or lower it, that is, to increase 

or decrease the cut-off point with the y-axis. To identify this type of atypical data, the 

residuals of each data point can be used. If the residue of the data studied is much 

higher than the rest of the data, the observation can be classified as a candidate for 

abnormal observation. 

The residual, id, in the two-variable regression function of a given piece of data is 

measured by the equation: 

ri = yi - yi 

However, atypical data can vary the two parameters. In fact, although the 

influence on either of the two is very slight, the presence of atypical data will always 

vary at both values. One way to identify atypical data in the analysis of the



relationship of two variables that may distort both parameters is based on obtaining a 

measure called Cook’s influence. Cook’s influence measures the change that occurs 

in the regression line whether or not it considers the data under study. 
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The influence cion the two-variable regression function of a given piece of data is 

measured by the equation: 

ci = 
yi - y

- ið Þ2 
2sr - 2idi 

From the equation for calculating Cook’s influence, it is established that a piece of 

data is influential if its degree of Cook’s influence is greater than 1. 

In addition to Cook’s degree of influence, there are two other measures that can be 

used to determine if a piece of data is an anomaly or wrong. The first is the 

standardized residual, which, in the two-variable regression function of a given 

piece of data, is measured by the equation: 

rsi = 
ei 

sr 1- hi 
p 

The standardized residual follows a normal distribution with a mean of 0 and a 

standard deviation of 1. 

The second is the studentized residual, which, in the two-variable regression 

function of a given piece of data, is measured by the equation: 

ti = 
ei 

sr 1- hi 
p 

The studentized residual follows a Student’s t distribution with n-3 degrees of 

freedom. If ti in absolute value is greater than the value of the student’s t distribution 

with the desired probability, the value is considered atypical. 

Anomaly Detection Based on Proximity 

These techniques base the identification of outliers on the concept of distance, which 

is usually the Euclidean,8 but can be others, and identify an event that, if it has two or 

three dimensions, can be represented by a point, as anomalous or outlier if it is very 

distant from most other events, or, in two or three dimensions, points. 

8 As have been seen, the Euclidean distance between two points P and Q in an n-dimensional space 

is defined as dPQ =
n 
i= 1 pi - qið Þ2 , where piand qiare each of the elements of P and Q.
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Fig. 6 Graphical representation of the theory and laboratory marks 

K-Nearest Neighbor Algorithm 

The outlier degree of an event is to be measured through the distance between said 

event and its nearest neighbor K event, which means that the distances of all the 

events between them must be calculated. The identification of outliers through the 

K-Nearest Neighbor technique follows a 2-step9 process. Let us see how each step is 

treated. 

As in the rest of the techniques, to apply the nearest K-neighbors technique, it is 

essential to always have a sample of events for which we have all the values. 

To introduce the K-nearest neighbor technique for identifying outliers through an 

example, we use the example described in the introduction and the example of the 

previous methods, in which the outliers will be searched in the following five events, 

or student grades: 1. {4, 4}; 2. {4, 3}; 3. {5, 5}; 4. {1, 1}; 5. {5, 4} (Fig. 6). 

A. Step A consists of two substeps in which the parameters with which we want to 

solve the problem of identifying outliers are arbitrarily set. 

1. In step 1, the outlier degree is set, that is, the distance at which an event, or 

point, will be considered an outlier. To choose this distance, it is useful, 

whenever possible, to carry out a previous observation of the sample so that 

the chosen value is logical. 

Selection of the outlier degree. The Euclidean distance 2.5 is chosen as the 

outlier degree. As mentioned above, the value is chosen arbitrarily from the 

observation of the sample. 

9 To continue with the same notation system used in the previous topics, we are going to call the 

highest level steps A, B, C, etc.
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Fig. 7 Distances from P2 to 

the other points 

2. In Step 2, the K is set, that is, the order number of the closest neighbor for 

which an event must have the degree of outlier for the event to be considered 

an outlier. 

Selection of K. As K, that is, the order number of the nearest neighbor for 

which the distance to the event will be measured, 3 is taken, or what is the 

same, the third closest event. 

B. Step B also consists of two substeps, in which distances are calculated and 

outliers are identified. 

1. In Step 1, the distances, Euclidean or others, between all the points are 

calculated, the neighbors of each point are ordered by distance until reaching 

the defined K, and those events whose K neighbor had a distance greater than 

the defined outlier degree are defined as outliers. 

Calculation of distances. We calculate the distance, which in this example 

will be the Euclidean, of each point with the rest of the points in the sample 

(Fig. 7). 

Points 1-2, {{4, 4}, {4, 3}}: 

d12 = 
2 

i= 1 
pi - qið Þ2 = 4- 4ð Þ2 þ 4- 3ð Þ2 = 1 

Points 1-3, {{4, 4}, {5, 5}}: 

d13 = 4- 5ð Þ2 þ 4- 5ð Þ2 = 1:41 

Points 1-4, {{4, 4}, {1, 1}}: 

d14 = 4- 1ð  Þ2 þ 4- 1ð  Þ2 = 4:24
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Points 1-5, {{4, 4}, {5, 4}}: 

d15 = 4- 5ð Þ2 þ 4- 4ð Þ2 = 1 

Points 2-3, {{4, 3}, {5, 5}}: 

d23 = 4- 5ð Þ2 þ 3- 5ð Þ2 = 2:24 

Points 2-4, {{4, 3}, {1, 1}}: 

d24 = 4- 1ð Þ2 þ 3- 1ð Þ2 = 3:61 

Points 2-5, {{4, 3}, {5, 4}}: 

d25 = 4- 5ð Þ2 þ 3- 4ð Þ2 = 1:41 

Points 3-4, {{5, 5}, {1, 1}}: 

d34 = 5- 1ð Þ2 þ 5- 1ð Þ2 = 5:66 

Points 3-5, {{5, 5}, {5, 4}}: 

d35 = 5- 5ð Þ2 þ 5- 4ð Þ2 = 1 

Points 4-5, {{1, 1}, {5, 4}}: 

d45 = 1- 5ð Þ2 þ 1- 4ð Þ2 = 5 

2. In step 2, the neighbors of each point are ordered by distances until reaching 

the point whose order value is equal to K, and those points whose value of the 

distance to the K point is greater than the chosen outlier degree are identified. 

Ordering of values and identification of outliers. In the case of the example, it 

is necessary to reach the third closest neighbor. In this example, as there are 

only four neighbors for each point, the ordering of the first three events or 

points implies the ordering of the fourth. The following arrangements are 

obtained:

• Point 1: The minimum distance, and therefore the closest point is to point 

5: 1. The second distance, and therefore the second closest point, is to 

point 5: 1; and finally, the distance to the third closest point, which is the
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chosen K, is to point 3 and is 1.41. Since this distance is less than the 

chosen outlier degree, which is 2.5, the consequence is that point 1 is not 

an outlier.

• Point 2: The minimum distance, and therefore the closest point is to point 

2: 1. The second distance, and, therefore, the second closest point, is to 

point 5: 1.41; and finally, the distance to the third closest point, which is 

the chosen K, is to point 3 and is 2.24. Since this distance is less than the 

chosen outlier degree, which is 2.5, the consequence is that point 2 is not 

an outlier.

• Point 3: The minimum distance, and, therefore, the closest point, is to 

point 2: 1. The second distance, and, therefore, the second closest point, is 

to point 1: 1.41; and finally, the distance to the third closest point, which is 

the chosen K, is to point 2 and is 2.24. Since this distance is less than the 

chosen outlier degree, which is 2.5, the consequence is that point 3 is not 

an outlier.

• Let us look at Point 5 before moving on to 4. Point 5: The minimum 

distance, and therefore the closest point is to point 1: 1. The second 

distance, and therefore the second closest point, is to point 3: 1; and 

finally, the distance to the third closest point, which is the chosen K, is 

to point 2 and is 1.41. Since this distance is less than the chosen outlier 

degree, which is 2.5, the consequence is that point 5 is not an outlier.

• Finally, we are going to see Point 4: The minimum distance, and therefore 

the closest point is to point 2: 3.61. The second distance, and, therefore, the 

second closest point, is to point 1: 4.24; and finally, the distance to the 

third closest point, which is the chosen K, is to point 5 and is 5. As the 

distance is greater (twice) than the chosen outlier degree, which is 2.5, 

point 4 (1, 1) is an outlier (Fig. 8). 

As a consequence, in the observed sample, a single outlier can be identified, 

which is point 4 {1,1}. Although visually we could have a previous impression that

Fig. 8 Graphical 

identification of P4 as an 

outlier



this point could be outlier, it has been the application of the K-neighbors technique 

that has allowed us to demonstrate it mathematically.
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At this point, it is very important to remember the importance of choosing the 

K values and the outlier degree in an analysis of proximity outliers using the closest 

K-neighbor technique. 

Anomaly Detection Based on Density 

These techniques look for events that are located in a spatial zone in which there is 

less density of events than the observed mean for that sample. 

Simplified Local Outlier Factor Algorithm 

The identification of anomalous events using relative density and the Simplified 

Local Outlier Factor technique follows a three-step process: 

A. Determination of the outlier degree of each point by calculating the density, d, of 

each point. There are different definitions of density. One of the most commonly 

used is 

density xi,Kð Þ= 
xj2N xi,Kð Þdistance xi, xj 

cardinal N xi,Kð Þ

- 1 

Step A involves 4 substeps: 

1. Determination of the order number, or K, of the nearest neighbor to use to 

calculate the density of each point. It is chosen arbitrarily. 

2. Calculation of the distances between each point and the rest of the points. 

Manhattan distance, for two dimensions: 

distance xi, xj = xi1 - xj1 þ xi2 - xj2 

3. Calculation of the cardinal or size of the set N for each point. N is the set that 

contains the neighbors whose distance to x_i is equal to or less than that of the 

nearest K neighbor. 

4. Calculation of the density, d, of each point. By calculating the density at each 

point as the inverse of the mean of the distance of the nearest K neighbors, 

this technique is closely related to that of proximity. 

To introduce the density algorithm for identifying outliers through an example, 

we use the example described in the introduction and used in the previous method, in



which the outliers will be searched in the following five events, or student grades: 

1. {4, 4}; 2. {4, 3}; 3. {5, 5}; 4. {1, 1}; 5. {5, 4}. 
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Carry out step A.1 of the density algorithm to search for anomalous data. 

Determination of the order number, or K, of the nearest neighbor used to calculate 

the density of each point. It is chosen arbitrarily. 

As it is chosen arbitrarily, taking into account the characteristics of the problem 

and of the sample, we take the third neighbor or closest event. K = 3. 

Carry out step A.2 of the density algorithm for the identification of outliers from 

the previous exercise. 

Calculation of Manhattan distances between all points. We calculate the distance 

of each point with the rest of the points in the sample (Fig. 9). 

Points 1-2, {{4, 4}, {4, 3}}:d12 = |x11 - x21| + |x12 - x22| = |4 - 4| + 

|4 - 3| = 1 

Points 1-3, {{4, 4}, {5, 5}}: d13 = |4 - 5| + |4 - 5| = 2 

Points 1-4, {{4, 4}, {1, 1}}: d14= |4 - 1| + |4 - 1| = 6 

Points 1-5, {{4, 4}, {5, 4}}: d15= |4 - 5| + |4 - 4| = 1 

Points 2-3, {{4, 3}, {5, 5}}: d23= |4 - 5| + |3 - 5| = 3 

Points 2-4, {{4, 3}, {1, 1}}: d24= |4 - 1| + |3 - 1| = 5 

Points 2-5, {{4, 3}, {5, 4}}: d25= |4 - 5| + |3 - 4| = 2 

Points 3-4, {{5, 5}, {1, 1}}: d34 = |5 - 1| + |5 - 1| = 8 

Points 3-5, {{5, 5}, {5, 4}}: d35= |5 - 5| + |5 - 4| = 1 

Points 4-5, {{1, 1}, {5, 4}}: d45= |1 - 5| + |1 - 4| = 7 

Carry out step A.3 of the simplified density algorithm for the identification of 

outliers from the previous exercise. 

Sorting by distances of the neighbors of each point until reaching the defined K, 

3, to calculate the N of each point.

Fig. 9 Manhattan distances from P4 to points P1 and P5



• Point 1: Minimum distance, closest point, point 2: 1. Second distance, point 5: 

1. Finally, the distance to the third closest point, which is the chosen K, is to point 

3: 2. Therefore, N = 3.

• Point 2: Minimum distance, point 1: 1. Second distance, point 5: 2. Distance to 

the third closest point, which is the K chosen, is to point 3: 3. Therefore, N = 3.

• Point 3: Minimum distance, point 5: 1. Second distance, point 1: 2. Distance to 

the third closest point, which is the K chosen, is to point 2: 3. Therefore, N = 3.

• Point 4: Minimum distance, point 2: 5. Second distance, point 1: 6. Distance to 

the third closest point, which is the K chosen, is to point 5: 7. Therefore, N = 3.

• Point 5: Minimum distance, point 1: 1. Second distance, point 3: 1. Distance to 

the third closest point, which is the K chosen, is to point 2: 2. Therefore, N = 3.
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N does not always coincide with K, and we are going to answer a question with an 

example: Which was N if we would have another point, P6, in (6,3)? 

If we had P6 in (6,3), we would have the following N:

• Point 1: Minimum distance, closest point, point 2: 1. Second distance, point 5: 

1. Finally, the distance to the third closest point, which is the chosen K, is to point 

3: 2. Therefore, N = 3.

• Point 2: Minimum distance, point 1: 1. Second distance, point 5: 2. The distance 

to the third closest point, which is the K chosen, is to point 6: 3 (P6 could be the 

second one and P6 the third, but the result is the same). Therefore, N = 3.

• Point 3: Minimum distance, point 5: 1. Second distance, point 1: 2. The distance 

to the third closest point, which is the K chosen, is to point 2: 3 and point 6, which 

is also 3. Consequently, in this case, with K=3, N is not 3 but 4, N=4.

• Point 4: Minimum distance, point 2: 5. Second distance, point 1: 6. The distance 

to the third closest point, which is the K chosen, is to point 5: 7, and P6 is also 7; 

therefore, in this case, K and N are also different because N = 4.

• Point 5: Minimum distance, point 1: 1. Second distance, point 3: 1. Distance to 

the third closest point, which is the K chosen, is to point 2: 2 and point 

6, therefore, again K and N are different N=4. 

Carry out step A.4 of the density algorithm for the identification of outliers from 

the previous exercise. 

Calculation of the density, d, of each point (Figs. 10 and 11). 

density xi,Kð Þ= 
xj2N xi,Kð Þdistance xi, xj 

cardinal N xi,Kð Þ

- 1 

P1 : d  x1, 3ð  Þ  = 
distance x1, x2ð  Þ þ  distance x1, x5ð  Þ þ  distance x1, x3ð  Þ  

cardinal N  x1, 3ð  Þ
- 1 

= 
1þ 1þ 2 

3

- 1 

= 0:75
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Fig. 10 Graphical representation of the density of P1 

Fig. 11 Graphical representation of the density of P4 

P2 : d x2, 3ð Þ= 
1þ 2þ 3 

3

- 1 

= 0:5 

P3 : d x3, 3ð Þ= 
1þ 2þ 3 

3

- 1 

= 0:5 

P4 : d  x4, 3ð Þ= 
5 þ 6þ 7 

3

- 1 

= 0:17 

P5 : d  x5, 3ð  Þ= 
1þ 1þ 2 

3

- 1 

= 0:75
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B. Calculation of the mean relative density, drm, of each point. There are different 

definitions of mean relative density. One of the most commonly used is 

mean relative density xi,Kð Þ= 
density xi,Kð Þ  
xj2N xi ,Kð Þdensity xj,Kð Þ  
cardinal N xi,Kð Þ  

This calculates the proportion between the density at a point and the mean of 

the densities of the set N that defines said point from the order number K. The 

mean relative density will tend to zero in the outliers. 

The relative density, which takes into account the neighbourhood of the point, 

the set N, is used because if only the absolute density is used, outliers may not be 

correctly identified in data samples with regions of different densities. 

Carry out step B of the density algorithm to identify outliers from the previous 

exercise. 

The drm we have for the points are: 

P1: drm x1, 3ð Þ= densidad x1, 3ð Þ  
densidad x2, 3ð Þþdensidad x5, 3ð Þþdistancia x3, 3ð Þ  

cardinal N x1, 3ð Þ  
= 

0:75 
0:5þ0:75þ0:5 

3 

= 1:29 

P2: drm x2, 3ð Þ= 
0:5 

0:75þ0:75þ0:5 
3 

= 0:75 

P3: drm x3, 3ð Þ= 
0:5 

0:75þ0:75þ0:5 
3 

= 0:75 

P4: drm x4, 3ð Þ= 
0:17 

0:5þ0:75þ0:75 
3 

= 0:26 

P5: drm x5, 3ð Þ= 
0:75 

0:75þ0:5þ0:5 
3 

= 1:29 

C. Obtaining outliers, such as those points whose average relative density is signif-

icantly lower than that of the rest of the elements in the sample. Different 

methods can be set to establish when the drm is significantly lower. 

Apply step C of the density algorithm to the previous exercise: 

The drm we have for the points are P1: 1.29, P2: 0.75, P3: 0.75, P4: 0.26, P5: 

1.29 

Therefore, simply comparing them, it is observed that the drm of point 4, 0.26, is 

significantly lower than the rest. The mean would be 0.86, and the median would be 

0.75. 

Consequently, the only point with a density significantly lower than the rest of 

the points in the sample is Point 4 (1, 1), so it must be considered an outlier. 

B. Computer-Based Solving 

As in the other chapters, this section will address the use of software to solve the 

problem of anomaly detection analysis, but before applying R for solving this kind 

of problem, we introduce in this chapter an important issue related to the use of R as



is the use of packages in R, which is its most important feature and the thing that 

makes R as important as it is the use of packages, which will be introduced next. 
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The reason for introducing R Packages is that we have been using in the previous 

chapters the default installed packages to perform all the process that we need to 

solve the problems, but from this chapter, in the rest of the chapters, we will need 

additional packages to solve the problems that we will face, and this is the right 

moment to learn how we can use them. 

R Packages 

R works by using packages that contain the different functionalities that it can offer 

us. All published packages are documented. 

R packages are installed in libraries, which are directories on the file system that 

contain a subdirectory for each package installed there. 

R comes with a single library, R-4.0.3/library, which is the value of the R object ‘. 

Library’ that contains the default and standard packages, but users can create other 

libraries and make use of the packages installed in them (or not) in an R session or in 

all R sessions. 

R Default Packet Loading 

When we start a session in R, a set of packages are loaded by default that give us the 

basic functionalities of R. 

Although in the next chapter we are going to see the functions in detail, we have 

to anticipate what they are here, even briefly, because we are going to use some of 

them. The functions in R are preprogrammed instructions, that is, we will not have to 

program ourselves; they give us different results that we want to obtain and, in 

addition, they allow us to handle the operation of R. 

To know the packages that R loads by default, we use the getOption () function. 

We remember that after the function, parentheses are always written to indicate the 

function’s arguments, that is, what we want the function to do exactly. The 

getOption() function allows the user to set and examine a variety of global options 

that affect the way R calculates and displays its results. With the argument getOption 

("defaultPackages"), we obtain the list of packages that are connected by default 

when R is started. 

Therefore, we introduce the function 

> getOption ("defaultPackages") 

In addition, we obtain the list. There six (6) packages but there is one package 

more that it is the core package that R needs to run. It is the package base. To see that 

the base package can also be loaded, we can use the function search ( ). With the 

package base, the set of seven (7) packages are:
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1. base: Contains the basic functions that allow R to function as a language: 

arithmetic, input/output, basic programming support, and so on. To obtain a 

complete list of the functions of a package, you can use the library () function, 

and as an argument, enter help = to the name of the package in quotes. The full 

instructions are as follows: 

> library (help = "base") 

2. datasets: Contains a variety of datasets. To get a complete list you can use the 

instruction: 

> library (help = "datasets") 

If we write in the command line, the name of the dataset R displays the data. 

For instance, the Nile data 

> AirPassengers 

3. utils: Contains a collection of utility functions. For example, the help () function 

opens the help on the word that we introduce as an argument. 

> library (help = "utils") 

4. grDevices: Contains functions that support base and grid graphs. 

> library (help = "grDevices") 

5. graphics: Contains functions for making basic graphics. To obtain a complete list 

of the graphics and functions in the graphics package, we use the library function 

again. 

> library (help = "graphics") 

6. stats: Contains functions for statistical calculations and random number 

generation. 

> library (help = "stats") 

7. methods: Contains automatically defined methods and classes for R objects and 

other programming tools. It allows programming under the object-oriented 

paradigm. 

> library (help = "methods") 

Loading Packages from the R Standard Library 

In addition to the seven packages that are loaded by default, R proposes another set 

of 23 recommended packages, which are found in R’s standard library. This set 

consists of the following packages:
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1. boot: Contains resampling-based data analysis functions known as bootstrap 

methods or computationally intensive methods. 

> library (help = "boot") 

2. class: Contains unsupervised classification functions. 

3. cluster: Contains cluster-based unsupervised classification functions. 

4. codetools: Contains code analysis functions for R. 

5. compiler: Contains the R compiler package. 

6. foreign: Contains functions to read data stored by applications such as 'Minitab', 

'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', 'dBase', . . .  

7. grid: Contains functions for making grid graphs. 

8. KernSmooth: Contains Kernel-based nonparametric estimator functions. 

9. Lattice: Contains functions to make more complex graphics. In particular, the 

package supports the creation of trellis charts: charts that show a variable or the 

relationship between variables, conditional on one or more variables. 

10. MASS: Contains functions and datasets for the contents of Venables and 

Ripley’s book Modern Applied Statistics with S (4th edition, 2002). 

11. Matrix: Contains functions to handle matrixes. 

12. mgcv: Contains functions to handle modeling performed with generalized 

additive modeling and the use of automatic smoothness selection. 

13. nlme: Contains functions to treat models with linear and non-linear mixed 

effects 

14. nnet: Contains functions to handle supervised classification with Feed-Forward 

Neural Networks and Multinomial Log-Linear Models. 

15. parallel: Contains functions to support parallel computing in R. 

16. rpart: Contains functions to perform supervised classification with Recursive 

Partitioning and Regression Trees 

17. spatial: Contains functions to perform analysis based on Kriging and Point 

Pattern 

18. splines: Contains functions to work with regression splines using the B-spline 

basis, the natural cubic spline basis. 

19. stats4: Statistical functions using S4 classes 

20. survival: Contains functions and databases to treat statistics applied to health. 

21. tcltk: Contains language interface links to Tcl and the Tk GUI elements. Tcl 

(Tool Command Language) is a programming language suitable for web and 

desktop applications, networking, administration or testing. Tk is a set of 

graphical user interface tools. Tk is the standard GUI not only for Tcl but also 

for many other languages and can produce applications that run unchanged on 

Windows, Mac OS X, Linux, and more. 

22. tools: Contains all the functions and tools necessary for the development of new 

packages. 

23. translations: Contains the translation of the messages.
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To load a package installed in the standard R library but not loaded by default, the 

following procedures are used:

• Using the Packages menu of the RGui. We select Load Package / Load Package, a 

window opens with the packages available in R’s standard library, we select it, 

press OK, and we have it loaded. We can check it using the search () function, 

which outputs the list of packages we have loaded. To load a package using this 

method, we can load the Matrix package.

• Using the library () function and introducing in the argument the name of the 

package that we want to load. Again, we can check it by introducing the search () 

function. If we only introduce the library () function without an argument, it gives 

us a list of the packages available in the standard library. To load a package using 

this method, we can load the rpart package that we will use in the supervised 

classification chapter. The full instructions are as follows: 

>library(rpart) 

If we wanted to unload a package, we could use the function detach ( ). If we 

would like to unload rpart, the full instruction would be: 

>detach(“package=rpart”, unload=TRUE) 

We can introduce a search ( ) to see that the package rpart has been unloaded. 

Install and Load Other R Packages 

In addition to the packages included in the standard R library, there are a multitude of 

other packages that allow us to solve almost all types of defined data analysis. This 

external set of packages is constantly being developed and updated, with new 

packages being continuously published by the R community that address new data 

analysis problems and existing ones being updated and improved. These packages 

are found in different repositories, the main being the one in the CRAN. 

The main R package repositories are as follows:

• CRAN

• R-Forge

• Omegahat

• BioC. They are Bioconductor-related packages for bioinformatics. 

There are also package environments such as Tidyverse for Data Science that we 

will see in a later section. 

Packages that are not found in the standard R library must first be installed in a 

library of the machine in which we are working with R, and once installed in said 

library, they can be loaded in R, that is, for these packages, it will be a two-step 

process: Install and load; we must not forget to load them once installed. However, 

before doing both, we must check that the package has been loaded by default with 

the function getOption ("defaultPackages"); if it is not, we must also check that it is



not in the standard R library with the function library (). If it is not, we proceed to 

install and load it following the instructions below. 
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To load an install and load a package that is not in the standard R library, the 

following procedures are used:10

• Using the Packages menu of the RGui. We select Select repositories to select 

which repository we are going to use to install the package, and the package we 

want to install must be in said repository. A window opens with the available 

repositories, which are the ones listed above; we select it, click OK, and we 

already have the repository selected. Next, we click on Install packages, which 

gives us a list of the packages available to install from the repository that we have 

selected in the previous step. We choose the package we want and click OK. We 

are going to test the loading of a package by loading LearningRlab. It gives us a 

message saying that it can install the package in the standard R library and that it 

is going to create a new library to install it; we say OK, and it gives us a new 

message to tell us in which directory will create the library, which will be in a 

subdirectory of the directory in which we are working that will call R, and within 

it will create another that will call win-library, and within this another that will 

call according to the version of R with which we are working, for example 3.4, 

and within this it will create a directory with the name of the package in which all 

the files of the package will be. 

In the process described in the previous paragraph, there is an 

intermediate step: When we have the CRAN selected as the repository or when 

we have not selected any, since the one that is selected by default is the CRAN, 

and we press Install packages, a previous window opens. to the list of installable 

packages, in which it asks us to select the CRAN mirror from which we want to 

install the package. It is the same window that opens when we click on the Set 

CRAN mirror option from the Packages menu. 

Once installed, we can load the package as we have done in the previous 

section with the standard library packages using the library () function and the 

name of the package as an argument, or with the Load Package option from the 

Packages menu. When we click Packages will see that in the window that opens, 

in addition to the standard library packages that appeared before, the new package 

that we have installed appears. We can check that it has been loaded correctly by 

using the search () function again. 

Before looking at other options for loading packages, let us finish looking at 

the RGui Packages/Packages menu options: The Load Packages option only 

loads the packages from the standard library or the packages that we have 

previously installed in the library itself. The option to select CRAN mirror 

10 Before starting to see how the packages are installed, it is important to note that there are certain 

packages that present installation problems in R x64, so it is interesting when R is loaded to also 

load the R i386 version.
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previously selects the mirror we want to download the CRAN, and so when we 

want to install a CRAN package, it will no longer ask us from which mirror we 

want to install it. If we first select the CRAN repository before choosing the 

mirror, it will ask from which mirror we want to download it before opening the 

window with the list of packages. The option to select repositories allows us to 

select the repository from which we want to install the package, and we already 

know that depending on the repository we choose, we will be able to load some 

packages or others because the different repositories have different packages. The 

next option in the packages menu is to update package, if we press it will look for 

if any of the packages that we have installed has published a new version, it will 

show us the list and will ask us for confirming installation. If the confirmation is 

positive, it will install them.

• Another option to install packages is by using the install.packages ( ) function, 

which we can also find as the last option, the one we needed to see, from the 

Packages menu, and inside the parentheses, we put a single argument, that is, in 

quotes, the name of the package we want to install. When we press enter, a 

window will open for us to choose the mirror from which we want to install it, and 

when we press OK, it will install it. If the package has dependent packages, which 

are needed for its operation, it will install them automatically.

• Another option to install packages is to do it from a local directory of the machine 

with which we are working. To do this, we first have to save the package files we 

want to load on our machine. This has advantages as the total control of all 

referred with the package. Let’s see how it is done from the CRAN repository but 

from any other repository it would be the same. 

We go to the CRAN page https://cran.rediris.es/s/ and in the left navigation 

menu click on the Packages link. We enter the Packages page, and as we know, 

we have two links: Table of available packages, sorted by date of publication, and 

Table of available packages, sorted by name. As we will know the name of the 

package, click on the second one, and the list of packages by name appears. At the 

top of the page, we have the alphabet to be able to access the package more 

quickly by its initial. Once we have the package, click on its link and enter its own 

web page. For example, we will enter the LearnClust page, which is a Learning 

Hierarchical Clustering Algorithms package, which is discussed in a later chapter. 

We go to L and click, and then click on LearnClust. We enter the LearnClust page 

titled LearnClust: Learning Hierarchical Clustering Algorithms. Below the title, 

we have a brief description of the package, and on the page, we have the 

following menu of options: 

First, there are 16 options that give us information about the package: 

1. Version: It gives us the most recent version of the package. 1.1 

2. Depends: Dependencies. Latest version of R that is required for the package 

to work. magick 

3. Suggest: Suggested packages for the package to work. knitr, markdown 

4. Published: Date of the last publication. 2020-11-29

https://cran.rediris.es/s/


The following are the links to the package downloads:

Following are how to link the page from others:
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5. Author: Authors. Roberto Alcantara [aut, cre], Juan Jose Cuadrado [aut], 

Universidad de Alcala de Henares [aut] 

6. Maintainer: Maintainer of the package. Roberto Alcantara <roberto. 

alcantara at edu.uah.es> 

7. License: Package license type. Unlimited. 

8. NeedsCompilation: Indicates if the package needs compilation. 

9. CRAN Checks: This gives us proof of the package. LearnClust results 

10. Reference manual: This gives us the operating reference manual of the 

package. LearnClust.pdf 

11. Vignettes: They are vignettes or small documents that can be illustrated to 

explain the operation of the package. Learning Clusterization 

12. Package Source: These are the files that have the source code of the 

package. LearnClust_1.1.tar.gz 

13. Windows binaries: These are the installation files of the package in Win-

dows. r-devel: LearnClust_1.1.zip, r-release: LearnClust_1.1.zip, r-oldrel: 

LearnClust_1.1.zip 

14. OS X El Capitan binaries: These are the installation files of the package 

on Mac. 

15. OS X Mavericks binaries: These are the installation files of the package 

on Mac. r-release (arm64): LearnClust_1.1.tgz, r-oldrel (arm64): 

LearnClust_1.1.tgz, r-release (x86_64): LearnClust_1.1.tgz, r-oldrel 

(x86_64): LearnClust_1.1.tgz 

16. Old sources: These are the old versions of the package. LearnClust archive 

Please use the canonical form https://CRAN.R-project.org/package= 

LearnClust to link to this page. 

Once we know what the package page looks like, we are going to download it to 

our machine, assuming we have Windows, if we click on the latest version of the 

package: r-devel: learnclust_1.1.zip. The.zip file is automatically downloaded to our 

download directory. It is interesting to also download the.pdf manual to be able to 

consult it, as well as to consult the vignettes. 

We download both things in the downloads folder and return to R. To install the 

package we are going to use the install.packages () function again in which this time 

we are going to put two arguments: the first is which.zip file we want to install. It is 

important to bear in mind that for R to install it, the.zip file must be found in a 

temporary directory called tmp in the root directory of the hard disk, so we create it 

and place the file LearnClust_1.1.zip there. The second argument consists of giving 

the variable repos the value NULL so that it does not look for it in any repository,

https://cran.r-project.org/package=LearnClust
https://cran.r-project.org/package=LearnClust


since the files are on our machine. Consequently, the function is install.packages 

("c:/tmp/LearnClust_1.1.zip", repos = NULL). 
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When I run the R function, as happened when loading it using the menu, it gives 

us a message saying that it can install the package in the standard R library and that it 

will create a new library to install it. We say yes, and it will do the same thing we saw 

when we installed it from the menu, that is, it will create a library in the same 

directory. 

Next, we load the LearnClust package in R using the well-known library ( ) 

function. It is important to note that with this loading method, R will not automat-

ically install the packages with which the LearnClust package has a dependency but 

will point them out to us, and we will have to load them in the same way manually, 

and it will not load it until the others are installed. To determine if it is installed, we 

execute the search () function. 

We can also do so with the package’s menu and the Install Packages from files 

option. 

There may also be groups of associated packages because they facilitate work on 

certain types of studies, such as Tidyverse. 

Tidyverse is an annotated collection of R packages designed for data science. All 

packages share an underlying philosophy of design, grammar, and data structures. 

All Tidyverse packages can be installed with a single installation instruction: install. 

packages ("tidyverse") 

Modifying the Default Packet Load of R 

As we have learned in a previous subsection, when we start R, there is a set of 

packages that are loaded by default, and to know what packages they are, we can use 

the function getOption ("defaultPackages"), but this set of packages loaded initially 

is not invariable and can be modified by reprogramming the start code. 

The file that controls this startup code is Rprofile and is in the folder: 

Program Files / R / R-3.3.2 / library / base / R / 

In this file (We open it with the wordpad program, with the notepad it does not 

look good. If it does not let us open it in the R folder, we copy it to the desktop, we 

modify it and we paste it replacing the existing one in the R folder), there an 

instruction, which is: 

dp <- c ("datasets", "utils", "grDevices", "graphics", "stats", "methods") 

In this variable dp, we can include or remove the packages we want. If we remove 

all of them, only the "base" package would remain, which is not listed because it 

cannot stop loading for the system to work. 

To see an example, we are going to include the package foreign within the 

packages by default because it will be used a lot normally when we work with



R. For which we introduce the word foreign after "methods" in the instruction that 

defines the variable dp: 

dp <- c ("datasets", "utils", "grDevices", "graphics", "stats", "methods", "foreign"). 
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To see if everything has gone well and the foreign package is loaded by default, 

we re-execute the getOption ("defaultPackages") or the search() instructions. 

> getOption ("defaultPackages") 

> search() 

Anomaly Detection Exercises Solved in R 

In this subsection, an anomaly detection analysis is be carried out by applying all the 

concepts seen in the topic and using the computer programming environment R. 

The example used will be the same that used in the previous theoretical sections: 

The sample of the qualifications {Theory, Laboratory} of five students: 1. {4, 4}; 

2. {4, 3}; 3. {5, 5}; 4. {1, 1}; 5. {5, 4} 

In the previous chapters, all the data have been introduced in R by keyboard or 

simple text files, but that manner to introduce the data can be used only when few 

data are analyzed, how is the case of academic exercises for learning, in the real 

world all the data will be introduced in R for other procedures, with different levels 

of complexity. All facts related to the load of data to be analyzed in R and how to 

manage those data are under the scope of the Data Engineering Knowledge Area 

Group, which will be discussed in the third book of this series, but here we are going 

to see how to manage the charge load of data coming for some kind of data files, as 

for example, two of the more commonly used in a medium level of complexity, as 

Microsoft Excel; other extensions coming for other data analysis software solutions, 

like, for example, Minitab, SAS, SPSS, Stata, Systat, Weka, and dBase; or csv files. 

In this chapter, we introduce the reading of Excel files and Minitab, SAS, SPSS, 

Stata, Systat, Weka, and dBase files. 

To be able to load an Excel file, with.xlxs format, we need to have loaded in R 

some additional package to the ones that R loads at the beginning; that allows 

loading Excel files; there are several, but none of them are in the standard library. 

Let us see the XLConnect package. To check if the package is loaded, we use the 

well-known search () function that we remember that it gives us the list of packages 

that we have loaded and we see that it is not loaded. To continue reviewing what we 

have learned, let us remember that to check if it is in the standard R library, we use 

the library () function and we see that it is not there, so we only have to install and 

load it in the program. To install it, we use the install.packages() function with the 

"XLConnect" attribute. The full instructions are as follows: 

> install.packages ("XLConnect")
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To work, the XLConnect package needs the rJava and XLConnectJars packages, 

which are downloaded simultaneously with XLConnect11 when you run the install 

function. 

To load it into the R session, we use the library () function. The full instructions 

are as follows: 

> library (XLConnect) 

Once we have XLConnect loaded and XLConnectJars has also been loaded, we 

can check that they are loaded using the search () function, and we can load the data 

with which we are working. For this, we must carry out two steps: 

1. In the first one, we load all the data sheets that make up the Excel file through the 

loadWorkbook () instruction. As an attribute, we introduce the name of the file 

to load. 

To do this, we must generate an Excel file with the marks of the students. We 

will do it with two sheets, the first one will contain the data of the marks of theory 

that we have seen in the previous examples, and we rename that sheet in Excel as 

Theory; to do it we put the cursor over the name of the name Sheet click on the 

right button in the mouse and select change the name. It is important to bear in 

mind that the name of the variables must be entered in the first row; in this case 

Theory, we write the capital letter T. Data are: 

T 

4.00 

4.00 

5.00 

1.00 

5.00 

The second sheet, which we rename as Laboratory, will contain a list of the 

marks of laboratory, and we name the Data in the first row with the capital letter 

L. Data are: 

11 We may encounter problems when loading it related to the version of java that we are using on our 

machine, since, to work, the XLConnect package needs the rJava and XLConnectJars packages, 

which are downloaded simultaneously with XLConnect when executing the install function. 

packages. However, when we run the library function to load XLConnect, it will not work, as it 

will say that it cannot load XLConnect or XLConnectJars if we do not have the latest version of java 

loaded on our machine. If you have a 64-bit operating system, it is not enough to download the latest 

version of java that is downloaded by default; you have to look for the latest version for 64 bits; to 

do that you must go to the java webpage: https://www.java.com/en/and, click on the top of the page 

in download, and in the download page, you must click on the button below, which says Agree and 

Start Free Download. 

Once you have the last version of Java installed in your computer, you must restart the computer 

and restart R and introduce again the instruction library(XLConnect); you must only introduce use 

library because the package is already installed in your personal library, and the package will be 

loaded in the R environment, and you can use it to load the Excel file.

https://www.java.com/en/and
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L 

4.00 

3.00 

5.00 

1.00 

4.00 

Once the file is defined, we continue. We must assign a variable name to the 

load so that we can then select the different sheets of said data file, which we call 

marksxlsx. The full instructions are as follows: 

> marksxlsx <- loadWorkbook ("marks.xlsx") 

2. Once the Excel file is loaded, we read the sheet, to which we will assign a variable 

name, which, in this case, will be theorymarks, with which we want to work 

through the readWorksheet () instruction, which will take at least two arguments, 

the name of the variable of the Excel file preloaded and the name of the sheet, 

which we will select using the attribute sheet = "". 

To follow with the example, we are going to load both sheets, the first is the 

sheet with the marks of theory as the sheet in the Excel file has the name Sheet1, 

and the name of the Excel file preloaded is marksxlsx. We name the variable with 

the theory marks data theorymarksxlsx. Consequently, the complete 

instruction is: 

> theorymarksxlsx <- readWorksheet (marksxlsx, sheet = "Theory") 

and we obtain: 

T 

1 4  

2 4  

3 5  

4 1  

5 5  

If we introduce the variable theorymarksxlsx, we see all the data of the theory 

marks. 

> theorymarksxlsx 

If we change sheet to "Sheet2", we will have the laboratory marks, and we 

change the variable name to laboratorymarksxlsx. The full instructions are as 

follows: 

> (laboratorymarksxlsx = readWorksheet (marksxlsx, sheet = "Laboratory")) 

In this case, we have used the two parentheses at the beginning at the end of 

the instruction to immediately obtain the value of the variable without having to 

reintroduce its name. The result is:
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L 

1 4  

2 3  

3 5  

4 1  

5 4  

We have already seen how files from Excel are loaded. Let us now see how to 

work with files from Minitab, SAS, SPSS, Stata, Systat, Weka, and dBase files. To 

be able to load all those types of files, we need to have loaded in R some additional 

package to the ones that R loads at the beginning and that allows loading them, but 

there is one package in the standard library, the package foreign, that allows us to 

load them. 

To check if the package is loaded, we use the well-known search () function, 

which we remember that will give us the list of packages that we have loaded 

>search() 

and we see that it is not loaded. To continue reviewing what we have learned, let us 

remember that to check if it is in the standard R library, we use the library () function, 

and we see that it is, so we only have to load it in the program. To load it, we know 

that there are different methods, and we use the library () function. The full 

instructions are as follows: 

> library (foreign) 

Once we have foreign loaded, we use the different functions that the package has 

to read each different extension to load it in R. For example, if we would have the 

marks of theory and laboratory in an SPSS file, the function would be read.spss (), 

and introducing the name of the file that we want to load as an argument, we would 

have the data loaded in R. The instruction would be: 

> (markssspss = read.spss ("marks.sav")) 

Once we have loaded the data in R, we are going to perform with R the same 

different analysis that we have done in the theoretical section of the chapter, with the 

same data, and in consequence, the results must be the same. 

Anomaly Detection Based on Statistics: Mean and Standard Deviation 

To perform an outlier analysis with the mean and standard deviation method, it is not 

necessary to load any additional package in R, and since the data are already in R, 

because they are the same as in the previous case, we directly perform the analysis, 

which will only consist of programming the instructions used manually with func-

tions already seen. The instructions are as follows: 

Before starting, we must prepare the data. As we have loaded them with the 

instruction readWorksheet ( ) they have been loaded as a list, we can check this 

introducing the instruction type of ( ):
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Following with the example that we are seeing and applying to the variable 

theorymarksxlsx, the instruction is: 

> typeof (theorymarksxlsx) 

To be able to perform calculations as the mean, we must have the data as a vector, 

with only numbers, without the name of the variable, T, because in other cases, it is 

impossible to perform the arithmetic calculations. To do that, we will use the 

function unlist ( ), which converts a list into a vector. 

Applying the previous to the example, and, at the same time, to have easier variables 

to write, we rename the variable theorymarksxlsx, that is, the variable that we have 

used in the theoretical section to perform this kind of outlier analysis, as t. The 

instruction is: 

>(t = unlist(theorymarksxlsx)) 

As we know, from theory, to obtain the interval of the normal values, we need to 

calculate the mean and standard deviation of the analyzed variable, but we can 

calculate them in the same manner in which we calculate the interval. We call the 

resulting vector with the limits of the interval int. To obtain the interval, the 

instruction is: 

>(int <- c (mean ( ) -2 * sd ( ), mean ( ) + 2 * sd ( ))) 

If we apply the previous instruction to the variable Theory, t, of the example, 

we have: 

>(int <- c (mean (t) -1.5 * sd (t), mean (t) + 1.5 * sd (t))) 

The result is: 

1:34, 6:26ð Þ  

How in the theoretical section of the chapter we have obtained the result: 

0:59, 6:00ð Þ  

We can see that the same interval is not obtained as in hand calculations because 

the sd() function divides the data by n-1, not by n. If we want to obtain the same as in 

the calculations by hand, we have to define and obtain another standard deviation, as 

follows: 

>sdd = sqrt (var ( ) * ((length ( ) -1) / length ( ))) 

and then perform the first statement using sdd 

If we apply the previous correction to the calculation of the normal interval for 

theory we have:
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>sdd = sqrt (var (t) * ((length (t) -1) / length (t))) 

>(intdes = c (mean (t) -1.5 * sdd, mean (t) + 1.5 * sdd))) 

The result is the same as in the theoretical section: 

0:59, 6:00ð Þ  

Once we have obtained the interval of the normal values, we must apply it to all 

the values in the sample set to know if any one of them is outside the interval, 

because in that case, it must be identified as an outlier. To do that for all the values, 

we need two important control flows of programming, the loop and the conditional 

statements. 

The loop will be solved with a for whose syntax in R is: 

for (i in 1: length ()) 

it will allow us to apply the condition to belong to the calculated interval for all the 

data in the sample set. 

The conditional will be solved with an if, whose syntax in R is: 

If (logical condition) 

{ instructions} 

and it will be applied to each data to be pointed out if the data are outside the interval 

or will do nothing with it if it is inside the interval. 

If we apply both statements to the example that we are solving, the solution is: 

> for (i in 1: length (t)) 

This instruction makes that the following statements to be applied to all the data in 

the sample set between 1 and all the data in the sample, which comes with a length of 

t. 

{if (t[i] <int [1] || t[i]> int [2]) 

t[i] is each one of the values of t, and int [1] is the lower value of the vector int, 

which, as we know, has two values, the lower limit of the interval of normal values 

and the upper limit of the interval, which comes with int [2]. 

{print ("the event"); print (i); print (t[i]); print ("it is an anomalous event or 

outlier")}}} 

We can put several instructions in the same line separated by a, and they will be 

executed sequentially. 

The result is: 

"the event" 4 1 "it is an anomalous even or outlier"
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Anomaly Detection Based on Statistics: Quartiles 

To perform an outlier analysis with Quartiles method, it is not necessary to load any 

additional package in R. We can use the function quantile ( ) to obtain the values of 

the first and third quartiles and then obtain the interval of the normal values in 

transcribing to R the equation that we have shown in the theoretical section of the 

chapter in the following manner: 

>int = c (quantile (, 0.25)-d * (quantile(, 0.75)-quantile(, 0.25)), quantile (,0.75 + d 

* quantile(, 0.75)-quantile(, 0.25)) 

where d is the degree of outlier and inside the quantile function; before the comma, 

we must indicate over which variable it is applied. 

We apply the quartile method to identify the outliers of the laboratory marks, and we 

use the same degree of outlier that we used in the theoretical section of the chapter, 

that is, d = 1.5 

The variable that we have for the laboratory marks was introduced in the R 

environment at the beginning of this section and is laboratorymarksxlsx. As hap-

pened with theorymarksxlsx, this a list variable that must be converted as a vector 

using the function unlist (), and, at the same time, we change its name to l. The 

instruction is: 

>(l = unlist(laboratorymarksxlsx)) 

and to obtain the interval, we apply the equation above to the variable l, with the 

selected degree of d=1.5, in the following manner: 

>int = c (quantile (l, 0.25)-1.5 * (quantile(l, 0.75)-quantile(l, 0.25)), quantile 

(l,0.75) + 1.5 * quantile(l, 0.75)-quantile(l, 0.25)) 

and the obtained result is: 

1:5, 5:5ð Þ  

The result is the same as in the theoretical section: 

1:5, 5:5ð Þ  

Once we have the interval, we use the same procedure with the loop and the 

conditional statements to identify the outliers than we have used in the previous case: 

>for (i in 1: length (l)) 

this instruction makes that the following statements to be applied to all the data in the 

sample set between 1 and the all number of data in the sample, that comes with 

length of l. 

{if (l[i] <int [1] || l[i]> int [2])
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l[i] is each one of the values of l, and int [1] is the lower value of the vector int that, as 

we know, has two values, the lower limit of the interval of normal values and the 

upper limit of the interval, which comes with int [2]. 

{print ("the event"); print (i); print (l[i]); print ("it is an anomalous event or 

outlier")}}} 

The result is: 

"the event" 4 1 "it is an anomalous even or outlier" 

Anomaly Detection Based on the Standard Error of the Residuals 

To perform an outlier analysis for a regression, it is not necessary to load any 

additional package in R, and since the data are already in R because they are the 

same as in the previous cases, we directly perform the analysis. The first instruction 

will be the one necessary to obtain the regression, that means that is used the lm ( ) 

function. For a linear regression as we are trying to find the arguments of the function 

are, first, the dependent variable, and second, the dependent variable, separated by 

the 12 symbol ~, that isy = f(x) → y~x, 

As in the example of the theoretical section, we calculate the mark of laboratory as a 

function of the marks of theory, and we call the variable associated with the 

regression lft (laboratory as a function of theory). We do not need to load the data 

of the laboratory because we have introduced it in the previous exercises, but we 

must introduce the data of theory because we must remember that we change the first 

data from (2, 5) to allow us to have a function and see the outlier more clearly.13 To 

do that, we only change the data using the assignation function. The first data in t are 

t[1] and l[1], and we assign the new value as follows: 

>t[1]=2 

>l[1]=5 

Once we have changed the new vector t, the instruction of the regression is: 

>(lft = lm (l ~ t)) 

The result is the same as that obtained in the theoretical section. 

a= 1:9 and  b= 0:5 

12 If there was a problem to find this symbol in the keyboard its ASCII code is 126, which can be 

introduced writing ALT+126. 
13 The new dataset is: {Theory, Laboratory}: 1. {2, 5}; 2. {4, 3}; 3. {5, 5}; 4. {1, 1}; 5. {5, 4}.
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Now, once the regression equation has been calculated, to obtain the standard 

error of the residuals, the residuals must be calculated so that the summary() function 

can be used. The instruction is as follows: 

We apply the function summary to the lft regression to obtain the residuals: 

>(summary (lft)) 

As a part of the result has been obtained the residuals: 

Residuals: 

2.12 -0.90 0.57 -1.36 -0.42 

That is, taking into account the differences coming by the decimals, the same that 

we have obtained in the theoretical section 

We can extract a vector that we will call res; with the values of the residuals for 

this output of the summary function, we use the instruction 

>(res = summary( )$residuals) 

We apply that function to the exercise 

>(res = summary(lft)$residuals) 

And from this vector, we calculate the value of the residual error by applying 

the equation observed in the theoretical section: 

>sr = sqrt (sum (res^ 2) / length())) 

We apply that instruction to the exercise 

>(sr = sqrt (sum (res^2) / length(t))) 

With a result of sr = 1.24 

That it is exactly the same as in the theoretical section 

To obtain the anomalous values, we program something analogous to the previ-

ous cases but with the standard error of the residuals system to identify the outliers: 

res > d*sr, where d is the degree of outlier that in the theoretical section we establish 

in d = 1.5. 

If we apply it to the example, we have 

>{for (i in 1: length (res)) 

Once we have the interval, we use the same procedure with the loop and the 

conditional statements to identify the outliers than we have used in the previous case: 

>for (i in 1: length (l))
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this instruction allows that the following statements were applied to all the data in 

the sample set between 1 and the all number of data in the sample, that comes with 

length of l. 

{if (res[i]>1.5*sr) 

l[i] is each one of the values of l, and int [1] is the lower value of the vector int, 

which, as we know, has two values, the lower limit of the interval of normal values 

and the upper limit of the interval, which comes with int [2]. 

{print ("the event"); print (i); print (res[i]); print ("it is an anomalous event or 

outlier")}}} 

The result is: 

"the event" 1 2.12 "it is an anomalous even or outlier" 

Anomaly Detection Based on Proximity: K-Nearest Neighbor Algorithm 

In this subsection, the K-nearest neighbor outlier detection technique will be used for 

detecting the anomaly if any of the students present abnormal marks, and we use the 

initial data without the correction in the first data used for the standard error of the 

residuals method. 

As in the theoretical section, K will be 3 and the degree of outlier is 2.5, which 

means that those that move away from their third closest neighbor by a distance of 

2.5 will be considered outliers. We are going to programme the algorithm for reason, 

and it is not necessary to load any additional package because the14 list of R 

instructions or programme that solve this problem can be written using functions 

included in the packages loaded by the default; this list of instructions is: 

First, to solve the problem, the first thing we need is to have the data in R, for 

which we use the matrix (( ) function, with dimension 2, 5, because in this case, we 

need both data in the pair, with two rows and five columns, and we assign the value 

m, from the word marks, so that the complete function is: 

>m = matrix (c (4,4,4,3,5,5,1,1,5,4), 2,5) 

Another possibility to obtain the matrix m is to use the cbind( ) function, which 

that allows us to join vectors, to join the current15 t and l vectors, in one matrix. The 

instruction is: 

>m2 = cbind(t, l) 

Returning to the first instruction, we transpose the matrix with the function t (), so 

that the distances can be calculated correctly. If we do not transpose it, they will not

14 As ever, the reader is encouraged to develop his/her own solution, list of instructions, programme, 

or script. 
15 We must remember to change the first data of t and l to his previous values (4,4), t[1] = 4, 

l[1] = 4.



be calculated well, and we have not entered it as a transpose because it is more 

convenient to enter it that way, and furthermore, errors are avoided. We follow the 

transposed matrix by calling x, so the complete function is: 

>m = t(m)
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Once the vectors have been introduced in R by means of the x matrix, the next 

step is to calculate the distances between them, which we do with the dist() function 

that calculates the distances between the vectors that make up the matrix that has 

been introduced as an argument, but as a result, it only gives the lower matrix and not 

a complete matrix, since, as it is symmetric, it does not give us the upper part. To 

avoid this and obtain a complete matrix, we must introduce the dist() function inside 

the as.matrix() function. The complete statement is: 

>dm = as.matrix (dist (m)) 

However, we still do not have the definitive matrix of distances since, and 

although dm is presented in the form of a matrix, it is not interpreted by R as a 

matrix, so we convert it into a matrix interpretable by R with the instruction 

>dmd= matrix (dm,5,5) 

We have given it the name dmd to the definitive distance matrix.16 

Once we have the distance matrix, we will identify those events or points whose 

3rd closest neighbor is at a distance greater than 2.5. The first thing we have to do is 

realize that the distance matrix includes, on the main diagonal, the distance of each 

point with itself, which is 0 and will be the shortest distance, so we will always have 

to look for the K+1 nearest neighbor, since the first nearest neighbor will always be 

the point itself. Therefore, in this case, we will find the 4th closest neighbor. To do 

this, the first thing we will have to do is reorder the distance vectors that make up the 

matrix by magnitudes of the distances. To do this, we use the sort() function that 

orders the values of a vector from smallest to largest, resulting in a new vector. Thus, 

the complete statement will be: 

>dmd [, i]=sort (dmd [, i]) 

which will result in a new md matrix in which all column vectors are arranged from 

top to bottom in increasing order. 

However, as you can see, the value i has been left because we are going to use the 

two control statements to apply it at once to all the vectors that make up the matrix, 

since if the matrix were large, it would be impossible to apply it one by one to all 

vectors. To solve this problem, the repetition statement that we will use to solve is 

for, which is written as follows: 

>for (i in 1: 5) {dmd [, i] = sort (dmd [, i])} 

16 If we do the same with the distance matrix coming from m2, we can see that finally both matrixes 

have the same appearance.
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this statement would sort the five column vectors that we have, if we had n it would 

be in 1: n. 

We will also use the same loop to find if any point has a distance to its "fourth" 

nearest neighbor greater than the outlier degree, which is 2.5, to identify said point as 

such. For this, we use the if statement. The complete statement will be: 

> for (i in 1: 5) {if (dmd [4, i]> 2.5) {print (i); print ("it is an anomalous event or 

outlier")}} 

Introducing the line break is essential for the statement to work, a statement that 

we include within the for, so that we will search for it at all points. 

If we write together all the instructions in the loop, the final statement is: 

>for (i in 1: 5) {dmd [, i] = sort (dmd [, i]) 

if (md [4, i]> 2.5) {print (i) 

print ("is an anomalous event or outlier")}} 

Entering the line breaks is essential for the statement to work, 

With this code, R identifies the outliers using the closest K-neighbor technique. 

Anomaly Detection Based on Density: Simplified Local Outlier 

Factor, LOF 

In this subsection, the Local Outlier Factor detection technique will be used for 

detecting the anomaly if any of the students present abnormal marks. 

In this case, the results are not equal, numerically, to those obtained in the 

theoretical section of the chapter because the R functions that will be used to identify 

the outliers implement the Local Outlier Factor method and not the Simplified one,17 

with the relative density used in theory, but the outliers data identified must be 

the same. 

Nevertheless, as in the theoretical section, K will be 3, and the degree of outlier 

will be 2.5, which means that those that move away from their thirdclosest neighbor 

by a distance of 2.5 will be considered outliers. As in this case we haven’t the results 

of the problem solved manually we are going to use two different packages that 

allows to calculate the LOF in other to be able to compare the results. 

The first package will be dbscan and the second will be DescTools. We will use 

both of them in parallel. As we know, we must install and load both before to use 

them to perform the analysis. To do that, we use the instructions install.packages and 

library. First, we install both packages: 

>install.packages(“dbscan”) 

17 The programming skills needed to implement the Simplified Local Outlier Factor are over the 

level introduced in the book, but we would like to encourage the readers to try to implement the 

algorithm by themselves.
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>install.packages(“DescTools”) 

Next, we load them: 

>library(dbscan) 

>library(DescTools) 

Once we have the packages loaded we need to have the data in R, for which we 

create using the notepad the csv file marks.csv, with the data of the marks. The file is: 

T,L 

Event1,4,4 

Event2,4,3 

Event3,5,5 

Event4,1,1 

Event5,5,4 

We read the marks.csv file using the function read.csv in the variable sample. 

The instruction is as follows: 

>sample<-read.csv(“marks.csv”) 

The result is: 

T L  

Event1 4 4 

Event2 4 3 

Event3 5 5 

Event4 1 1 

Event5 5 4 

Now, we apply the function lof( ) of dbscan to obtain the outliers of the sample. 

The attributes of the function are the data in the sample and the selected minPts = 

with the number of points depending on the K selected plus the point studied, that for 

this exercise, in the theoretical section as K was 3, minPts=4. Consequently, the 

instruction is: 

>lof (sample, minPts=4) 

The result is: 

[1] 1.1081851 0.9069197 0.9069197 2.3007780 1.1081851 

This establishes a very different local outlier factor for point 4 than for the others. 

Let’s apply now the function LOF ( ) of the DesTools package, which has as 

attributes the sample of data, the value of K as we saw in the theoretical section of the 

chapter. Consequently, the instruction is: 

>LOF(sample, 3)
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The result is: 

[1] 1.1081851 0.9069197 0.9069197 2.3007780 1.1081851 

Exactly the same result as in the previous solution. 

C. Anomaly Detection Exercises Solved 

This section has two parts. In the first part, a set of exercises solved in detail are 

presented to allow you to check if all the knowledge has been correctly acquired. The 

advice is to try to solve the exercises by yourself, and then to get the solution to 

check it with the proposed one by the book. This procedure will make this section 

truly useful for you. In the second part, the same exercises will be solved in R. 

Hand Made Exercises 

1. An analysis with the standard deviation method must be carried out to detect 

anomalous data using the density in a dataset that consists of the following seven 

values of resistance and density for different types of concrete: {resistance, 

density}: {3, 2; 3.5, 12; 4.7, 4.1; 5.2, 4.9; 7.1, 6.1; 6.2, 5.2; 14, 5.3}. 

To solve the exercise applying the mean and the standard deviation technique, 

the following steps are performed: 

Step 1. Calculate the arithmetic mean of the density values: 

xT = 

7 
i= 1xi 

7 
= 

2 þ 12þ 4:1 þ 4:9þ 6:1þ 5:2þ 5:3 
7 

= 5:66 

Step 2. From the mean, we calculate the standard deviation: 

sT = 

7 
i= 1 xi - xað Þ2 

7 

= 
2- 5:66ð Þ2 þ 40:2þ 2:43 þ 0:58 þ 0:19þ 0:21þ 0:13 

7 

= 8:16 
p 

= 2:86 

Step 3. From these results, and taking into account the degree of outlier taken 

of 1.5, the interval for normal data is:



Þ Þ

Þ
Þ
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xa - dsa, xa þ dsað Þ= 5:66- 1:5 . 2:86, 5:66þ 1:5 . 2:86ð = 1:37, 9:95ð  

Consequently, since the highest value is 12.74, it is outside the limits of the 

interval and, therefore, is an outlier. 

2. An analysis with the quartile’s method must be carried out to detect anomalous 

data using the data of the previous exercise. 

To solve the exercise by applying the quartiles method, the following steps are 

applied: 

Step 1. Determine the outlier degree, which in this case will be d = 1.5. 

Step 2. Order the resistances by increasing value: {3, 3.5, 4.7, 5.2, 6.2, 7.1, 14}. 

Step 3. Obtain the quartiles: 

First quartile: n=7, c=1/4 in consequence n.c=7/4=1.75 =2ℕ and the equation 

to calculate the first quartile, where [nc] non-decimal part of nc, is: 

Q1 =~x1 
4 
= x nc½ ]þ1 = x 1:75½ ]þ1 = x1þ1 = x2 = 3:5 

And the third quartile: n=7, c=3/4 in consequence n.c =21/4=7.25 =2ℕ and 

the equation to calculate the third quartile is: 

Q3 =~x3 
4 
= x nc½ ]þ1 = x 7:25½ ]þ1 = x7þ1 = x8 = 7:1 

From these results, and taking into account the degree of outlier taken of 1.5, 

the interval for normal data is: 

Q1-1:5 Q3-Q1ð Þ,Q3þ1:5 Q3-Q1ð Þð  
= 3:5-1:5 7:1-3:5ð Þ,7:1þ1:5 7:1-3:6ð Þð  
= -1:9,12:35ð Þ  

Consequently, since the largest value is 14, point x7 = 14 is an outlier because 

it is out of the interval. 

3. An analysis will be carried out to detect anomalous data on the regression of the 

variables, density as a function of resistance, using the standard error of the 

residuals in a dataset that consists of the following 7 values of resistance and 

density for different types of concrete: {resistance, density}: {3, 2; 3.5, 12; 4.7, 

4.1; 5.2, 4.9; 7.1, 6.1; 6.2, 5.2; 14, 5.3}. 

To solve the exercise applying the measures of analysis of outliers of a 

regression, the following steps must be applied: 

Step 1. Calculate the regression line and obtain:
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n 

i= 1 

fixi 

n 

i= 1 

fi 

= 6:24 

m 

j= 1 

f jyj 

m 

j= 1 

f j 

= 5:66 

sxy= 

n 
i=1 

m 
j=1f ijxiyj 
n 
i=1fi

-

n 
i=1fixi 
n 
i=1fi 

: 

m 
j=1f jyj 
m 
j=1f j 

= 
3:2þ3,5:12þ4,7:4,1þ5,2:4,9þ7,1:6,1þ6,2:5,2þ14:5,3 

7
-6:24:5:66 

= 
242,5 

7
-35,32=34,64-35,32=-0,68 

s2 x = 

n 
i= 1 xi - xð Þ2 

n 
= 

3- 6:24ð Þ2 þ 3:5- 6:24ð Þ2 þ . . .þ 14- 6:24ð 2 

7 

= 
84:42 
7 

= 11:77 

sx = s2 x = 3:43 

s2 y = 

n 
i= 1 yi - yð Þ2 

n 
= 

2- 5:66ð Þ2 þ 12- 5:66ð Þ2 þ . . .þ 5:3- 5:66ð 2 

7 

= 
57:14 
7 

= 8:16 

sy = s2 y = 2:85 

rxy = 
sxy 

sxsy 
=

- 0:68 
3:43 8:16 

= - 0:024 

b= 
sxy 

s2 x 
=

- 0:68 
11:77 

= rxy 
sy 

sx 
= - 0:024 

2:85 
3:43 

= - 0:057 

a= y- bx= 5:66 0:057:6,24= 6:015 

v= 6:015- 0:057t 

Step 2. Calculate the residuals: 

yci = 6:015- 0:057xi 

yc1 = 6:015- 0:057 3 = 5:84 

yc2 = 6:015- 0:057 3:5 = 5:82 

yc3 = 6:015- 0:057 4:7 = 5:75 

yc4 = 6:015- 0:057 3:2 = 5:72
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yc5 = 6:015- 0:057 7:1 = 5:61 

yc6 = 6:015- 0:057 6:2 = 5:66 

yc7 = 6:015- 0:057 14 = 5:22 

From the vci residuals, the following are calculated: 

r1 = v1 - vc1 = 2- 5:84= - 3:84 

In the same way are calculated r2. . .r7, obtaining the following values: 

r2 = - 0:02 

r3 = - 2:98 

r4 = 0:52 

r5 = 1:59 

r6 = 3:21 

r7 = - 1:11 

Step 3. Calculate the standard deviation of the residuals: 

sr = 

n 
i= 1 yi - ycið Þ2 

n 
= 

2- 5:84ð Þ2 þ . . .  þ 5:3- 5:22ð Þ2 
7 

= 2:85 

Step 4. Calculate the limits of the interval for the outliers: Since the outlier 

degree is d = 1.5, the limits are: 

d:sr = 1,5:2:85= 4:25 

Step 5. Outlier identification, that is, if for any value: 

yi - ycij j> d:sr = yi - ycij j> 4:25 

The point (3.5, 12) is identified as an outlier since 

12- 5:82j j= 6:18> 5:7 

For the data in a.txt file generated from the sample data of the following 11 values 

of response speeds and normalized temperatures of a microprocessor {speed, 

temperature}: {10, 7.46; 8, 6.77; 13, 12.74; 9, 7.11; 11, 7.81; 14, 8.84; 6, 6.08;
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4, 5.39; 12, 8.15; 7, 6.42; 5, 5.73}, obtain the temperature outliers with the mean 

and the standard deviation technique. 

To solve the exercise applying the mean and the standard deviation technique, 

the following steps are performed: 

Step 1. Calculate the arithmetic mean: 

xT = 

11 
i=1xi 

11 

= 
7:46þ6:77þ12:74þ7:11þ7:81þ8:84þ6:08þ5:39þ8:15þ6:42þ5:73 

11 
=7:5 

Step 2. From the mean, we calculate the standard deviation: 

sT = 

11 
i=1 xi-xað Þ2 

11 
= 

7:46-7:5ð Þ2þ 6:77-7:5ð Þ2þ . . .þ 5:73-7:5ð 2 

11 

= 
41:23 
11 

= 3:75 
p 

=1:93 

Step 3. From these results, and taking into account the degree of outlier taken of 

1.5, the interval for normal data is: 

xa - dsa, xa þ dsað Þ= 7:5- 1:5 . 1:93, 7:5 þ 1:5 . 1:93ð = 4:61, 10:40ð  

Consequently, since the highest value is 12.74, it is outside the limits of the 

interval and, therefore, is an outlier. 

5. For the data in a.txt file generated from the sample data of the following 11 values 

of response speeds and normalized temperatures of a microprocessor {speed, 

temperature}: {10, 7.46; 8, 6.77; 13, 12.74; 9, 7.11; 11, 7.81; 14, 8.84; 6, 6.08; 

4, 5.39; 12, 8.15; 7, 6.42; 5, 5.73}, the outliers for the variable speed must be 

obtained using the quartiles algorithm. 

To solve the exercise by applying the quartiles method, the following steps are 

applied: 

Step 1. Determine the outlier degree, which in this case will be d = 1.5. 

Step 2. Order the speeds by increasing value: {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. 

Step 3. Obtain the quartiles: 

First quartile: n=11, c=1/4 in consequence n.c=11/4=2.75 =2ℕ and the 

equation to calculate the first quartile, where [nc] nondecimal part of nc, is: 

Q1 =~x1 
4 
= x nc½ ]þ1 = x 2:75½ ]þ1 = x2þ1 = x3 = 6
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And the third quartile: n=11, c=3/4 in consequence n.c=33/4=8.25 =2ℕ and 

the equation to calculate the third quartile is: 

Q3 =~x3 
4 
= x nc½ ]þ1 = x 8:25½ ]þ1 = x8þ1 = x9 = 12 

From these results, and taking into account the degree of outlier taken of 1.5, 

the interval for normal data is: 

Q1-1:5 Q3-Q1ð Þ,Q3þ1:5 Q3-Q1ð Þð Þ= 6-1:5 12-6ð Þ,12þ1,5 12-6ð Þð = -3,21ð  

Consequently, since the largest value is 14, there are no outliers in the sample 

because all the values are inside the interval. 

6. For the data of a.txt file generated from the sample data of the following 11 values 

of response speeds and normalized temperatures of a microprocessor {speed, 

temperature}: {10, 7.46; 8, 6.77; 13, 12.74; 9, 7.11; 11, 7.81; 14, 8.84; 6, 6.08; 

4, 5.39; 12, 8.15; 7, 6.42; 5, 5.73}, obtain the outliers of the regression of speed as 

a function of temperature, using the standard error of the residuals. 

To solve the exercise applying the measures of analysis of outliers of a 

regression, the following steps must be applied: 

Step 1. Calculate the regression line and obtain: 

n 

i= 1 

fixi 

n 

i= 1 

fi 

= 9 

m 

j= 1 

f jyj 

m 

j= 1 

f j 

= 7:5 

sxy = 

n 
i= 1 

m 
j= 1f ijxiyj 
n 
i= 1fi

-

n 
i= 1fixi 
n 
i= 1fi

.
m 
j= 1f jyj 
m 
j= 1f j 

= 
10 . 7:46þ 8 . 6:77þ 13 . 12:74þ⋯þ 5 . 5:73 

11
- 9 . 7:5 

= 
797:47 
11

- 67:5= 72:5- 67:5= 5 

s2 x = 

n 
i= 1 xi - xð Þ2 

n 
= 

7:46- 9ð Þ2 þ 6:77- 9ð Þ2 þ . . .þ 5:73- 9ð Þ2 
11 

= 
65:97 
11 

= 5:99 

sx = s2 x = 2:45
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s2 y = 

n 
i= 1 yi - yð Þ2 

n 
= 

10- 7:5ð Þ2 þ 8- 7:5ð Þ2 þ . . .  þ 5- 7:5ð Þ2 
11 

= 
134:75 
11 

= 12:25 

sy = s2 y = 3:5 

rxy = 
sxy 

sxsy 
= 

5 

2:45 3:5 
= 0:583 

b= 
sxy 

s2 x 
= 

5 

5:99 
= rxy 

sy 

sx 
= 0:583 

3:5 
2:45 

= 0:835 

a= y- bx= 7:5 0:835 9= 15:015 

v= 15:015 0:835t 

Step 2. Calculate the residuals: 

yci = 15:015þ 0:835xi 
yc1 = 15:015 0:835 7:46 = 21:24 

yc2 = 15:015 0:835 6:77 = 20:67 

yc3 = 15:015 0:835 12:74 = 25:65 

yc4 = 15:015 0:835 7:11 = 20:95 

yc5 = 15:015 0:835 7:81 = 21:54 

yc6 = 15:015 0:835 8:84 = 22:39 

yc7 = 15:015 0:835 6:08 = 20:09 

yc8 = 15:015 0:835 5:39 = 19:52 

yc9 = 15:015 0:835 8:15 = 21:82 

yc10 = 15:015 0:835 6:42 = 20:38 

yc11 = 15:015 0:835 5:73 = 19:79 

From the vci residuals, the following are calculated: 

r1 = v1 - vc1 = 2- 5:84= - 3:84 

In the same way are calculated r2. . .r11, obtaining the following values: 

r2 = - 0:02 

r3 = - 2:98
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r4 = 0:52 

r5 = 1:59 

r6 = 3:21 

r7 = - 1:11 

Step 3. Calculate the standard deviation of the residuals: 

sr = 

n 
i= 1 yi - ycið Þ2 

n 
= 

2- 5:84ð Þ2 þ . . .  þ 5:3- 5:22ð Þ2 
7 

= 2:85 

Step 4. Calculate the limits of the interval for the outliers: Since the outlier degree 

is d = 1.5, the limits are: 

d:sr = 1,5:2:85= 4:25 

Step 5. Outlier identification, that is, if for any value: 

yi - ycij j> d:sr = yi - ycij j> 4:25 

The point (3.5, 12) is identified as an outlier since 

12- 5:82j j= 6:18> 5:7 

7. For the data of a.txt file generated from the sample data of the following 

5 seminars: {girls, boys}: 1. {9, 9}; 2. {9, 7}; 3. {11, 11}; 4. {2, 1}; 5. {11, 

9}, the outliers must be obtained using the K-neighbors algorithm. 

The exercise must be solved by applying the K-neighbors algorithm to obtain 

the outliers. For which the steps of the algorithm will be applied: 

Step A.1. Select the outlier degree: d = 10 

Step A.2. Select the closest neighbor K: K = 3 

Step B.1. Calculate the Euclidean distances: 

Points 1-2, {{9,9}, {9,7}}: 

d12 = 
2 

i= 1 
pi - qið Þ2 = 9- 9ð Þ2 þ 9- 7ð Þ2 = 2 

Points 1-3, {{9.9}, {11.11}}: 

d13 = 9- 11ð Þ2 þ 9- 11ð Þ2 = 2:83
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Points 1-4, {{9.9}, {2.1}}: 

d14 = 9- 2ð Þ2 þ 9- 1ð Þ2 = 10:63 

Points 1-5, {{9.9}, {11.9}}: 

d15 = 9- 11ð Þ2 þ 9- 9ð Þ2 = 2 

Points 2-3, {{9.7}, {11.11}}: 

d23 = 9- 11ð Þ2 þ 7- 11ð Þ2 = 4:47 

Points 2-4, {{9.7}, {2.1}}: 

d24 = 9- 2ð Þ2 þ 7- 1ð Þ2 = 9:22 

Points 2-5, {{9.7}, {11.9}}: 

d25 = 9- 11ð Þ2 þ 7- 9ð Þ2 = 2:83 

Points 3-4, {{11,11}, {2,1}}: 

d34 = 11- 2ð Þ2 þ 11- 1ð Þ2 = 13:45 

Points 3-5, {{11,11}, {11,9}}: 

d35 = 11- 11ð Þ2 þ 11- 9ð Þ2 = 2 

Points 4-5, {{2,1}, {11,9}}: 

d45 = 2- 11ð Þ2 þ 1- 9ð Þ2 = 12:04 

Step B.2. Order the distances of each point:

• Point 1. Minimum distance to points 2 and 5, distance equal to 2. The third is 

3 and the distance is 2.83. Since the degree of outlier is $ d = 10 $, it is not an 

outlier.
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• Point 2. Minimum distance to points 1 and 5, distance equal to 2 and 2.83, 

respectively. The third is the 3 and the distance is 4.47. Since the degree of 

outlier is $ d = 10 $, it is not an outlier.

• Point 3. Minimum distance to points 1 and 5, distance equal to 2.83 and 4.47, 

respectively. The third is 2 and the distance is 4.47. Since the degree of outlier 

is $ d = 10 $, it is not an outlier.

• Point 5. Minimum distance to points 3 and 1, distance equal to 2. The third is 

2, and the distance is 2.83. Since the degree of outlier is $ K = 3 $ it is not an 

outlier.

• Point 4. Minimum distance to points 2 and 1, distance equal to 9.22 and 10.63, 

respectively. The third is 5, and the distance is 12.04. Since the outlier degree 

is $ d = $ 10, point 4 is an outlier. 

8. For the data of a .txt file generated from the sample data of the following 

6 seminars: {girls, boys}: 1. {9, 9}; 2. {9, 7}; 3. {11, 11}; 4. {2, 1}; 5. {11, 

9}; 6. {11,7}, the outliers must be obtained, using the Simplified Local Outlier 

Factor the outliers with K=3. 

Carry out step A.1 of the density algorithm to search for anomalous data. 

Determination of the order number, or K, of the nearest neighbor used to calculate 

the density of each point. It is chosen arbitrarily. 

As it is chosen arbitrarily, taking into account the characteristics of the problem 

and of the sample, we take the third neighbor or closest event. K = 3. 

Carry out step A.2 of the density algorithm for the identification of outliers from 

the previous exercise. 

Calculation of Manhattan distances between all points. We calculate the distance 

of each point with the rest of the points in the sample. 

1.{9, 9}; 2. {9, 7}; 3. {11, 11}; 4. {2, 1}; 5. {11, 9} 

Points 1-2, {{9, 9}, {9, 7}}:d12 = |x11 - x21| +  |x12 - x22| = |9 - 9| + |9 - 7| = 2 

Points 1-3, {{9, 9}, {11, 11}}:d13 = |9 - 11| + |9 - 11| = 4 

Points 1-4, {{9, 9}, {2, 1}}: d14= |9 - 2| + |9 - 1| = 15 

Points 1-5, {{9, 9}, {11, 9}}: d15= |9 - 11| + |9 - 9| = 2 

Points 2-3, {{9, 7}, {11, 11}}: d23= |9 - 11| + |7 - 11| = 6 

Points 2-4, {{9, 7}, {2, 1}}: d24= |9 - 2| + |7 - 1| = 13 

Points 2-5, {{9, 7}, {11, 9}}: d25= |9 - 11| + |7 - 9| = 4 

Points 3-4, {{11, 11}, {2, 1}}:d34 = |11 - 2| + |11 - 1| = 19 

Points 3-5, {{11, 11}, {11, 9}}: d35= |11 - 11| + |11 - 9| = 2 

Points 4-5, {{2, 1}, {11, 9}}: d45= |2 - 11| + |1 - 9| = 17
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Carry out step A.3 of the simplified density algorithm for the identification of 

outliers from the previous exercise. 

Sorting by distances of the neighbors of each point until reaching the defined K, 3, to 

calculate the N of each point.

• Point 1: Minimum distance, closest point, point 2: 2. Second distance, point 5: 

2. Finally, the distance to the third closest point, which is the chosen K, is to point 

3: 4. Therefore, N = 3.

• Point 2: Minimum distance, point 1: 2. Second distance, point 5: 4. Distance 

to the third closest point, which is the K chosen, is to point 3: 6. Therefore, N = 3.

• Point 3: Minimum distance, point 5: 2. Second distance, point 1: 4. Distance 

to the third closest point, which is the K chosen, is to point 2: 6. Therefore, N = 3.

• Point 4: Minimum distance, point 2: 13. Second distance, point 1: 15. Distance to 

the third closest point, which is the K chosen, is to point 5: 17. Therefore, N = 3.

• Point 5: Minimum distance, point 3: 2. Second distance, point 2: 4. The distance 

to the third closest point, which is the K chosen, is 1:9. Therefore, N = 3. 

Carry out step A.4 of the density algorithm for the identification of outliers from the 

previous exercise. 

Calculation of the density, d, of each point. 

density xi,Kð Þ= 
xj2N xi ,Kð Þdistance xi, xj 

cardinal N xi,Kð Þ

- 1 

P1: d x1, 3ð Þ= 
distance x1, x2ð Þþdistance x1, x5ð Þþdistance x1, x3ð Þ  

cardinal N x1, 3ð Þ
- 1 

= 
2þ2þ4 

3

- 1 
= 0:375 

P2: d x2, 3  = 
1þ2þ3 - 1 

= 0:25 

P3: d x3, 3  = 
1þ2þ3 - 1 

= 0:25 

P4: d x4, 3  = 
5þ6þ7 - 1 

= 0:067 

P5: d x5, 3  = 
1þ1þ2 - 1 

= 0:375 

D. Calculation of the mean relative density, drm, of each point. There are different 

definitions of mean relative density. One of the most commonly used is: 

mean relative density xi,Kð Þ= 
density xi,Kð Þ  
xj2N xi ,Kð Þdensity xj,Kð Þ  
cardinal N xi,Kð Þ  

This calculates the proportion between the density at a point and the mean of 

the densities of the set N that defines said point from the order number K. The 

mean relative density will tend to zero in the outliers. 

The relative density, which takes into account the neighborhood of the point, 

the set N, is used because if only the absolute density is used, outliers may not be 

correctly identified in data samples with regions of different densities.
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The drm we have for the points are: 

P1: drm x1, 3ð Þ= densidad x1, 3ð Þ  
densidad x2, 3ð Þþdensidad x5, 3ð Þþdistancia x3, 3ð Þ  

cardinal N x1, 3 
= 

0:375 
0:25þ0:375þ0:25 

3 

= 1:284 

P2: drm x2, 3  = 
0:25 

0:375þ0:375þ0:25 
3 

= 0:75 

P3: drm x3, 3  = 
0:25 

0:375þ0:375þ0:25 
3 

= 0:75 

P4: drm x4, 3  = 
0:067 

0:25þ0:375þ0:375 
3 

= 0:201 

P5: drm x5, 3  = 
0:375 

0:375þ0:25þ0:25 
3 

= 1:284 

E. Obtaining outliers, such as those points whose average relative density is signif-

icantly lower than that of the rest of the elements in the sample. Different methods 

can be set to establish when the drm is significantly lower. 

Apply step C of the density algorithm to the previous exercise: 

The drm we have for the points are P1: 1.284, P2: 0.75, P3: 0.75, P4: 0.201, 

1.284. 

Therefore, simply comparing them, it is observed that the drm of point 

4, 0.201, is significantly lower than the rest. 

Consequently, the only point with a density significantly lower than the rest of 

the points in the sample is Point 4 (2, 1), so it must be considered an outlier. 

Exercises Solved in R 

In this section, the previous handmade exercises will be solved using the R software. 

1. An analysis with the standard deviation method must be carried out to detect 

anomalous data using the density in a dataset that consists of the following seven 

values of resistance and density for different types of concrete: {resistance, 

density}: {3, 2; 3.5, 12; 4.7, 4.1; 5.2, 4.9; 7.1, 6.1; 6.2, 5.2; 14, 5.3}. 

To perform an outlier analysis with the mean and standard deviation method, it 

is not necessary to load any additional packages in R, and since the data are 

already in R, because they are the same as in the previous case, we will directly 

perform the analysis, which will only consist of programming the instructions 

used manually with functions already seen. The instructions are as follows: 

To obtain the interval: 

>(intdes = c (mean (sample $ d) -2 * sd (sample $ d), mean (sample $ d) + 

2 * sd (sample $ d))) 

The same interval is not obtained as in hand calculations because the sd () 

function divides the data by n-1, not by n. If we want to obtain the same as 

in the calculations by hand, we have to define and obtain another standard 

deviation, as follows.
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sdd = sqrt (var (show \ $ d) * ((length (show \ $ d) -1)/length (show \ $ d))) 

and then perform the first statement using sdd 

(intdes = c (mean (shows \ $ d) -2 * sdd, mean (shows \ $ d) + 2 * sdd)) 

To obtain the outliers, we do the same as in the previous cases. 

{for (i in 1: length (sample \ $ d)) 

{if (shows \ $ d [i] <intdes [1] || shows \ $ d [i]> intdes [2]) 

{print ("the event"); print (i); print (show \ $ d [i]); print ("it is an 

anomalous event or outlier")}}} 

2. An analysis with the quartile’s method must be carried out to detect anomalous 

data using the data of the previous exercise. 

To perform an analysis of outliers with the box and whiskers method, it is not 

necessary to load any additional package in R, so we start by entering the data 

through a matrix that we are going to call sample, the function that we are going to 

use is \ textbf {matrix ()}. In this exercise, unlike the previous ones, we introduce the 

matrix in the way that interests us most so as not to make mistakes, but we transpose 

it with the same sentence, so the complete instruction is: 

>(sample = t (matrix (c (3,2,3.5,12,4.7,4.1,5.2,4.9,7.1,6.1,6.2,5.2,14,5.3), 2,7, 

dimnames = list (c ("r", "d"))))))))) 

To perform the analysis, the matrix must be converted into a data frame using the 

data.frame() function, and the instruction is: 

>(sample = data.frame (sample)) 

To perform the analysis of outliers with the box and whisker method, the function 

boxplot () is used. 

>(boxplot (shows \ $ r, range = 1.5, plot = FALSE)) 

This problem can also be solved by calculating the quartiles, the first and third 

quartiles: 

>(quar1r <-quantile (sample \ $ r, 0.25)) 

>(quar3r <-quantile (sample \ $ r, 0.75)) 

Then calculate the interval: 

int = c (quart1r-1.5 * (quart3r-quart1r), quart3r + 1.5 * (quart3r-quart1r)) 

And to know if a piece of data is an anomaly or not, a for and if structure can be 

used where the length () function has been used to leave the number of iterations 

open to the length of the vector, which would change with each dataset and the 

command || which means or.
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for (i in 1: length (shows \ $ r)) 

{if (show \ $ r [i] <int [1] || show \ $ r [i]> int [2]) 

{print ("the event"); print (i); print (show \ $ r [i]); print ("it is an anomalous 

event or outlier")}}} 

3. An analysis will be carried out to detect anomalous data on the regression of the 

variables, density as a function of resistance, using the standard error of the 

residuals on the same sample from exercise 1. 

To perform an outlier analysis for a regression, it is not necessary to load any 

additional package in R, and since the data are already in R, because they are the 

same as in the previous case, we will directly perform the analysis, which will consist 

only of programming the instructions used manually with functions already seen. 

The first instruction will be the one necessary to obtain the regression of density as a 

function of resistance. The full instructions are as follows: 

> (dfr = lm (show \ $ d ~ show \ $ r))} 

Then using the summary () function, we obtain the residuals. The instruction is 

>(summary (dfr)) 

To extract the vector from the residuals, we use the instruction: 

>(res = summary (dfr) \ $ residuals) 

From this vector, we calculate the value of the residual error: 

>paragraph {} \ textbf {(sr = sqrt (sum (res \ ^ 2)/7)) 

To obtain the anomalous values, we program something analogous to the 

previous cases. 

textbf {for (i in 1: length (res)) 

{if (res [i]> 2 * sr) 

{print ("the event"); print (res [i]); print ("is an anomalous event or outlier")}} 

4. For the data in a.txt file generated from the sample data of the following 11 values 

of response speeds and normalized temperatures of a microprocessor {speed, 

temperature}: {10, 7.46; 8, 6.77; 13, 12.74; 9, 7.11; 11, 7.81; 14, 8.84; 6, 6.08; 

4, 5.39; 12, 8.15; 7, 6.42; 5, 5.73}, obtain the temperature outliers with the mean 

and the standard deviation technique. 

To perform an outlier analysis with the mean and standard deviation method, it 

is not necessary to load any additional packages in R, and since the data are 

already in R, because they are the same as in the previous case, we will directly 

perform the analysis, which will only consist of programming the instructions 

used manually with functions already seen. The instructions are as follows:



>(sample = t (matrix (c (10, 7.46, 8, 6.77, 13, 12.74, 9, 7.11, 11, 7.81, 14, 8.84,

6, 6.08, 4, 5.39, 12, 8.15, 7, 6.42, 5, 5.73), 2,11, dimnames = list (c ("s",

"t")))))))))))

At this point, we can see that the function matrix runs perfectly without

installing and loading the package Matrix, and we can ask ourselves why this is

possible. This is because there are different matrix functions. We must remember

that R is case sensitive to the function matrix, with an initial capital letter that is

different from the function matrix. The first one is in the package Matrix, which

must be installed and uploaded, and the second one, which is running perfectly

without load any package, must belong to some package loaded by defect when R

starts. To know which package is being used, we can use the following

instruction:

>help(matrix) y obtenemos que pertenece al paquete base.
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To obtain the interval: 

>(intdes = c (mean (sample $ t) -2 * sd (sample $ t), mean (sample $ t) + 

2 * sd (sample $ t))) 

The same interval is not obtained as in hand calculations because the sd () 

function divides the data by n-1, not by n. If we want to obtain the same as 

in the calculations by hand, we have to define and obtain another standard 

deviation, as follows. 

sdd = sqrt (var (show \ $ t) * ((length (show \ $ t) -1)/length (show \ $ t))) 

and then perform the first statement using sdd: 

(intdes = c (mean (shows \ $ t) -2 * sdd, mean (shows \ $ t) + 2 * sdd)) 

To obtain the outliers, we do the same as in the previous cases. 

{for (i in 1: length (sample \ $ t)) 

{if (shows \ $ t [i] <intdes [1] || shows \ $ t [i]> intdes [2]) 

{print ("the event"); print (i); print (show \ $ t [i]); print ("it is an 

anomalous event or outlier")}}} 

5. For the data in a.txt file generated from the data of the sample used to carry out 

exercise 5, the outliers for the variable speed must be obtained using the quartiles 

algorithm. 

As mentioned before, to perform an analysis of outliers with the box and 

whiskers method, it is not necessary to load any additional package in R, so we 

start by entering the data through a matrix that we are going to call sample, and 

the function that we are going to use is \ textbf {matrix ()}. We introduce the 

matrix in the way that interests us most so as not to make mistakes, but we 

transpose it with the same sentence, so the complete instruction is:



int = c (quart1r-1.5 * (quart3r-quart1r), quart3r + 1.5 * (quart3r-quart1r))
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In the previous instruction entering the sample, we have also observed that we 

can obtain the output of any instruction putting it between brackets without the 

need to introduce again the name of the variable calculated. 

To perform the analysis, the matrix must be converted into a data frame using 

the data.frame() function, and the instruction is: 

>(sample = data.frame (sample)) 

We can see that the type of output changed. 

In the data frame, the columns can have different types of data; in the matrix, 

all the data must have the same type. 

To perform the analysis of outliers with the box and whisker method, the 

function boxplot () is used. 

>(boxplot (sample$s, range = 1.5, plot = FALSE)) 

This problem can also be solved by calculating the quartiles, the first and third 

quartiles: 

>(quar1r <-quantile (sample$s, 0.25)) 

>(quar3r <-quantile (sample$s, 0.75)) 

Then calculate the interval: 

And to know if a piece of data is an anomaly or not, a for and if structure can be 

used where the length () function has been used to leave the number of iterations 

open to the length of the vector, which would change with each dataset and the 

command ||, which means or. 

for (i in 1: length (shows \ $ s)) 

{if (show \ $ s [i] <int [1] || show \ $ s [i]> int [2]) 

{print ("the event"); print (i); print (show \ $ s [i]); print ("it is an 

anomalous event or outlier")}}} 

6. For the data of a.txt file generated from the data of the sample used to carry out 

exercise 4, obtain the outliers of the regression of speed as a function of temper-

ature, using the standard error of the residuals. 

To perform an outlier analysis for a regression, it is not necessary to load any 

additional package in R, and since the data are already in R because they are the 

same as in the previous case, we will directly perform the analysis, which will 

consist only of programming the instructions used manually with functions 

already seen. The first instruction will be the one necessary to obtain the regres-

sion of speed as a function of temperature. The full instruction is:18 

> (sft = lm (sample$s ~ sample$t))} 

18 The symbol ~ can be obtained using the ASCII code with Bloq Num activado y ALT + 126
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This is the speed as a function of temperature. 

Then using the summary () function, we obtain the residuals. The instruc-

tion is 

>(summary (sft)) 

To extract the vector from the residuals, we use the instruction: 

>(res = summary (sft) \ $ residuals) 

From this vector, we calculate the value of the residual error: 

>paragraph {} \ textbf {(sr = sqrt (sum (res \ ^ 2)/11)) 

To obtain the anomalous values, we programme something analogous to the 

previous cases. 

textbf {for (i in 1: length (res)) 

{if (res [i]> 2 * sr) 

{print ("the event"); print (res [i]); print ("is an anomalous event or outlier")}} 

7. For the data of a.txt file generated from the sample data of the following 

5 seminars: {girls, boys}: 1. {9, 9}; 2. {9, 7}; 3. {11, 11}; 4. {2, 1}; 5. {11, 

9}, the outliers must be obtained using the K-neighbors algorithm with K and an 

outlier degree of 5. 

A degree of outlier of 5 means that those that move away from their third closest 

neighbor by a distance of 5 will be considered outliers. The degree of outlier has 

changed from the example observed previously because the size of the numbers that 

we are dealing with now has increased. 

First, to solve the problem, the first thing we need is to have the data in R, for 

which we use the matrix (( ) function, with dimension 2, 5, because in this case, we 

need both data in the pair, with two rows and five columns, and we assign the value 

m, from the word marks, so that the function complete is: 

>m = matrix (c (9,9,11,2,11, 9,7,11,1,9), 2,5, byrow=T) 

Now, we transpose the matrix with the function t () so that the distances can be 

calculated correctly: 

>m = t(m) 

Once the vectors have been introduced in R by means of the x matrix, the next 

step is to calculate the distances between them, which we do with the dist() function 

that calculates the distances between the vectors that make up the matrix that has 

been introduced as an argument, but as a result, it only gives the lower matrix and not 

a complete matrix, since, as it is symmetric, it does not give us the upper part. To 

avoid this and obtain a complete matrix, we must introduce the dist() function inside 

the as.matrix() function. The complete statement is: 

>dm = as.matrix (dist (m))
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However, we still do not have the definitive matrix of distances since, although 

dm is presented in the form of a matrix, it is not interpreted by R as a matrix, so we 

convert it into a matrix interpretable by R with the instruction: 

>dmd= matrix (dm,5,5) 

Once we have the distance matrix, we will identify those events or points whose 

third closest neighbor is at a distance greater than 5. The first thing we have to do is 

realize that the distance matrix includes, on the main diagonal, the distance of each 

point with itself, which is 0 and will be the shortest distance, so we will always have 

to look for the K+1 nearest neighbor, since the first nearest neighbor will always be 

the point itself. Therefore, in this case, we will find the 4th closest neighbor. To do 

this, the first thing we will have to do is reorder the distance vectors that make up the 

matrix by magnitudes of the distances. To do this, we use the sort() function that 

orders the values of a vector from smallest to largest, resulting in a new vector. Thus, 

the complete statement will be: 

>dmd [, i]=sort (dmd [, i]) 

which will result in a new md matrix in which all column vectors are arranged from 

top to bottom in increasing order. 

However, as you can see, the value i has been left because we are going to use the 

two control statements to apply it at once to all the vectors that make up the matrix, 

since if the matrix were large, it would be impossible to apply it one by one to all 

vectors. To solve this problem, the repetition statement that we will use to solve is 

for, which is written as follows: 

>for (i in 1: 5) {dmd [, i] = sort (dmd [, i])} 

This statement would sort the five column vectors that we have; if we had n, it 

would be in 1: n. 

We will also use the same loop to find if any point has a distance to its "fourth" 

nearest neighbor greater than the outlier degree, which is 2.5, to identify said point as 

such. For this, we use the if statement. The complete statement would be: 

> for (i in 1: 5) {if (dmd [4, i]> 5) {print (i); print ("it is an anomalous event or 

outlier")}} 

Introducing the line break is essential for the statement to work, a statement that 

we include within the for, so that we will search for it at all points. 

If we write together all the instructions in the loop, the final statement is: 

>for (i in 1: 5) {dmd [, i] = sort (dmd [, i]) 

if (md [4, i]> 5) {print (i) 

print ("is an anomalous event or outlier")}} 

8. For the data of a.txt file generated from the sample data of the following 

5 seminars: {girls, boys}: 1. {9, 9}; 2. {9, 7}; 3. {11, 11}; 4. {2, 1}; 5. {11, 

9}, the outliers must be obtained using the LOF algorithm with K and an outlier 

degree of 5.
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As in the example, we use the dbscan and DesTools packages to obtain the 

outliers. 

The data are already in the R environment because we have loaded them in the 

previous exercise. For that reason, we go directly to the lof () and LOF () 

functions. 

We remember that both of them have the same first attribute, the name of the 

sample and the second for lof ( ) is the minPts= and for LOF K. The difference 

between them is that minPts include the treated point, and for that reason, we 

must increase the number of K in one. The instructions and their results are as 

follows: 

>lof(m, minPts=4) 

Result: 1.1081851 0.9069197 0.9069197 2.8554511 1.1081851 

>LOF(m, 3) 

Result: 1.1081851 0.9069197 0.9069197 2.8554511 1.1081851 

Both results are the same and identify a clear LOF in point 4, which is the same 

that we obtained by applying the K-neighbors algorithm.



Unsupervised Classification 

In this fifth chapter, we are going to see the theoretical foundations of Unsupervised 

Classification of events and the main techniques used to carry it out. As in all the 

previous chapters, it is structured into three sections. 

Section A introduces, in a theoretical and, at the same time, practical way, all the 

basic theoretical knowledge related to unsupervised classification, that is, the con-

cepts and techniques that allow us to perform the analysis, from the basic distance 

base clustering of events to hierarchical clustering. 

Section B presents the computer-based solving of the same examples used in 

section A to introduce theoretical knowledge. Section B presents the computer-based 

solving. The packages needed to carry out these computational solutions are also 

introduced, and in this chapter, the RStudio tool that allows us to improve the work 

with R is introduced.1 

Section C will consist of a set of statements of exercises about unsupervised 

classification in which detailed solutions can also be found.2 

A. Theory 

The first section of the chapter is structured into three subsections: 1. Introduction, 

2. Unsupervised Classification based on distance, 3. Agglomerative Hierarchical 

Clustering. 

1 Is in this chapter, when the RStudio tool is introduced and not in the first one because the authors 
think that in first chapters the reader, or the student, must be totally focused in R itself more than in 
the tool used to work with R and this can be obtained better with the use of the RGui only. Once it has 
been obtained, it can be get a tool like RStudio that it is the adequate to work professionally with R. 
2 We repeat again here that in order to obtain the best results for the learning process throughout the 
use of the book, it is very important that the reader tries to solve the exercises by themself before 
seeing the solutions and that only once solved check if the obtained solutions are correct. 
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Introduction 

Unsupervised classification studies seek to define, for a certain characteristic, ele-

mentary event, a set of groups of observations, events, with close values. These 

groups, called clusters, will allow that, based on the values of the characteristics, 

elementary events, that make up an event, it can be assigned as belonging to one of 

them. Each cluster is defined through its parameters, so it is essential to have a 

sample of events to be able to determine them. This sample will include the values of 

the elementary event or characteristic for which the classification is being sought. 

The unsupervised classification of events is called Unsupervised or Clustering3,4 

because the values that define the different clusters are defined during the same 

classification process, while in the case of supervised classification, the events to be 

classified will be classified into classes whose values have been previously defined. 

In the case that the term classification is used without saying whether it is supervised 

or not, it usually refers to supervised classification. 

Clustering of events. To introduce the concept of event clustering through an 

example, we use the grades of a subject from two groups5 or sets of students. Each of 

the two groups was taught the same subject with two different pedagogical tech-

niques and, without knowing which group each student belongs to, but only through 

their qualifications, it will be seen whether through a clustering analysis the group to 

which each student belongs. In this way, it will be possible to verify that teaching 

techniques have had an impact on student learning. The qualifications will be made 

up of two marks, corresponding to the theory and laboratory tests. The elementary 

events are each one of the notes individually E = {Theory, Laboratory}, which will 

have values from 0 to 5, where 5 will be the highest possible score and 0 the lowest. 

The groups sought in this case will be those that, depending on the values of the two 

elementary events, allow classifying an event in a given cluster, or what is the same, 

it is sought to know if based on the qualifications in theory In the laboratory, the 

student can be grouped into a specific teaching group that has not been indicated 

beforehand (it will be acted as if it was not known to which group the student 

belongs). 

3 From here and in the rest of the text, we will refer to anomalous data as anomalies or outliers since 
both terms are used interchangeably. 
4 In addition to the term clustering, the terms segmentation and partitioning are sometimes used to 
refer to unsupervised classification, but you have to be careful when using them as synonyms for 
clustering because they actually refer to different topics. Segmentation refers to the division of data 
into groups using a simple method, such as the selection of a certain value of an elementary event; 
and partitioning to graphics division techniques. 
5 Unlike what would happen in a supervised classification, in this case, there is no elementary 
variable or event, which could be, for example, "Group" that allows students to classify in advance 
the group to which they belonged. Although, at the end of the clustering study, that new variable 
could be defined.
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Clustering can also be defined as a measure of the similarity or disparity between 

two events, applied to all pairs of events, and grouping similar events in the same 

cluster; similarity and disparity can be defined as follows:

• Similarity: Numerical measure of how similar two events (objects) are, ranging 

from 0 to 1.

• Disparity: Numerical measure of how much two objects differ; the lower bound is 

0, and the upper bound is variable. 

Both measures are usually calculated through: 

Distances. Among the most commonly used are Euclidean distance. It is calcu-

lated through the equation: 

dpq = 
n 

i= 1 
pi - qið Þ2 

Or Minkowski. It is calculated through the equation: 

dpq = 
n 

i= 1 
pi - qið Þrr 

where if r = 1, it is called Norm. If r = 2, it coincides with the Euclidean. 

Densities. Defined as the number of points per unit volume, or probability 

density. 

Different clustering techniques can be used to obtain the different groups or 

clusters. This differentiation is based on the fact that each of them uses different 

algorithms. All of them use a sample or set of events, for which the values of all 

elementary events are known to define the clusters. Once the groups are defined, they 

will be used to cluster new events. 

Some of the best known and most used are as follows:

• Based on distance: K-means algorithm

• Agglomerative Hierarchical clustering 

In the next subsections of this chapter, we are going to see how each one works in 

a specific way. 

Unsupervised Classification Based on Distances 

Different clustering techniques can be used to obtain the different groups or clusters. 

This differentiation is based on the fact that each of them uses different algorithms. 

All of them use a sample or set of events for which the values of all elementary 

events are known to define the clusters. Each data point will be assigned to the group 

whose centroid was at a lower distance.
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Fig. 5.1 Data representation 

K-Means Algorithm 

The definition of a set of clusters from the K-means technique follows a process of 

2 to  n steps that will be applied to a sample for which the values of all the elementary 

events that configure them are known; therefore, as mentioned above, it is essential 

to have such a sample to carry out the study. 

To introduce the K-means technique for clustering through an example, we use 

the following sample of eight events, which the students mark: 1. {4, 4}; 2. {3, 5}; 

3. {1, 2}; 4. {5, 5}; 5. {0, 1}; 6. {2, 2}; 7. {4, 5}; 8. {2, 1} (Fig. 5.1) 

Let us see how each step is treated. 

A. Step A6 can, in turn, be separated into three substeps: 

1. Selection of the number K of clusters, in which the data will be grouped and 

the centroids will represent them. They are chosen arbitrarily by the user. The 

centroids will be the midpoints of the group of points (events) that make up 

the cluster. 

Selection of K and its centroids.7 As we are dealing with only eight points, we 

are going to make the assumption that the number of clusters is not going to 

be high and we are going to start assuming that there are only two clusters. 

6 The same structure as in previous chapters will be used here for the steps and for the highest level it 
will be A, B, C, etc. 
7 To make the initial approximation to the number of clusters and their centroids, it is very useful to 
analyze the graphical representation of the data that is being analyzed.
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Fig. 5.2 Initial centroids in orange color 

We take, arbitrarily, as centroids of both clusters the values: c1 = {0, 1} and 

c2 = {2, 2} (Fig. 5.2)8 

2. Calculation of the Euclidean9 distance from each point to each of the defined 

centers. 

Euclidean distances. We calculate the Euclidean distance from each point to 

the two defined centroids. 

Point 1, {4, 4} (Fig. 5.3): 

d1c1 = 

2 

i= 1 

pi - qið Þ2 = 0- 4ð Þ2 þ 1- 4ð Þ2 = 5 

d1c2 = 2- 4ð Þ2 þ 2- 4ð Þ2 = 2:83 

Point 2, {3, 5}: 

8 Although from the graphical representation of the data it can be intuited quite easily that these 
points are going to be far from what are ultimately the centers, we choose them to see how the 
algorithm corrects them to obtain the correct ones. 
9 As have been seen, the Euclidean distance between two points P and Q in an n-dimensional space 

is defined as dPQ =
n 
i= 1 pi - qi 

2 
, where pi and qi are each of the elements of P and Q
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Fig. 5.3 Graphic with distance from point P1 (4,4) to C1 and C2 

d2c1 = 0- 3ð Þ2 þ 1- 5ð Þ2 = 5 

d2c2 = 2- 3ð Þ2 þ 2- 5ð Þ2 = 3:16 

Point 3, {1, 2}: 

d3c1 = 0- 1ð Þ2 þ 1- 2ð Þ2 = 1:41 

d3c2 = 2- 1ð Þ2 þ 2- 2ð Þ2 = 1 

Point 4, {5, 5}: 

d2c1 = 0- 5ð Þ2 þ 1- 5ð Þ2 = 5 

d2c2 = 2- 5ð Þ2 þ 2- 5ð Þ2 = 4:24 

Point 5, {0, 1}: 

d2c1 = 0- 0ð Þ2 þ 1- 1ð Þ2 = 0 

d2c2 = 2- 0ð Þ2 þ 2- 1ð Þ2 = 2:23 

Point 6, {2, 2}:
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d2c1 = 0- 2ð Þ2 þ 1- 2ð Þ2 = 0 

d2c2 = 2- 2ð Þ2 þ 2- 2ð Þ2 = 2:23 

Point 7, {4, 5}: 

d2c1 = 0- 4ð Þ2 þ 1- 5ð Þ2 = 5:66 

d2c2 = 2- 4ð Þ2 þ 2- 5ð Þ2 = 3:61 

Point 8, {2, 1}: 

d2c1 = 0- 2ð Þ2 þ 1- 1ð Þ2 = 2 

d2c2 = 2- 2 
2 

2- 1 
2 
= 1 

3. Assignment of points or events to clusters. With the results obtained in Step 2, a 

matrix of distances to the two centroids can be constructed in such a way that 

the distances to the centroids will go in the rows, the distance to the first 

centroid in the first row and the distance to the second centroid in the second 

row, and in each column one of the points; in the first column the first point and 

in the eighth column the eighth point. Once the distance matrix has been 

constructed, the cluster assignment matrix is constructed by assigning each 

point to each cluster, taking into account the distances to each centroid, in such 

a way that the point is assigned to the closest centroid. The columns will continue 

to have the same points as in the distancematrix and in each row a one if the point 

has been assigned to that centroid or a zero if it has not been assigned. 

Assignment to the cluster 

Taking into account the results of Step 2, the distance matrix is: 

P1 P2 P3 P4 P5 P6 P7 P8 

C1 5 5 1:44 5 0 2:23 5:66 2 

C2 2:83 3:16 1 4:24 2:23 0 3:61 1 

Starting from this matrix of distances, we construct the matrix of assignments. 

As seen in the theoretical description of how the assignment matrix is constructed, 

the eight points will continue to be in the columns in the same way as before and in 

each row a one if the point has been assigned to that centroid or a one if not 

assigned (Fig. 5.4): 

P1 P2 P3 P4 P5 P6 P7 P8 

C1  0  0  0  0  1  0  0  0  

C2  1  1  1  1  0  1  1  1
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Fig. 5.4 First assignment 

B. Step B and the rest of the m steps that are necessary to finish the analysis will have 

the same process that can be separated in turn into three substeps, in which the last 

two are equal to the last two substeps of Step A, but the first one is different: 

1. Recalculation of centroids. Now it is no longer done arbitrarily, but based on 

what was obtained in the first iteration (for the second iteration) or what 

happened in the previous iteration (for any other), the centroids are recalculated, 

giving them the mean10 value of the points assigned to said centroid. 

Recalculation of centroids. Taking into account the assignment matrix, we 

see that only one point, the fifth (0, 1), has been assigned to the first cluster, 

whose centroid coincides with the point c1 = (0,1), so the first cluster, formed 

only by this point, does not change its centroid that coincides with the point. 

In the second cluster are the rest of the points, so it is necessary to recalculate 

the centroid of this cluster, making the average of the points that are in it, 

which is equal to (Fig. 5.5):11 

c ′2= 
4þ3þ1þ5þ2þ4þ2 

7 
, 
4þ5þ2þ5þ2þ5þ1 

7 
= 3,3:43ð Þ  

2. Calculation of the Euclidean distance from each point to each of the defined 

centers. 

10 The mean value is calculated using the arithmetic mean. 
11 We repeat the sample values here to make the text easier to read: 1. {4, 4}; 2. {3, 5}; 3. {1, 2}; 
4. {5, 5}; 5. {0, 1}; 6. {2, 2}; 7. {4, 5}; 8. {2, 1}
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Fig. 5.5 Second centroids in orange color 

Fig. 5.6 Distance from point 1 to the second centroids 

Euclidean distances. We calculate the Euclidean distance from each point to 

the new calculated centroids,which in this case is only c2= (3, 3.43) because c1 
is the same. 

Point 1, {4, 4} (Fig. 5.6): 

d1c1 = 

2 

i= 1 

pi - qið  Þ2 = 0- 4ð  Þ2 þ 1- 4ð  Þ2 = 5 

d1c2 = 3- 4ð  Þ2 þ 3:43- 4ð Þ2 = 1:15
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Point 2, {3, 5}: 

d2c1 = 0- 3ð Þ2 þ 1- 5ð Þ2 = 5 

d2c2 = 3- 3ð Þ2 þ 3:43- 5ð Þ2 = 1:57 

Point 3, {1, 2}: 

d2c1 = 0- 1ð Þ2 þ 1- 2ð Þ2 = 1:41 

d2c2 = 3- 1ð Þ2 þ 3:43- 2ð Þ2 = 2:46 

Point 4, {5, 5}: 

d2c1 = 0- 5ð Þ2 þ 1- 5ð Þ2 = 5 

d2c2 = 3- 5ð Þ2 þ 3:43- 5ð Þ2 = 2:54 

Point 5, {0, 1}: 

d2c1 = 0- 0ð Þ2 þ 1- 1ð Þ2 = 0 

d2c2 = 3- 0ð Þ2 þ 3:43- 1ð Þ2 = 2:54 

Point 6, {2, 2}: 

d2c1 = 0- 2ð Þ2 þ 1- 2ð Þ2 = 0 

d2c2 = 3- 2ð Þ2 þ 3:43- 2ð Þ2 = 1:74 

Point 7, {4, 5}: 

d2c1 = 0- 4ð Þ2 þ 1- 5ð Þ2 = 5:66 

d2c2 = 3- 4ð Þ2 þ 3:43- 5ð Þ2 = 1:86 

Point 8, {2, 1}: 

d2c1 = 0- 2ð  Þ2 þ 1- 1ð  Þ2 = 2 

d2c2 = 3- 2 
2 

3:43- 1 
2 
= 2:86
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Fig. 5.7 Second assignment 

Assignment to the cluster 

Taking into account the results of Step 2, the distance matrix is: 

P1 P2 P3 P4 P5 P6 P7 P8 

C1 5 5  1:41 5 0 2:23 5:66 2 

C20 1:15 1:57 2:46 2:54 2:54 1:74 1:86 2:63 

Starting from this matrix of distances, we construct the matrix of assignments 

(Fig. 5.7). 

P1 P2 P3 P4 P5 P6 P7 P8 

C1  0 0 1 0 1 0 0  1  

C20 1 1 0 1 0 1 1  0  

C. As the assignment of the points to the clusters has changed in Step B, it is 

necessary to carry out at least one new Step C, the process of which will be 

absolutely the same as in Step B. We will repeat this until in one step the 

assignment of the points does not change from the previous step. The substeps 

in Step C will, therefore, be: 

1. Recalculation of centroids. Taking into account the matrix of assignments, we 

see that now there is no longer a single point assigned to the first cluster, but 

there are three, points 3, 5, and 8. In the second cluster, they ranged from 

seven to five. Therefore, we recalculate the centroids with the new data 

(Fig. 5.8).
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Fig. 5.8 Third centroids in orange color 

c1 = 
1þ 0þ 2 

3 
, 
2þ 1þ 1 

3 
= 1, 1:33ð Þ  

c00 2 = 
4þ 3þ 5þ 2þ 4 

5 
, 
4þ 5 þ 5 þ 2þ 5 

5 
= 3:6, 4:2ð Þ  

2. Calculation of the Euclidean distance from each point to each of the defined 

centers. 

Euclidean distances. We calculate the Euclidean distance from each point 

to the new calculated centroids, c1 = (1, 1.33) and c2 = (3.6, 4.2). 

Point 1, {4, 4} (Fig. 5.9): 

d1c1 = 1- 4ð Þ2 þ 1:33- 4ð Þ2 = 4:02 

d1c2 = 3:6- 4ð Þ2 þ 4:2- 4ð Þ2 = 0:45 

Point 2, {3, 5}: 

d2c1 = 1- 3ð  Þ2 þ 1:33- 5ð Þ2 = 4:18 

d2c2 = 3:6- 3ð Þ2 þ 4:2- 5ð Þ2 = 1
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Fig. 5.9 Distance from P1 to the third centroids 

Point 3, {1, 2}: 

d2c1 = 1- 1ð Þ2 þ 1:33- 2ð Þ2 = 0:67 

d2c2 = 3:6- 1ð Þ2 þ 4:2- 2ð Þ2 = 3:41 

Point 4, {5, 5}: 

d2c1 = 1- 5ð Þ2 þ 1:33- 5ð Þ2 = 5:43 

d2c2 = 3:6- 5ð Þ2 þ 4:2- 5ð Þ2 = 1:61 

Point 5, {0, 1}: 

d2c1 = 1- 0ð Þ2 þ 1:33- 1ð Þ2 = 1:05 

d2c2 = 3:6- 0ð Þ2 þ 4:2- 1ð Þ2 = 4:82 

Point 6, {2, 2}: 

d2c1 = 1- 2ð  Þ2 þ 1:33- 2ð Þ2 = 1:2 

d2c2 = 3:6- 2ð Þ2 þ 4:2- 2ð Þ2 = 2:72
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Point 7, {4, 5}: 

d2c1 = 1- 4ð Þ2 þ 1:33- 5ð Þ2 = 4:74 

d2c2 = 3:6- 4 
2 

4:2- 5 
2 
= 0:89 

Point 8, {2, 1}: 

d2c1 = 1- 2ð Þ2 þ 1:33- 1ð Þ2 = 1:05 

d2c2 = 3:6- 2ð Þ2 þ 4:2- 1ð Þ2 = 3:58 

3. Assignment of the points to the clusters 

Taking into account the results of Step 2, the distance matrix is: 

P1 P2 P3 P4 P5 P6 P7 P8 

C10 4:02 4:18 0:67 5:43 1:05 1:2 4:74 1:05 

C200 0:45 1 3:41 1:61 4:82 2:72 0:89 3:58 

Starting from this matrix of distances, we construct the matrix of assign-

ments (Fig. 5.10). 

Fig. 5.10 Third assignment of the points
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P1 P2 P3 P4 P5 P6 P7 P8 

C10 0  0 1 0 1 1 0 1  

C200 1  1 0 1 0 0 1 0  

C. As the assignment of the points to the clusters has changed in Step B, it is 

necessary to carry out at least one new Step C, the process of which will be 

absolutely the same as in Step B. We will repeat this until in one step the 

assignment of the points does not change from the previous step. The 

substeps in Step C will, therefore, be: 

1. Recalculation of centroids. Taking into account the matrix of assign-

ments, we see that now there is no longer a single point assigned to the 

first cluster, but there are four, points 3, 5, 6, and 8. In the second 

cluster, they ranged from seven to four. Therefore, we recalculate the 

centroids with the new data (Fig. 5.11). 

c00 1 = 
1þ 0þ 2þ 2 

4 
, 
2þ 1þ 2þ 1 

4 
= 1:25, 1:5ð Þ  

c
000 

2 = 
4þ 3þ 5þ 4 

4 
, 
4þ 5þ 5þ 5 

4 
= 4, 4:75 

2. Calculation of the Euclidean distance from each point to each of the 

defined centers. 

Fig. 5.11 Fourth centroids in orange color
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Fig. 5.12 Distance from P1 to the centroids 

Euclidean distances. We calculate the Euclidean distance from each 

point to the new calculated centroids, c″1 = (1.25, 1.5) and 

c″′2 = (4, 4.75). 

Point 1, {4, 4} (Fig. 5.12): 

d1c1 = 1:25- 4ð Þ2 þ 1:5- 4ð Þ2 = 3:72 

d1c2 = 4- 4ð Þ2 þ 4:75- 4ð Þ2 = 0:75 

Point 2, {3, 5}: 

d2c1 = 1:25- 3ð Þ2 þ 1:5- 5ð Þ2 = 3:91 

d2c2 = 4- 3ð Þ2 þ 4:75- 5ð Þ2 = 1:03 

Point 3, {1, 2}: 

d2c1 = 1:25- 1ð Þ2 þ 1:5- 2ð Þ2 = 0:56 

d2c2 = 4- 1 
2 

4:75- 2 
2 
= 4:07 

Point 4, {5, 5}: 

d2c1 = 1:25- 5ð Þ2 þ 1:5- 5ð Þ2 = 5:32 

d2c2 = 4- 5ð  Þ2 þ 4:75- 5ð Þ2 = 1:03
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Point 5, {0, 1}: 

d2c1 = 1:25- 0ð Þ2 þ 1:5- 1ð Þ2 = 1:19 

d2c2 = 4- 0ð Þ2 þ 4:75- 1ð Þ2 = 5:48 

Point 6, {2, 2}: 

d2c1 = 1:25- 2ð Þ2 þ 1:5- 2ð Þ2 = 1:19 

d2c2 = 4- 2ð Þ2 þ 4:75- 2ð Þ2 = 3:4 

Point 7, {4, 5}: 

d2c1 = 1:25- 4ð Þ2 þ 1:5- 5ð Þ2 = 4:6 

d2c2 = 4- 4ð Þ2 þ 4:75- 5ð Þ2 = 0:25 

Point 8, {2, 1}: 

d2c1 = 1:25- 2ð Þ2 þ 1:5- 1ð Þ2 = 1:19 

d2c2 = 4- 2ð Þ2 þ 4:75- 1ð Þ2 = 4:25 

3. Assignment of the points to the clusters 

Taking into account the results of Step 2, the distance matrix is: 

P1 P2 P3 P4 P5 P6 P7 P8 

C100 3:72 3:91 0:56 5:32 1:19 1:19 4:6 1:19 

C2000 0:75 1:03 4:07 1:03 5:48 3:4 0:25 4:25 

Starting from this matrix of distances, we construct the matrix of assignments 

(Fig. 5.13). 

P1 P2 P3 P4 P5 P6 P7 P8 

C100 0  0  1  0  1  1  0  1  

C2000 1  1  0  1  0  0  1  0
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Fig. 5.13 Fourth assignment 

As seen, no point has changed clusters, so the assignment of the points to the 

clusters has ended with this fourth step or iteration. The final clustering is:

• The events (points) belonging to the first cluster are 3 (1, 2), 5 (0, 1), 6 (2, 2), and 

8 (2, 1), with the centroid at point c1 = (1.25, 1.5)

• The points belonging to the second cluster are 1 (4, 4), 2 (3, 5), 4 (5, 5), and 

7 (4, 5), with the centroid at point and c2 = (4, 4.75) 

To know if the new pedagogical techniques have had any effect on teaching, it 

would be necessary to see if students 3, 5, 6, and 8 belong to one of the groups and 

the rest to the other, since students who have similar grades are the ones that belong 

to each cluster. 

Agglomerative Hierarchical Clustering 

The definition of a set of clusters from the Agglomerative Hierarchical Clusterization 

technique follows a process of 2 to n steps, which will be repeated until there is only 

one cluster: 

A. Step A: Obtain the matrix of Euclidean distances between clusters. In this step, 

the distance matrix will be calculated, whose values will be the distances from 

each cluster to the rest of the clusters. 

1. From the following sample: 1. {0.89, 2.94}; 2. {4.36, 5.21}; 3. {3.75, 1.12}; 

4. {6.25, 3.14}; 5. {4.1, 1.8}; 6. {3.9, 4.27} carry out step A of the agglom-

erative hierarchical clustering algorithm (Fig. 5.14):
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Fig. 5.14 Graphic of the points 

The first step of each iteration is the calculation of the matrix of Euclidean 

distances between all the clusters, which in the case of the first iteration is the 

calculation of the distances between all the points because each point is a 

cluster. 

You have to realize that the distance from 1 to 2 is the same as the distance 

from 2 to 1, so what we have are combinations of 6 elements, points, taken 2 by 

2. 

C2 
6 = 

6! 

2! 6- 2ð Þ! 
= 

6:5 

2 
= 15 

The Euclidean distances are (Fig. 5.15): 

d12 = 0:89- 4:36ð Þ2 þ 2:94- 5:21ð Þ2 = 4:15 

d23 = 4:36- 3:75ð Þ2 þ 5:21- 1:12ð Þ2 = 4:13 

d13 = 0:89- 3:75ð Þ2 þ 2:94- 1:12ð Þ2 = 3:39 

d24 = 4:36- 6:25ð Þ2 þ 5:21- 3:14ð Þ2 = 2:8 

d14 = 0:89- 6:25ð Þ2 þ 2:94- 3:14ð Þ2 = 5:36
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Fig. 5.15 Example of distances 

d25 = 4:36- 4:1ð Þ2 þ 5:21- 1:8ð Þ2 = 3:42 

d15 = 0:89- 4:1ð Þ2 þ 2:94- 1:8ð Þ2 = 3:41 

d26 = 4:36- 3:9ð Þ2 þ 5:21- 4:27ð Þ2 = 1:05 

d16 = 0:89- 3:9ð Þ2 þ 2:94- 4:27ð Þ2 = 3:29 

d45 = 6:25- 4:1ð Þ2 þ 3:14- 1:8ð Þ2 = 2:53 

d34 = 3:75- 6:25ð Þ2 þ 1:12- 3:14ð Þ2 = 3:21 

d46 = 6:25- 3:9ð Þ2 þ 3:14- 4:27ð Þ2 = 2:61 

d35 = 3:75- 4:1ð Þ2 þ 1:12- 1:8ð Þ2 = 0:76 

d36 = 3:75- 3:9ð Þ2 þ 1:12- 4:27ð Þ2 = 3:15 

d56 = 4:1- 3:9ð Þ2 þ 1:8- 4:27ð Þ2 = 2:48
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From these results, the distance matrix is: 

p1 p2 p3 p4 p5 p6 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 3:21 0 

p5 3:41 3:42 0:76 2:53 0 

p6 3:29 1:05 3:15 2:61 2:48 0 

Since it is a symmetric matrix, for clarity, only the lower part is shown. 

B. Step B: Join the two closest clusters. In this step, the distances obtained will be 

ordered, and a new cluster will be generated joining the two closest clusters. In 

the first iteration, each individual point will be considered as a cluster. 

What do we understand by proximity between clusters? 

According to what we understand by proximity between clusters, we will 

have a different agglomerative hierarchical clustering algorithm. The different 

types of distance definitions for agglomerative hierarchical classification give 

different types of algorithms, and the types of agglomerative hierarchical clas-

sification algorithms according to the definition of proximity between 

clusters are:

• MIN. The proximity between two clusters is defined as the distance between 

the two closest points of the two clusters. It produces contiguous clusters, in 

which each point is closer to at least one point in its cluster than to any other 

point in another cluster. It is also called Single Link. 

Over the sample that has been solved, carry out Step B of the agglomerative 

hierarchical clustering algorithm using the algorithm with the MIN proximity 

definition: 

First Iteration: If we take the distance matrix between the clusters, we consider 

that in the first iteration, each point constitutes a cluster. 

p1 p2 p3 p4 p5 p6 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 3:21 0 

p5 3:41 3:42 0:76 2:53 0 

p6 3:29 1:05 3:15 2:61 2:48 0
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Fig. 5.16 First cluster MIN distances 

The two closest clusters are 3 and 5. Therefore, the first cluster, C1, is the one 

formed by these two points (Fig. 5.16). 

As we do not have a single cluster, we go to the second iteration. 

Step A is carried out. Calculation of the matrix of distances between clusters. 

The data are now as follows: 1. {0.89, 2.94}; 2. {4.36, 5.21}; 4. {6.25, 3.14}; 

6. {3.9, 4.27} and C1 {3. {3.75, 1.12}; 5. {4.1, 1.8}} 

The distance matrix is: 

p1 p2 p4 p6 C1p3 C1p5 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 0 3:21 

p5 3:41 3:42 2:53 0 0 

p6 3:29 1:05 2:61 0 3:15 2:48 

The distance between clusters is now between the four points 1, 2, 4, and 6 and 

cluster 1, formed by points 3 and 5, in the previous iteration, and consequently, the 

distance between points 3 and 5 is now 0 because they are in the same cluster. 

Step B is carried out. To identify the minimum distance between clusters. Data 

are now: 1. {0.89, 2.94}; 2. {4.36, 5.21}; 4. {6.25, 3.14}; 6. {3.9, 4.27} and C1 {3. 

{3.75, 1.12}; 5. {4.1, 1.8}}
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Fig. 5.17 Second cluster MIN distances 

p1 p2 p4 p6 C1p3 C1p5 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 0 3:21 

p5 3:41 3:42 2:53 0 0 

p6 3:29 1:05 2:61 0 3:15 2:48 

The two closest clusters are 2 and 6. Therefore, the second cluster, C2, is the one 

formed by these two points. 

As we do not have a single cluster, we go to the third iteration (Fig. 5.17). 

A new step A. Calculation of the matrix of distances between clusters is 

performed, and the data are now: 1. {0.89, 2.94}; 4. {6.25, 3.14}, C1 {3. {3.75, 

1.12}; 5. {4.1, 1.8}}, and C2 {2. {4.36, 5.21}; 6. {3.9, 4.27}}. The new matrix of 

distances is: 

p1 p4 C1p3 C1p5 C2p2 C2p6 

p1 0 

p2 4:15 0 

p3 3:39 0 4:13 

p4 5:36 0 3:21 2:8 

p5 3:41 2:53 0 0 3:41 

p6 3:29 2:61 3:15 2:48 0 0
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The distance between clusters is now between the two points 1, 4 and the clusters 

C1, formed by points 3 and 5, and C2, identified in the previous iteration, and 

consequently, the distance between points 2 and 6 is now 0 because they are in the 

same cluster. 

A new Step B is performed to obtain the two closest clusters. 

p1 p4 C1p3 C1p5 C2p2 C2p6 

p1 0 

p2 4:15 0 

p3 3:39 0 4:13 

p4 5:36 0 3:21 2:8 

p5 3:41 2:53 0 0 3:41 

p6 3:29 2:61 3:15 2:48 0 0  

The two closest clusters are C1 and C2, and consequently, the third cluster C3 is 

formed by these two clusters. How there is not yet only one cluster a fourth iteration 

must be done (Fig. 5.18). 

A new step A. Calculation of the matrix of distances between clusters is 

performed, and the data are now: 1. {0.89, 2.94}; 4. {6.25, 3.14} and C3 {C1 {3. 

{3.75, 1.12}; 5. {4.1, 1.8}}, C2 {2. {4.36, 5.21}; 6. {3.9, 4.27}}} The new matrix of 

distances is: 

Fig. 5.18 Third cluster MIN distances
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p1 p4 C3-C1p3 C3-C1p5 C3-C2p2 C3-C2p6 

p1 0 

p2 4:15 0 

p3 3:39 0 0 

p4 5:36 0 3:21 2:8 

p5 3:41 2:53 0 0 0  

p6 3:29 2:61 3:15 0 0 0 

The distance between clusters is now between the two points 1, 4 and cluster 

3, formed by clusters 1 and 2, and consequently, the distance between clusters 1 and 

2 is now 0 because they are in the same cluster. 

In the new Step B, the closest clusters are found. The new data are now as 

follows: 1. {0.89, 2.94}; 4. {6.25, 3.14} and C3 {C1 {3. {3.75, 1.12}; 5. {4.1, 1.8}}, 

C2 {2. {4.36, 5.21}; 6. {3.9, 4.27}}} 

p1 p4 C3-C1p3 C3-C1p5 C3-C2p2 C3-C2p6 

p1 0 

p2 4:15 0 

p3 3:39 0 0 

p4 5:36 0 3:21 2:8 

p5 3:41 2:53 0 0 0  

p6 3:29 2:61 3:15 0 0 0 

The two closest clusters are points 4 and C3. Therefore, the third cluster, C4, is 

the one formed by these two clusters. 

And now we do have a single C5 cluster that will be the one formed by C4 and 

point 1, and the algorithm has finished (Fig. 5.19).

• MAX. Define the proximity between two clusters as the distance between the two 

furthest points of the two clusters. It is also called Complete Link. 

Over the sample that has been solved, carry out step B of the agglomerative 

hierarchical clustering algorithm using the algorithm with the MAX proximity 

definition: 

First iteration: If we take the distance matrix between the clusters, we consider 

that in the first iteration, each point constitutes a cluster.
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Fig. 5.19 Fourth and five clusters MIN distances
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p1 p2 p3 p4 p5 p6 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 3:21 0 

p5 3:41 3:42 0:76 2:53 0 

p6 3:29 1:05 3:15 2:61 2:48 0 

The two closest clusters are 3 and 5. Therefore, the first cluster, C1, is the one 

formed by these two points. 

As we do not have a single cluster, we go to the second iteration. 

Step A is carried out. Calculation of the matrix of distances between clusters. 

The data are now {0.89, 2.94}; 2. {4.36, 5.21}; 4. {6.25, 3.14}; 6. {3.9, 4.27} and 

C1 {3. {3.75, 1.12}; 5. {4.1, 1.8}} 

The distance matrix is: 

p1 p2 p4 p6 C1p3 C1p5 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 0 3:21 

p5 3:41 3:42 2:53 0 0 

p6 3:29 1:05 2:61 0 3:15 2:48 

The distance between clusters is now between the four points 1, 2, 4, and 6 and 

cluster 1, formed by points 3 and 5, in the previous iteration, and consequently, the 

distance between points 3 and 5 is now 0 because they are in the same cluster. 

Step B is now performed using the definition of proximity MAX. Data are now 

1. {0.89, 2.94}; 2. {4.36, 5.21}; 4. {6.25, 3.14}; 6. {3.9, 4.27} and C1 {3. {3.75, 

1.12}; 5. {4.1, 1.8}}. This first cluster is depicted in Fig. 5.16. 

p1 p2 p4 p6 C1p3 C1p5 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 0 3:21 

p5 3:41 3:42 2:53 0 0 

p6 3:29 1:05 2:61 0 3:15 2:48
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The two closest clusters are 2 and 6. Therefore, the second cluster, C2, is the one 

formed by these two points. This second cluster is depicted in Fig. 5.17. 

As we do not have a single cluster, we go to the third iteration. 

In Step A, the matrix of distances between points is calculated: 

p1 p4 C1p3 C1p5 C2p2 C2p6 

p1 0 

p2 4:15 0 

p3 3:39 0 4:13 

p4 5:36 0 3:21 2:8 

p5 3:41 2:53 0 0 3:41 

p6 3:29 2:61 3:15 2:48 0 0 

The distance between clusters is now between the two points 1, 4 and the clusters 

C1, formed by points 3 and 5, and C2, identified in the previous iteration, and 

consequently, the distance between points 2 and 6 is now 0 because they are in the 

same cluster. 

In Step B, the two closest clusters are merged. The data are now: 1. {0.89, 2.94}; 

4. {6.25, 3.14}, C1 {3. {3.75, 1.12}; 5. {4.1, 1.8}}, and C2 {2. {4.36, 5.21}; 6. {3.9, 

4.27}} 

p1 p4 C1p3 C1p5 C2p2 C2p6 

p1 0 

p2 4:15 0 

p3 3:39 0 4:13 

p4 5:36 0 3:21 2:8 

p5 3:41 2:53 0 0 3:41 

p6 3:29 2:61 3:15 2:48 0 0 

The two closest clusters are point 4 and C2. Therefore, the third cluster, C3, is the 

one formed by these two clusters (Fig. 5.20). 

As we do not have a single cluster, we proceed to the fourth iteration, but before, 

it is important at this point to provide a deep explanation about why 2.8 is the 

minimum distance between clusters with the MAX definition distance algorithm. 

The proximity between clusters with MAX is defined as the distance between the 

two farthest points of the two clusters:

• The first two clusters considered are points 1 and 4, for which the distances, as 

seen in the previous matrix, are: {4.15, 3.39, 5.36, 3.41, 3,29, 2,53, 2,61}, and 

from all of them, the maximum, MAX, is 5.36.



• The second two clusters considered are C1 and C2; all the distances between all 

the points in both clusters must be calculated, that is distance (3.2), distance (3.6), 

distance (5.2), and distance (5.6), which are: {4.13, 3.15, 3.42, 2.48} and from all 

of them to take the maximum, which is 4.13.

• The third two clusters considered are C1 and Point 1; the distances to be analyzed 

are (3,1) and (5,1), which are: {3.39, 3.41}, and the maximum is 3.41.

• The fourth two clusters to be considered are C1 and Point 4; the distances to be 

compared are (3,4) and (5,4), which are: {3.21, 2.53}, and the maximum is 3.21.

• And fifth, two clusters to be compared are C2 and Point 1; the distances to be 

compared are (2,1) and (6,1), which are: {4.15, 3.29}, and the maximum is 4.15

• And finally, the last two clusters to be compared are C2 and Point 4; the distances 

to be compared are (2,4) and (6,4), which are {2.8, 2,61}, and the maximum is 

2.8. 
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Fig. 5.20 Third cluster MAX distances 

Once you have all the distances between the clusters with the algorithm MAX, the 

minimum of all of them will be the selected one to merge both clusters in one, the 

distances obtained are: {5.6, 4.13, 3.41, 3.21, 4.15 and 2,8}, the minimum of all 

of them is 2.8, and in consequence the clusters merged in this iteration are C2 and 

Point 4. 

In Step A of the fourth iteration of the agglomerative hierarchical classification 

algorithm with the distance definition MAX, the new matrix of distances between 

clusters is obtained.



292 Unsupervised Classification

p1 C1p3 C1p5 C3-C2p2 C3-C2p6 C3p4 

p1 0 

p2 4:15 0 

p3 3:39 0 4:13 

p4 5:36 3:21 0 0 

p5 3:41 0 0 3:42 2:53 

p6 3:29 3:15 2:48 0 0 0 

The distance between clusters is now between Point 1 and the clusters, C1 formed 

by points 3 and 5, and C3 identified in the previous iteration, and consequently, the 

distance between Point 4 and cluster C2 is 0 because they are in the same cluster. 

In Step B, the two closest clusters are merged. The data are now: 1. {0.89, 2.94}; 

C1 {3. {3.75, 1.12}; 5. {4.1, 1.8}} and C3 {C2 {2. {4.36, 5.21}; 6. {3.9, 4.27}}, 

4. {6.25, 3.14}} 

p1 C1p3 C1p5 C3-C2p2 C3-C2p6 C3p4 

p1 0 

p2 4:15 0 

p3 3:39 0 4:13 

p4 5:36 3:21 0 0 

p5 3:41 0 0 3:42 2:53 

p6 3:29 3:15 2:48 0 0 0 

The distances applying MAX are:

• The first two clusters considered are Points 1 and C1, for which the distances, as 

seen in the previous matrix, are 3.39 between points 1 and 3 and 3.41 between 

points 1 and 5, and from both of them, the maximum, MAX, is 3.41.

• The second and final two clusters considered are Points 1 and C3, for which the 

distances, as seen in the previous matrix, are 4.15 between points 1 and 2, 3.29 

between points 1 and 6, and 5.36 between points 1 and 4, and from all of them, the 

maximum, MAX, is 5.36. 

Once you have both the distances between the clusters with the MAX algorithm, 

the minimum of both of them will be the selected one to merge both clusters into one. 

Since the distances obtained are 3.41 and 5.36, the minimum of both of them is 3.41, 

and consequently, the clusters merged in this iteration are C1 and Point 1, that is, C4. 

The previous result means that the algorithm has finished because a final unique 

cluster is obtained, that one constituted by the previous cluster C3 and the new 

cluster C4, that will be C5 (Fig. 5.21).
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Fig. 5.21 Fourth and Five Clusters MAX distances

• Group Average. Define the proximity between two clusters as the average of the 

distances between all the pairs that can be formed with points from the two 

clusters. 

proximity Ci,Cj = 

m 

n 

i= 1 

j= 1 

proximity xi, yj 

m n



ð Þ
2 * 1 2
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Over the sample that has been solved, carry out step B of the agglomerative 

hierarchical clustering algorithm using the algorithm with the Group Average 

proximity definition (see Fig. 5.14): 

First Iteration: If we take the distance matrix between the clusters, we consider 

that in the first iteration, each point constitutes a cluster. 

p1 p2 p3 p4 p5 p6 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 3:21 0 

p5 3:41 3:42 0:76 2:53 0 

p6 3:29 1:05 3:15 2:61 2:48 0 

The two closest clusters are 3 and 5. Therefore, the first cluster, C1, is the one 

formed by these two points (see Fig. 5.16). 

As we do not have a single cluster, we go to the second iteration. 

Step A of the second iteration of the agglomerative hierarchical classification 

algorithm with the distance definition Group Average is performed, and the new data 

are as follows: 1. {0.89, 2.94}; 2. {4.36, 5.21}; 4. {6.25, 3.14}; 6. {3.9, 4.27} and C1 

{3. {3.75, 1.12}; 5. {4.1, 1.8}} 

p1 

p2 

C1p3 

p4 

C1p5 

p6 

p1 

0 
4:15 

3:39 
5:36 

3:41 

3:29 

p2 

0 

4:13 
2:80 

3:42 

1:05 

p4 

0 

2:53 

2:61 

p6 

0 

C1p3 

0 
3:21 

0 

3:15 

C1p5 

0 

2:48 

p1 

0 
4:15 

3:40 

5:36 

3:40 

3:29 

p2 

0 

3:78 

2:80 

3:78 

1:05 

p4 

0 

2:87 

2:61 

p6 

0 

C1p3 

0 
2:87 

0 

2:82 

C1p5 

0 

2:82 

The distance between clusters is now between the four points 1, 2, 4 and 6 and 

cluster 1, formed by points 3 and 5, in the previous iteration, but now the distances 

change because it is done with the mean. 

proximity p1,C1 = 

2 

1 

i= 1 

j= 1 

proximity p1, p3ð Þ, p1, p5Þð Þð 

= 
3:39þ 3:41 

= 3:40 

proximity p2,C1ð  Þ= 

2 

1 

i= 1 

j= 1 

proximity p2, p3ð  Þ, p2, p5Þð Þð 

2 * 1 
= 

4:13þ 3:42 

2 
= 3:78
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proximity p4,C1ð Þ= 

2 

1 

i= 1 

j= 1 

proximity p4, p3ð Þ, p4, p5Þð Þð 

2 * 1 
= 

3:21þ 2:53 

2 
= 2:87 

proximity p6,C1ð Þ= 

2 

1 

i= 1 

j= 1 

proximity p6, p3ð Þ, p6, p5Þð Þð 

2 * 1 
= 

3:15þ 2:48 

2 
= 2:82 

1. In Step B, the minimum distance between clusters using the Group Average 

algorithm is used to select which two closest clusters must be merged. The data 

are now: 1. {0.89, 2.94}; 2. {4.36, 5.21}; 4. {6.25, 3.14}; 6. {3.9, 4.27} and C1 

{3. {3.75, 1.12}; 5. {4.1, 1.8}} 

p1 p2 p4 p6 C1p3 C1p5 

p1 0 

p2 4:15 0 

C1p3 3:40 3:78 0 

p4 5:36 2:80 0 2:87 

C1p5 3:40 3:78 2:87 0 0 

p6 3:29 1:05 2:61 0 2:82 2:82 

The two closest clusters are points 2 and 6. Therefore, the second cluster, C2, is 

the one formed by these two points (see Fig. 5.17). 

As we do not have a single cluster, we go to the third iteration. 

Step A of the third iteration of the agglomerative hierarchical classification 

algorithm with the distance definition group average is performed, and the new 

data are as follows: 1. {0.89, 2.94}; 4. {6.25, 3.14}; C1{3. {3.75, 1.12}; 5. {4.1, 

1.8}, C2{2. {4.36, 5.21}; 6. {3.9, 4.27}}} 

p1 

C2p2 

C1p3 

p4 

C1p5 

C2p6 

p1 

0 
4:15 

3:39 
5:36 

3:41 

3:29 

p4 

0 

2:53 

2:61 

C1p3 

0 
3:21 

0 

3:15 

C1p5 

0 

2:48 

C2p2 

0 

4:13 
2:80 

3:42 

1:05 

C2p6 

0 

p1 

0 
3:72 

3:40 
5:36 

3:40 

3:72 

p4 

0 

2:87 

2:70 

C1p3 

0 
2:87 

0 

3:30 

C1p5 

0 

3:30 

C2p2 

0 

3:30 

2:70 

3:30 

3:30 

C2p6 

0



ÞÞ
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The distance between clusters is now between the two points 1 and 4 and the two 

clusters 1 and 2, but now almost all the distances change because it is done with the 

mean. 

proximity C1,C2ð Þ= 

2 
2 

i= 1 
j= 1 

proximity p3, p2ð Þ, p3, p6Þ, p5, p2ð Þ, p5, p6ððð 

2 * 2 

= 
4:13þ 3:15þ 3:42þ 2:48 

4 
= 3:30 

proximity p1,C2ð Þ= 

2 
1 

i= 1 
j= 1 

proximity p1, p2ð Þ, p1, p6Þð Þð 

2 1 
= 

4:15þ 3:29 

2 
= 3:72 

proximity p4,C2ð Þ= 

2 
1 

i= 1 
j= 1 

proximity p4, p2ð Þ, p4, p6Þð Þð 

2 1 
= 

2:80þ 2:61 

2 
= 2:70 

2. In Step B, the minimum distance between clusters using the Group Average 

algorithm is used to select which two closest clusters must be merged. The data 

are now: 1. {0.89, 2.94}; 4. {6.25, 3.14}; C1{3. {3.75, 1.12}; 5. {4.1, 1.8}, C2 

{2. {4.36, 5.21}; 6. {3.9, 4.27}}} 

p1 

C2p2 

C1p3 

p4 

C1p5 

C2p6 

p1 

0 
3:72 

3:40 
5:36 

3:40 

3:72 

p4 

0 

2:87 

2:70 

C1p3 

0 
2:87 

0 

3:30 

C1p5 

0 

3:30 

C2p2 

0 

3:30 
2:70 

3:30 

3:30 

C2p6 

0 

The two closest clusters are Points 4 and C2. Therefore, the third cluster, C3, is 

the one formed by these two clusters (see Fig. 5.18). 

As we do not have a single cluster, we go to the fourth iteration. 

1. Step A of the fourth iteration of the agglomerative hierarchical classification 

algorithm with the distance definition group average is performed, and the new 

data are as follows: 1. {0.89, 2.94}; 4. {6.25, 3.14}; C1{3. {3.75, 1.12}; 5. {4.1, 

1.8}, C2{2. {4.36, 5.21}; 6. {3.9, 4.27}}}



Þ

Þ
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p1 

C3:C2p2 

C1p3 

C3p4 

C1p5 

C3:C2p6 

p1 

0 
4:15 

3:39 
5:36 

3:41 

3:29 

C1p3 

0 
3:21 

0 

2:61 

C1p5 

0 

2:48 

C3:C2p2 

0 

4:13 
2:80 

3:42 

0 

C3:C2p6 

0 

C3p4 

0 

2:53 

2:61 

p1 

0 
4:27 

3:40 
4:27 

3:40 

4:27 

C1p3 

0 
3:15 

0 

3:15 

C1p5 

0 

3:15 

C3:C2p2 

0 

3:15 

0 

3:15 

0 

C3:C2p6 

0 

C3p4 

0 

3:15 

0 

The distance between clusters is now between point 1 and the two clusters C1 and 

C3, but now almost all the distances change because it is done with the mean. 

proximity C1,C3ð Þ  

= 

3 
2 

i= 1 
j= 1 

proximity p3, p2ð Þ, p3, p6Þ, p3, p4ð Þ  p5, p2ð Þ, p5, p6ð Þ, p5, p4ð Þðð 

2 * 3 

= 
4:13þ 3:15þ 3:21 þ 3:42þ 2:48þ 2:53 

6 
= 3:15 

proximity p1,C3ð Þ= 

3 
1 

i= 1 
j= 1 

proximity p1, p2ð Þ, p1, p6Þ p1, p4ð Þðð 

3 * 1 

= 
4:15þ 3:29þ 5:36 

3 
= 4:27 

3. In Step B, the minimum distance between clusters using the Group Average 

algorithm is used to select which two closest clusters must be merged. The data 

are now P1, C1, and C3. 

p1 

C3:C2p2 

C1p3 

C3p4 

C1p5 

C3:C2p6 

p1 

0 
4:27 

3:40 
4:27 

3:40 

4:27 

C1p3 

0 
3:15 

0 

3:15 

C1p5 

0 

3:15 

C3:C2p2 

0 

3:15 

0 

3:15 

0 

C3:C2p6 

0 

C3p4 

0 

3:15 

0 

The distances applying Group Average are:

• The first two clusters considered are Points 1 and C1, for which the mean distance 

applying the group average is 3.40. With this algorithm, as it is a mean, only one 

distance will be used.



• The second and final two clusters considered are Points 1 and C3, for which the 

mean distance applying the group average is 4.27.

• Finally, the third two clusters considered are C1 and C3, for which the mean 

distance applying the group average is 3.15. 
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Once you have all the distances between the clusters with the algorithm Group 

Average, the minimum of all of them will be the selected one to merge both clusters 

into one. Since the distances obtained are 3.40, 4.27 and 3.15, the minimum is 3.15, 

and consequently, the clusters merged in this iteration are C1 and C3, that is, C4. 

The previous result means that the algorithm has finished because a final unique 

cluster is obtained, that one constituted by the new cluster C4, and the point, or 

cluster, 1, that will be C5 (Fig. 5.22). 

B. Computer-Based Solving 

As in the other chapters, this subsection will address the use of software to solve the 

problem of unsupervised classification, but before applying R for solving this kind of 

problem, we introduce in this chapter another important issue related to the use of R, 

as it is the main tool that is currently used to carry out R projects, that is, RStudio, 

which will be introduced next. 

The reasons for introducing RStudio are that the complexity of the problems is 

increasing and the RGui has already given us everything we need to start working 

with R, but its functionalities are very limited as well as its interface, so this is a good 

time to start working with the tool that we will use when we work with R in a 

professional way. 

RStudio 

Download of RStudio 

The first step that we have to do is to visit the website of the company that developed 

RStudio, that until 2022 was RStudio, but that since the is Posit. (https://posit.co/) to  

download it. If we click on Download RStudio, the following web page is opened: 

https://www.rstudio.com/products/rstudio/download/ 

Two versions with different features are offered in Desktop or Server. The only 

one that is free is RStudio Desktop Open Source License. We click on the button that 

says Download. 

A process of two steps appears; the first says us that having R installed is 

mandatory, but as we have R installed since the first chapter of the book, this does 

not apply to us. The second is the installation of RStudio, which automatically takes 

care of the operating system that we are using.

https://posit.co/
https://www.rstudio.com/products/rstudio/download/
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Fig. 5.22 Fourth and fifth cluster group average distances 

Installation of RStudio 

Before starting to install RStudio, it is important to bear in mind that it is essential to 

have previously installed R with a version equal to or greater than 3.3.0+. 

Click twice on RStudio-2022.07.02-576.exe to install RStudio. During the instal-

lation, it will ask us where we want to install it and we will press Next. 

Then it will ask us for the start menu folder, in which we want to load the 

program’s shortcuts. Click Install. 

We click on install, and the installer install RStudio in our computer.
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Getting Started with RStudio 

To start working with RStudio, we open the program by clicking on the RStudio icon 

in the start menu and the program opens. 

RStudio is made up of four windows, one in each quadrant of the screen. 

Different information is displayed in each of them, which is fixed and immovable 

for each window. We are going to see what information is based on the configuration 

of quadrants that RStudio presents by default. However, as we will see later, we can 

change this because each window can be seen in the quadrant we want. By default, 

when we open a session in RStudio, window 1 does not appear. We have to go to the 

File menu, then New File option, and then RScript option. 

1. Window 1. When we open it with the instructions explained in the previous 

paragraph, it appears in the upper left quadrant of the screen. By default, it has a 

single Source tab, which, as the name suggests, refers to the sources that we are 

developing. In this screen, we will see the new code, or text, or code and text that 

we are developing in the forms that RStudio allows. For each new source, a new 

tab is opened. It has different code types, between then: 

2. RScript. It allows us to develop Scripts. 

3. TextFile. It allows us to write text files. 

4. C/C++File. It allows us to write and compile programs in C/C++. 

5. R Sweave. It allows us to do literate programming using Sweave. 

6. RHTML. It allows us to develop HTML code with embedded R code. 

7. R Documentation. It allows us to document a function or a database in R. 

2. Window 2. By default, it appears in the lower left quadrant of the screen. It has 

three tabs: 

2.1. Console. It allows us to execute the R code. It is similar to the RGui console 

window. 

2.2. Terminal. It allows us to manage the operating system through command 

lines. In the case of Windows MS-DOS. 

2.3. Background jobs: Allows to execute programs in background. 

3. Windows 3 and 4. By default, it appears in the upper right quadrant of the screen. 

Windows 3 and 4 allow to show the same 10 tabs. We can show them in one or 

the other of our choice. Those that are not shown in window 3 will be shown in 

window 4 and vice versa. Neither of the two windows can have less than one tab. 

1. Environment. It allows us to see what environment we are working with, 

what packages and data sets we have loaded, and perform operations 

on them. 

2. History. It allows us to open and view a .Rhistory file and perform operations 

on it. 

3. Files. It allows us to see and operate with files and files in the working 

directory.
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4. Plots. It allows us to see and carry out operations with the obtained graphs. 

5. Connections. It allows us to see and make connections with database man-

agement systems. 

6. Packages. It allows us to see and operate with the packages of the standard 

and user libraries. 

7. Help. It allows us to see queries made on the help of R. 

8. Tutorial. 

9. Viewer. 

10. Presentation. 

To change and customize in which quadrant each window is displayed and which 

tabs we want to see in each of windows 3 and 4, we have two options: 

– View menu; Panes option; Pane Layout option. . .  

– Tools menu; Global Options option. . .; Pane Layout option 

The first thing we are going to do when we open RStudio is enter our first 

instruction in window 2.1. Write the following: 

>contributors() 

As we can see, the result appears in the 1.2 Information window, which had not 

been opened by default. Having made our tribute to the people who have created and 

developed R, and hoping perhaps to see our name someday there, we start working 

with RStudio. 

RStudio has eleven menus: 

1. File 

2. Edit 

3. Code 

4. View 

5. Plot 

6. Session 

7. Build 

8. Debug 

9. Profile 

10. Tools 

11. Help 

Let us see each of them in detail: 

1. File: It has the following options:

• New File: It allows us to start creating a new file. It offers different new file 

options, between them: 

– RScript: It opens the R script window in the first quadrant so we can write 

a new script. 

– RNotebook: It needs to install and load a set of packages to work. 

– R Markdown: It needs to install and load a set of packages to work.
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– Shiny web App: It need to install and load the Shiny package. 

– TextFile: Opens the Text File window in the first quadrant so we can write 

a text file. 

– C++File: It opens the C/C++ File window in the first quadrant to allow us 

to write and compile C/C++ programs. You need to install additional 

tools. 

– R Sweave: It opens the R Sweave window to allow us to perform literary 

programming, commenting on the R code. 

– RHTML: It opens the R HTML window to allow us to develop HTML 

code with embedded R code. 

– R Presentation. 

– R Documentation: It opens an R Documentation window to allow us to 

document a function or database in R, which will save with the extension 

.Rd.

• New Project: It allows us to create a new R project. To create a new project, 

we will follow these steps: 

– Select the working directory. 

Select the type of project: 

New project 

New package 

New Shiny web app 

Are also very interesting the Quarto projects

• Open File: It allows us to open a file with the extensions that can be handled 

by RStudio.

• Reopen with Encoding: This allows us to open a file with encoding.

• Recent Files: It allows us to open any of the files with which we have worked 

recently.

• Open Project: It allows us to open a project.

• Open Project in New Session: It allows us to open a project in a new session.

• Recent Projects: It allows us to open projects with which we have worked 

recently.

• Import Data set: It allows us to import data sets from: 

1.9.1. Text 

1.9.2. csv-text 

1.9.3. Excel 

1.9.4. SPSS 

1.9.5. SAS 

1.9.6. Stata

• Save: It allows us to save to a file.

• Save as: It allows us to save with the features and name that we decide.

• Save with Encoding. It allows us to save with encoding.
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• Save All: It allows us to save everything.

• Print: It allows us to print. It gives us a preview.

• Close: It allows us to close the current work document but not to exit the 

program.

• Close All: It allows us to close all open work documents but not to exit the 

program.

• Close All Except Current: It allows us to close all open documents except the 

one we are working on.

• Close Project: It allows us to close the open project.

• Quit: It allows us to close the program 

2. Edit: It has the following options: 

2.1. Back: Allows to go to previous decisions. 

2.2. Forward: Allows to go to following decisions. 

2.3. Undo: It deletes instructions backward every time we press, not in the 

console but in the editor. 

2.4. Redo: It retrieves forward instructions in the editor each time we press. 

2.5. Cut: It cuts the selected text in the editor. 

2.6. Copy: It copies the selected text in the editor and in the console. 

2.7. Paste: It pastes the selected text in the editor and in the console. 

2.8. Paste with Indent: It paste the selected text. 

2.9. Folding: You have four options: 

2.9.1. Collapse: It collapses the selected text in the editor. 

2.9.2. Expand: It expands the collapsed text. 

2.9.3. Collapse All: It collapses everything. 

2.9.4. Expand All: It expands all. 

2.10. Find: It searches the editor for the string of characters that we introduce. 

2.11. Find in Files: It searches for the string that we introduce in the files of the 

working directory. 

2.12. Clear Console: It clears the console. 

3. Code: It has the options for codification in R. 

4. View. It has the following options: 

4.1 Show/Hide Toolbar: It shows or hides the toolbar. 

4.2 Panes: It allows you to customize the quadrants and windows. You have 

six basic options: 

4.2.1 Show All Panes: It shows all quadrants. 

4.2.2 Console on Left/Right: It shows the console on the left or right. 

4.2.3 Pane Layout: It allows us to choose which windows we want to see 

in each of the four quadrants. 

4.2.4 Zoom: It has a zoom option for each of the windows, and if we press 

it, it shows it in the complete window of the program.
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4.3 Zoom In/Out: It allows you to increase and decrease how big everything 

inside the program window is. 

4.4 Switch to Tab/Next/Previous/First/Last: This allows us to move between 

the open editing windows. 

4.5 Move Focus to Source/Console/Terminal/Help: This allows us to place the 

cursor in the window that interests us. 

4.6 Show History/Files/Plots/Packages/Environment/Viewer/Connections: 

This allows us to choose which window we want to see from the options. 

5. Plots: It has the following options: 

5.1 Next/Previous Plot. It allows us to move up and down sequentially through 

the plots. 

5.2 Zoom Plot. It allows us to zoom the selected plot. 

5.3 Save as Image: It allows us to save the plot with image format. 

5.4 Save as pdf: It allows us to save the image in pdf format. 

5.5 Copy to Clipboard. It allows us to copy the image to the Clipboard. 

5.6 Remove Plot. It allows us to delete the current plot. 

5.7 Clear All. It allows us to delete all open plots. 

6. Session: It has the following options: 

6.1 New Session. It allows us to open a new RStudio session. They are 

different executions of the program, and we can have more than two open. 

6.2 Interrupt R. It allows us to interrupt the execution of the program. 

6.3 Terminate R. It allows us to terminate the current execution of R. It 

terminates the execution, but reopens the program, and leaves it in the 

situation prior to the execution of the command. 

6.4 Rstart R. Restarts the session but keeps the parameters of the previous 

session. 

6.5 Set Working Directory. You have three options: 

6.5.1 To Source File Location 

6.5.2 To Files Pane Location 

6.5.3 Choose Directory: It allows us to choose the working directory. 

6.6 Load Workspace: It allows us to load a work session. 

6.7 Save Workspace: It allows us to save a work session. 

6.8 Clear Workspace: It cleans up the work session. 

6.9 Quit Workspace: It closes the work session and the program. 

7. Build: It has options for programing. We don´t see them because they are out of 

the scope of the book. 

8. Debug: It has different options. We don´t see them because they are out of the 

scope of the book. 

9. Profile: It has five options. 

10. Tools: It has the options:
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10.1. Install Packages: It allows us to install R packages by selecting the 

repository. It is a functionality similar to what the RGui’s Packages 

menu gave us. 

10.2. Check for Package Updates: It allows us to check if any of the packages 

that we have installed (the package must be installed, if it is not, it does 

not verify it) has updates. 

10.3. Version Control: It allows us to control the versions of the project. 

10.4. Shell: It allows us to open a command window. 

10.5. Terminal: It provides the following options: 

10.5.1. New Terminal: It allows us to open the terminal window 

inside R. 

10.5.2. Rename Terminal: It allows us to rename the terminal. 

10.5.3. Copy Terminal to Editor: It allows us to copy the terminal in the 

editor. 

10.5.4. Diagnostic terminal: It gives us a diagnosis of the terminal. 

10.5.5. Move Focus to Terminal: Select terminal as work window. 

10.5.6. Previous/Next Terminal: Select the previous or next terminal. 

10.5.7. Clear Terminal Buffer: Clears the previous instructions from the 

terminal. 

10.5.8. Close Terminal: Closes the terminal. 

Addins: It allows to manage the Addins. 

10.7. Keyboard Shortcuts Help: It opens a pop-up window that tells us which 

are the main RStudio shortcuts to handle it. 

10.8. Modify Keyboard Shortcuts: It opens a pop-up window that allows us to 

modify the shortcuts and customize them. 

10.9. Project Options: It allows us to change the parameters of a project. 

10.10. Global Options: It allows us to change the global parameters of RStudio. 

It allows us to change the parameters of: 

10.10.1. General 

10.10.2. Code 

10.10.3. Appearance 

10.10.4. Quadrant distribution 

10.10.5. Packages 

10.10.6. R Markdown 

10.10.7. Smooth 

10.10.8. Git/SVN 

10.10.9. Publishing 

10.10.10. Terminal 

11. Help: It has the following options: 

11.1. R Help: It opens a window with R and RStudio help resources 

11.2. About RStudio: It gives us the version of RStudio that is being used and 

information about the program.
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11.3. Check for Updates: Check if there is a newer version of RStudio than the 

one you are using. 

11.4. RStudio Docs: It takes us to a web page with documentation about 

RStudio. 

11.5. RStudio Community Forum: It takes us to the RStudio User Forum 

web page. 

11.6. RStudio Support: It takes us to a web page with RStudio help articles and 

frequently asked questions. 

11.7. Cheatsheets: It allows us to download "cheat sheets," summary sheets, 

related to the use of RStudio and R. 

11.8. Keyboard Shortcuts Help: It opens the same pop-up window on short-

cuts as the Tools menu. 

11.9. Markdown Quick Reference: It opens, in the Help window of RStudio, a 

quick reference of Markdown. 

11.10. Roxygen Quick Reference: It opens, in the Help window of RStudio, a 

quick reference of Roxygen. 

11.11. Diagnostics. 

Unsupervised Classification Exercises Solved in R 

In this subsection, an unsupervised classification analysis will be carried out by 

applying all the concepts seen in the topic and using the computer programming 

environment R. 

The example used will be the same as it was used in the previous, theoretical 

subsections: The sample of the qualifications {Theory, Laboratory} of eight stu-

dents: 1. {4, 4}; 2. {3, 5}; 3. {1, 2}; 4. {5, 5}; 5. {0, 1}; 6. {2, 2}; 7. {4, 5}; 8. {2, 1} 

using the K-means clustering technique, two groups or clusters for the events of said 

sample. It will be solved, as in the theoretical section, with two clusters and with the 

initial centroids, which will be (0, 1) and (2, 2). 

Unsupervised Classification with the K-Means Algorithm 

In this subsection, the K-means unsupervised classification technique will be used 

for finding prospective in the marks of theory and laboratory of eight students. As in 

the theoretical section, K will be 2, and the initial centroids will be (0, 1) and (2, 2). 

A possible12 list of R instructions or programs that solve this problem is: 

When we start R, there is a set of packages loaded by default; among them is the 

package "stats," and we check it by means of the search() instruction, which shows

12 As ever, the readers are encouraged to develop their own solution, list of instructions, program, or 
script.



us the set of packages that we have installed. The stats package contains functions 

that allow clustering using the K-means technique, and it is the one that we are going 

to use to solve the exercise.
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The stats package contains the kmeans (x, centers, iter.max) function that allows a 

clustering analysis using the K-means technique. The first argument that this func-

tion must have is x, a numeric matrix with the data to be analyzed, in this case: 

x= 

4 4  

3 5  

1 2  

5 5  

0 1  

2 2  

4 5  

2 1  

To introduce them, we use the function matrix(): 

>x<-matrix (c (4.4, 3.5, 1.2, 5.5, 0.1, 2.2, 4.5, 2.1), 2, 8), and we then assign x to the 

value of its transpose with the function t(). 

>x <-t (x). We do so this way because it is easier to enter the points in their pair to 

avoid confusion. 

The second argument is the centers in which either the desired number of clusters 

or an initial set of centroids are indicated. If the initial set of centroids is not specified 

and only the number of clusters is specified, the function will randomly choose an 

initial set of centroids. In the exercise, we can solve it in both ways. In the first way, it 

is only to introduce the value 2. The second way is to introduce the matrix c: 

c= 

0 1  

2 2  

which we have previously entered into the system as follows: 

>c <-matrix (c (0,1, 2,2), 2, 2), and as above, we assign to c the value of its 

transpose: 

c <-t (c) 

Finally, in the third argument iter.max you must indicate how many maximum 

iterations are allowed. In this case, we indicate that there are 4. 

We introduce the values of the three arguments in the function kmeans(), 

> (clasificationns=(kmeans(m, c, 4)))



and obtain the result of the classification as follows: 

K-means clustering with 2 clusters of sizes 4, 4 

Cluster means: 

[, 1] [, 2] 

1 1.25 1.50 

2 4.00 4.75 

Vector clustering: [1] 2 2 1 2 1 1  2 1  
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Next, we obtain a matrix for each cluster. To do this, we first add a column to the 

matrix m to put each data point in its corresponding cluster: 

>(m = cbind (classifications$cluster, m)) 

Then, with the subset instruction, we obtain the two arrays. 

the complete instruction is: 

>mc1 = subset (m, m [, 1] == 1) 

>mc2 = subset (m, m [, 1] == 2)} 

And we end up eliminating the column that indicates the cluster: 

(mc1 = mc1 [, - 1]) 

(mc2 = mc2 [, - 1]) 

This is the correct result that coincides with what was obtained in the theoretical 

calculation. 

Finally, we draw the points (events) and the centroids to have a graphic view of 

what was obtained. To do this, we use the plot () function 

The even () function is used to keep the same graph. 

Agglomerative Hierarchical Clustering 

To solve the Agglomerative Hierarchical clustering problem with R, we will use the 

package developed by a student from the University of Alcalá as his final project, 

LearnClust. We are going to install the package from local because we want to know 

it in depth and consequently we are going to go to its web page within the CRAN 

repository. 

Consequently, the first thing we do is go to the CRAN website. Click on the link: 

http://CRAN.R-project.org/ 

within the third heading 3. Files, and we go to a new page where all the download-

able files of R are located. Click on the link: 

Packages 

And we arrive to a new page where are all the R packages. We click on: 

Table of available packages, sorted by name

http://cran.r-project.org/
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And look for the package: 

LearnClust 

We arrive at the package website where it is absolutely all the information about. 

The title of the package LearnClust: Learning Hierarchical Clustering Algorithms 

and the downloadable: 

The package page contains the following: 

First, it is a description about the functionality that the package pretends to give to 

the user: 

Classical hierarchical clustering algorithms, agglomerative and divisive cluster-

ing. Algorithms are implemented in a theoretical way, step by step. It includes some 

detailed functions that explain each step. Every function allows options to obtain 

different results using different techniques. The package explains to nonexpert users 

how hierarchical clustering algorithms work. 

The following are the characteristics of the package:

• Version: 1.1

• Depends: magick

• Suggests: knitr, rmarkdown

• Published: 2020-11-29

• Author: Roberto Alcantara [aut, cre], Juan Jose Cuadrado [aut], Universidad de 

Alcala de Henares [aut]

• Maintainer: Roberto Alcantara <roberto.alcantara at edu.uah.es>

• License: Unlimited

• NeedsCompilation: no

• CRAN checks: LearnClust results 

The following is the documentation that will allow us to understand and analyze 

the package:

• Reference manual: LearnClust.pdf

• Vignettes: Learning Clusterization 

The downloads of the package that can be done are as follows:

• Package source: LearnClust_1.1.tar.gz

• Windows binaries: r-devel: LearnClust_1.1.zip, r-release: LearnClust_1.1.zip, 

r-oldrel: LearnClust_1.1.zip

• macOS binaries: r-release (arm64): LearnClust_1.1.tgz, r-release (x86_64): 

LearnClust_1.1.tgz, r-oldrel: LearnClust_1.1.tgz

• Old sources: LearnClust archive 

And, finally, how the link to the package should be written: 

Please use the canonical form: 

https://CRAN.R-project.org/package=LearnClust to link to this page. 

We install the package using one of the ways learned in the previous chapters.

https://cran.r-project.org/package=LearnClust
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Once the package is installed, we load it using the following instruction: 

A continuación, cargamos el paquete LearnClust en R mediante la función 

library(LearnClust) 

We introduce the function: 

search() 

and check it. 

If we use RStudio, the way to install and load LearnClust is, of course, signifi-

cantly easier; first, to install the package, we only need to go to the menuTools, to the 

option Install Packages, and, there, select LearnClust, in the box of the window that 

appears. Only by typing the first letters of the package can we see it filled 

automatically. 

Once we have the package installed, we can go to the card Packages in the 

corresponding window and click on LearnClust and the function library() to auto-

matically load the package. If we click again, we unload the package, and a detach() 

instruction is executed automatically. 

Once we have the LeanClust package loaded, we pass to use it to solve the same 

problem that we have solved in theory, that is, the hierarchical agglomerative 

clustering over the sample: 1. {0.89, 2.94}; 2. {4.36, 5.21}; 3. {3.75, 1.12}; 

4. {6.25, 3.14}; 5. {4.1, 1.8}; 6. {3.9, 4.27}. 

To do that, we first introduce the sample data in R, and we do it, as in the previous 

case, with a matrix 

m<-matrix(c(0.89,2.94, 4.36,5.21, 3.75,1.12, 6.25,3.14, 4.1,1.8, 3.9,4.27), 2, 6) 

and following, we assign the value m to its transpose: 

(m<-t(m)) 

Once we have introduced the data we obtain, we calculate them hierarchical 

agglomerative clusterization using the Euclidean distance and the proximity defini-

tion MIN. To do that, we use the function included in the package agglomerativeHC, 

with the parameters m, which indicates the pair of data that we are going to cluster; 

'EUC', which indicates the type of distance that we are going to use, which, in this 

case, is the Euclidean; and 'MIN', which indicates the type of proximity that we are 

going to use, that are me closets points. With all of this, the instruction is: 

agglomerativeHC(m, 'EUC', 'MIN') 

The resulting result is interpreted as follows: 

We have 11 clusters:

• The first 6 correspond to the 6 points introduced and that, as we know, are 

considered, everyone of them, as clusters in the first iteration.

• The 7 is the cluster formed by the points, clusters, 3. {3.75, 1.12} y 5. {4.1, 1.8}, 

which corresponds with the first cluster, formed by points 3 and 5, which we 

obtained when we solved the exercise theoretically, C1.



• 8 is the cluster formed by the points, clusters, 2. {4.36, 5.21} y 6. {3.9, 4.27}, 

which corresponds to the second cluster, formed by points 2 and 6, which we 

obtained when we solved the exercise theoretically, C2.

• 9 is the cluster formed by point 3. {3.75, 1.12}, 5. {4.1, 1.8}, 2. {4.36, 5.21} y 

6. {3.9, 4.27}, which belongs to the clusters C1, the first two, and C2, the second 

two, that is, is the cluster formed by the union of the two previous clusters, just as 

we obtained in theory, C3=C1+C2.

• 10 is the cluster formed by the clusters formed by point 4. {6.25, 3.14}; and 

cluster 3, obtained in the previous iteration, in the same manner that we obtained 

in theory, that is, C4=4+C3.

• Finally, 11 is obtained by joining point 1. {0.89, 2.94} to cluster C4, obtaining the 

same cluster 5 that we obtained in theory. 
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Finally, the last part of the solution tells us how the clusters have been obtained in 

each iteration: 

1. Clusters (individuals) 3 and 5 are joined, resulting in cluster 7, since there are 

6 individuals. 

2. The (individual) clusters 2 and 6 are joined, resulting in cluster 8. 

3. Clusters 7 and 8 are joined, giving rise to 9. 

4. Cluster (individual) 4 joins cluster 9, giving rise to 10. 

5. Finally, cluster (individual) 1 is joined to cluster 10, giving rise to the last cluster 

11. 

However, the package is called LeaningClust, and the reason for the name is that 

the package is not only intended to provide the hierarchical agglomerative clustering 

solution but also to teach how it works. To achieve this second objective, detailed 

functions are included, which explain how the algorithms that implement the 

functions that do not have that extension work. To see how they work and how 

they explain the algorithms, we are going to see the same function that we have used 

to obtain the previous agglomerative hierarchical clustering but with the details 

extension. The full instructions are as follows: 

agglomerativeHC.details(m, 'EUC', 'MIN') 

The solution that we obtain is the following:

• First, we obtain the 6 initial clusters corresponding to every point of the remaining 

6 points.

• Next, the function tells us what the package is going to do.

• Next, start doing it, step by step, starting with the first one: 

– Calculate the distances using the distance measure selected, the Euclidean one. 

– Find the two closest points of the two clusters using the distance definition 

selected, the MIN. 

– Join the two closest points, in this case, points 3 and 5, into the next cluster, in 

this case, 7. 

– Show the cluster, which points constitute it.



• Follow with the rest of the steps, explaining, using the same way as the previous 

one, every one of the substeps.

• Perform the steps in an iterative way until all the clusters have been grouped into 

only one cluster. 
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Next, we apply the function agglomerativeHC to the same data sample, with the 

same distance definition ‘MAX’, and we see that the result is the same that we have 

observed in the theoretical solution on the example. The full instructions are as 

follows: 

agglomerativeHC(m, 'EUC', 'MAX') 

Next, we learn how the algorithm operates with the instruction: 

agglomerativeHC.details(m, 'EUC', 'MAX') 

Next, the package can also be applied to learn more details about the technique. 

For example, the graphics of the clusters: 

cmax<- agglomerativeHC(m, 'EUC', 'MAX') 

plot(cmax$dendrogram) 

C. Unsupervised Classification Exercises Solved 

This section has two parts. In the first part, a set of exercises solved in detail are 

presented to allow you to check if all the knowledge has been correctly acquired. The 

advice is to try to solve the exercises by yourself and then to get the solution to check 

it with the proposed one by the book. This procedure will make this section truly 

useful for you. In the second part, the same exercises will be solved in R. 

Handmade Exercises 

1. It is known that the calculation speed of a microprocessor model depends on the 

temperature in a linear way, but it is also known that for different temperature 

intervals, the dependency functions (supervised classification) have different 

parameters. From the sample below, made up of the observations of temperatures 

and normalized speeds of 15 microprocessors, perform an analysis of 

unsupervised classification or clustering to establish which are the clusters for 

which the different functions should be defined (from the visual analysis of the 

data, it has been concluded that there is a high probability that there are three 

clusters) {speed, temperature}: 1. {3.5, 4.5 }; 2. {0.75, 3.25}; 3. {0, 3}; 4. {1.75, 

0.75}; 5. {3, 3.75}; 6. {3.75, 4.5}; 7. {1.25, 0.75}; 8. {0.25, 3}; 9. {3.5, 4.25}; 

10. {1.5, 0.5}; 11. {1, 1}; 12. {3, 4}; 13. {0.5, 3}; 14. {2, 0.25}; 15. {0, 2.5}. It 

must be done without and with computer.
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To solve the exercise applying the K-means method, the following steps are applied: 

A. Step A is known to have 3 substeps: 

1. Selection of the number K of clusters, in which the data will be grouped and 

the centroids that will represent them. They are chosen arbitrarily by the user. 

The centroids will be the midpoints of the group of points (events) that make 

up the cluster. In this case, following the indications of the statement of the 

exercise, they will be three, and it must be taken arbitrarily, the centroids of 

the three clusters, that for the analysis of the sample, the values will be 

c1 = {1, 1}, c3 = {2, 2} andc3 = {3, 3} 

The Euclidean distance from each point to the three defined centroids. 

Point 1, {3.5, 4.5}: 

d1c1 = 

2 

i= 1 

pi - qið Þ2 = 1- 3:5ð Þ2 þ 1- 4:5ð Þ2 = 4:3 

d1c2 = 2- 3:5ð Þ2 þ 2- 4:5ð Þ2 = 2:92 

d1c3 = 3- 3:5ð Þ2 þ 3- 4:5ð Þ2 = 1:58 

Point 2, {0.75, 3.25}: 

d2c1 = 1- 0:75ð Þ2 þ 1- 3:25ð Þ2 = 2:26 

d2c2 = 2- 0:75ð Þ2 þ 2- 3:25ð Þ2 = 1:77 

d2c3 = 3- 0:75 
2 

3- 3:25 
2 
= 2:26 

Point 3, {0, 3}: 

d3c1 = 1- 0ð Þ2 þ 1- 3ð Þ2 = 2:24 

d3c2 = 2- 0ð Þ2 þ 2- 3ð Þ2 = 2:24 

d3c3 = 3- 0ð Þ2 þ 3- 3ð Þ2 = 3 

Point 4, {1.75, 0.75}: 

d4c1 = 1- 1:75ð Þ2 þ 1- 0:75ð Þ2 = 0:79 

d4c2 = 2- 1:75ð Þ2 þ 2- 0:75ð Þ2 = 1:27 

d4c3 = 3- 1:75ð Þ2 þ 3- 0:75ð Þ2 = 2:57
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Point 5, {3, 3.75}: 

d5c1 = 1- 3ð Þ2 þ 1- 3:75ð Þ2 = 0:79 

d5c2 = 2- 3ð Þ2 þ 2- 3:75ð Þ2 = 1:27 

d5c3 = 3- 3ð Þ2 þ 3- 3:75ð Þ2 = 2:57 

Point 6, {3.75, 4.5}: 

d6c1 = 1- 3:75ð Þ2 þ 1- 4:5ð Þ2 = 4:45 

d6c2 = 2- 3:75ð Þ2 þ 2- 4:5ð Þ2 = 3:05 

d6c3 = 3- 3:75ð Þ2 þ 3- 4:5ð Þ2 = 1:68 

Point 7, {1.25, 0.75}: 

d7c1 = 1- 1:25ð Þ2 þ 1- 0:75ð Þ2 = 0:35 

d7c2 = 2- 1:25ð Þ2 þ 2- 0:75ð Þ2 = 1:46 

d7c3 = 3- 1:25 
2 

3- 0:75 
2 
= 2:85 

Point 8, {0.25 3}: 

d8c1 = 1- 0:25ð Þ2 þ 1- 3ð Þ2 = 2:14 

d8c2 = 2- 0:25ð Þ2 þ 2- 3ð Þ2 = 2:02 

d8c3 = 3- 0:25ð Þ2 þ 3- 3ð Þ2 = 2:75 

Point 9, {3.5, 4.25}: 

d2c1 = 1- 3:5ð Þ2 þ 1- 4:25ð Þ2 = 4:1 

d2c2 = 2- 3:5ð Þ2 þ 2- 4:25ð Þ2 = 2:7 

d2c3 = 3- 3:5ð Þ2 þ 3- 4:25ð Þ2 = 1:35



ð Þ þ ð Þ

C. Unsupervised Classification Exercises Solved 315

Point 10, {1.5, 0.5}: 

d3c1 = 1- 1:5ð Þ2 þ 1- 0:5ð Þ2 = 0:71 

d3c2 = 2- 1:5ð Þ2 þ 2- 0:5ð Þ2 = 1:58 

d3c3 = 3- 1:5ð Þ2 þ 3- 0:5ð Þ2 = 2:92 

Point 11, {1, 1}: 

d4c1 = 1- 1:75ð Þ2 þ 1- 0:75ð Þ2 = 0:79 

d4c2 = 2- 1:75ð Þ2 þ 2- 0:75ð Þ2 = 1:27 

d4c3 = 3- 1:75ð Þ2 þ 3- 0:75ð Þ2 = 2:57 

Point 12, {3, 4}: 

d5c1 = 1- 3ð Þ2 þ 1- 4ð Þ2 = 3:61 

d5c2 = 2- 3ð Þ2 þ 2- 4ð Þ2 = 2:24 

d5c3 = 3- 3 
2 

3- 4 
2 
= 1 

Point 13, {0.5, 3}: 

d6c1 = 1- 0:5ð Þ2 þ 1- 3ð Þ2 = 2:06 

d6c2 = 2- 0:5ð Þ2 þ 2- 3ð Þ2 = 1:8 

d6c3 = 3- 0:5ð Þ2 þ 3- 3ð Þ2 = 2:5 

Point 14, {2, 0.25}: 

d7c1 = 1- 2ð  Þ2 þ 1- 0:25ð Þ2 = 1:25 

d7c2 = 2- 2ð  Þ2 þ 2- 0:25ð Þ2 = 1:75 

d7c3 = 3- 2ð  Þ2 þ 3- 0:25ð Þ2 = 2:93
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Point 15, {0, 0.25}: 

d8c1 = 1- 0ð Þ2 þ 1- 0:25ð Þ2 = 1:8 

d8c2 = 2- 0ð Þ2 þ 2- 0:25ð Þ2 = 2:06 

d8c3 = 3- 0 
2 

3- 0:25 
2 
= 3:04 

2. Assignment of points or events to clusters. With the results obtained in step 2, a 

matrix of distances to the two centroids can be constructed. Taking into account 

the results of Step 2, the distance matrix is, in column centroids and in file points: 

c1 c2 c3 
4:30 2:26 1:58 

2:26 1:77 2:26 

2:24 2:24 3:00 

0:79 1:27 2:57 

3:40 2:02 0:75 

4:45 3:05 1:68 

0:35 1:46 2:85 

2:14 2:02 2:75 

4:10 2:70 1:35 

0:71 1:58 2:92 

0:00 1:41 2:83 

3:61 2:24 1:00 

2:06 1:80 2:50 

1:25 1:75 2:93 

1:80 2:06 3:04 

In consequence, starting from this matrix of distances, the matrix of assignments 

matrix is: 

c1 c2 c3 
0  0  1  

0  1  0  

0  1  0  

1  0  0  

0  0  1  

0  0  1  

1  0  0  

0  1  0  

0  0  1  

1  0  0  

1  0  0  

0  0  1  

0  1  0  

1  0  0  

1  0  0
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3. Step B. Recalculation of centroids. Taking into account the assignment matrix: 

c0 1 = 
1:75 þ 1:25þ 1:5þ 1þ 2þ 0 

6 
, 
0:75 þ 0:75þ 0:5þ 1þ 0:25þ 2:5 

6 

= 1:25, 0:95ð Þ  

c0 2 = 
0:75þ 0þ 0:25þ 0:5 

4 
, 
3:25þ 3þ 3þ 3 

4 
= 0:375, 3:0625ð  

c0 3 = 
3:5þ 3þ 3:75 þ 3:5þ 3 

5 
, 
4:5 þ 3:75þ 4:5 þ 4:25þ 4 

5 
= 3:35, 4:2ð  

4. Once we have the new centroids, we calculate the distances from the 15 points to 

the three centroids, and from these calculations, we obtain the new distance 

matrix: 

c1 c2 c3 

4:20 3:44 0:34 

2:35 0:42 2:77 

2:40 0:38 3:56 

0:54 2:69 3:80 

3:30 2:71 0:57 
4:34 3:67 0:50 

0:20 2:47 4:04 

2:28 0:14 3:32 

3:99 3:34 0:16 

0:51 2:80 4:14 

0:25 2:16 3:97 
3:52 2:79 0:40 

2:18 0:14 3:09 

1:03 3:25 4:17 

1:99 0:68 3:76 

Starting from this matrix of distances, we construct the matrix of assignments:
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c1 c2 c3 

0 0 1  

0 1 0  

0 1 0  

1 0 0  

0 0 1  

0 0 1  

1 0 0  

0 1 0  

0 0 1  

1 0 0  

1 0 0  

0 0 1  

0 1 0  

1 0 0  

0 1 0  

As seen, the allocation is practically the same; only the fifteenth value has passed 

from the first cluster to the second, but even if there is only this small difference, we 

must calculate the centroids of these two clusters again, and the third one remains 

the same: 

c00 1 = 
1:75þ 1:25þ 1:5þ 1þ 2 

5 
, 
0:75þ 0:75þ 0:5þ 1þ 0:25 

5 
= 1:5, 0:65ð  

c00 2 = 
0:75 þ 0 þ 0:25þ 0:5þ 0 

5 
, 
3:25 þ 3þ 3 þ 3þ 2:5 

5 
= 0:3, 2:95ð  

When changing the centroids, it is necessary to recalculate the distance from the 

points to them and make a new matrix of distances and assignments. The new 

distance matrix is:
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c1 c2 c3 

4:34 3:56 0:34 

2:71 0:54 2:77 

2:79 0:30 3:56 

0:27 2:63 3:80 

3:44 2:82 0:57 

4:46 3:78 0:50 

0:27 2:40 4:04 

2:66 0:07 3:32 

4:12 3:45 0:16 

0:15 2:73 4:14 

0:61 2:07 3:97 

3:67 2:90 0:40 

2:55 0:21 3:09 

0:64 3:19 4:17 

2:38 0:54 3:76 

Starting from this matrix of distances, we construct the matrix of assignments: 

c1 c2 c3 
0 0 1  

0 1 0  

0 1 0  

1 0 0  

0 0 1  

0 0 1  

1 0 0  

0 1 0  

0 0 1  

1 0 0  

1 0 0  

0 0 1  

0 1 0  

1 0 0  

0 1 0  

It can be seen that it is the same as the last one obtained; therefore, the 

unsupervised classification or clustering has already ended, and we have three 

clusters with centroids: 

c00 1 = 1:5, 0:65ð Þ, c00 2 = 0:3, 2:95ð Þ  and c00 3 = 3:35, 4:2ð Þ
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5. Solve the Agglomerative Hierarchical Clustering, including the Cophenetic 

Distance Matrix, with the proximity definitions a.) MAX y b.) Group Average 

of the sample: {P1(2,1), P2(2,2), P3(3,5), P4(5,1), P5(5,3)}. Use the Euclidean 

distance. 

The definition of a set of clusters from the Agglomerative Hierarchical 

Clusterization technique follows a process of 2 to n steps, which will be repeated 

until there is only one cluster: 

Step A: Obtain the matrix of Euclidean distances between clusters. In this step, the 

distance matrix will be calculated, whose values will be the distances from each 

cluster to the rest of the clusters. 

The first step of each iteration is the calculation of the matrix of Euclidean 

distances between all the clusters, which in the case of the first iteration is the 

calculation of the distances between all the points because each point is a cluster. 

We have combinations of 5 elements, points, taken 2 by 2. 

C2 
5 = 

5! 

2! 5- 2ð Þ! 
= 10 

The Euclidean distances are: 

d12 = 2- 2ð Þ2 þ 1- 2ð Þ2 = 1 

d13 = 2- 3ð Þ2 þ 1- 5ð Þ2 = 4:12 

d14 = 2- 5ð Þ2 þ 1- 1ð Þ2 = 3 

d15 = 2- 5ð Þ2 þ 1- 3ð Þ2 = 3:6 

d23 = 2- 3ð Þ2 þ 2- 5ð Þ2 = 3:16 

d24 = 2- 5ð  Þ2 þ 2- 1ð  Þ2 = 3:16
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d25 = 2- 5ð Þ2 þ 2- 3ð Þ2 = 3:16 

d34 = 3- 5ð Þ2 þ 5- 1ð Þ2 = 4:47 

d35 = 3- 5ð Þ2 þ 5- 3ð Þ2 = 2:83 

d45 = 5- 5ð Þ2 þ 1- 3ð Þ2 = 2 

From these results, the distance matrix is: 

p1 p2 p3 p4 p5 

p1 0 

p2 1 0  

p3 4:12 3:16 0 

p4 3 3:16 4:47 0 

p5 3:6 3:16 2:83 2 0 

Step B: Join the two closest clusters. In this step, the distances obtained will be 

ordered and a new cluster will be generated joining the two closest clusters. In the 

first iteration, each individual point will be considered as a cluster. We use the 

definition of proximity MAX, which we know defines as the proximity between 

two clusters as the distance between the two furthest points of the two clusters. It 

is also called Complete Link. 

First Iteration: If we take the distance matrix between the clusters, considering 

that in the first iteration, each point constitutes a cluster. 

p1 p2 p3 p4 p5 

p1 0 

p2 1 0 

p3 4:12 3:16 0 

p4 3 3:16 4:47 0 

p5 3:6 3:16 2:83 2 0 

The two closest clusters are 1 and 2. Therefore, the first cluster, C1, is the one 

formed by these two points.
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As we do not have a single cluster, we go to the second iteration. 

Step A is carried out. Calculation of the matrix of distances between clusters. 

The data are now {0.89, 2.94}; 2. {4.36, 5.21}; 4. {6.25, 3.14}; 6. {3.9, 4.27} and 

C1 {3. {3.75, 1.12}; 5. {4.1, 1.8}} 

The distance matrix is: 

p1 p2 p4 p6 C1p3 C1p5 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 0 3:21 

p5 3:41 3:42 2:53 0 0 

p6 3:29 1:05 2:61 0 3:15 2:48 

The distance between clusters is now between the four points 1, 2, 4 and 6, and 

cluster 1 is formed by points 3 and 5 in the previous iteration; consequently, the 

distance between points 3 and 5 is now 0 because they are in the same cluster. 

Step B is now performed using the definition of proximity MAX. Data are now 

1. {0.89, 2.94}; 2. {4.36, 5.21}; 4. {6.25, 3.14}; 6. {3.9, 4.27} and C1 {3. {3.75, 

1.12}; 5. {4.1, 1.8}}. This first cluster is depicted in Fig. 5.16. 

p1 p2 p4 p6 C1p3 C1p5 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 0 3:21 

p5 3:41 3:42 2:53 0 0 

p6 3:29 1:05 2:61 0 3:15 2:48 

The two closest clusters are 2 and 6. Therefore, the second cluster, C2, is the one 

formed by these two points. This second cluster is depicted in Fig. 5.17. 

As we do not have a single cluster, we go to the third iteration. 

In Step A, the matrix of distances between points is calculated: 

p1 p4 C1p3 C1p5 C2p2 C2p6 

p1 0 

p2 4:15 0 

p3 3:39 0 4:13 

p4 5:36 0 3:21 2:8 

p5 3:41 2:53 0 0 3:41 

p6 3:29 2:61 3:15 2:48 0 0
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The distance between clusters is now between the two points 1 and 4 and the 

clusters C1, formed by points 3 and 5, and C2 identified in the previous iteration; 

consequently, the distance between points 2 and 6 is now 0 because they are in the 

same cluster. 

In Step B, the two closest clusters are merged. The data are now: 1. {0.89, 2.94}; 

4. {6.25, 3.14}, C1 {3. {3.75, 1.12}; 5. {4.1, 1.8}}, and C2 {2. {4.36, 5.21}; 6. {3.9, 

4.27}} 

p1 p4 C1p3 C1p5 C2p2 C2p6 

p1 0 

p2 4:15 0 

p3 3:39 0 4:13 

p4 5:36 0 3:21 2:8 

p5 3:41 2:53 0 0 3:41 

p6 3:29 2:61 3:15 2:48 0 0 

The two closest clusters are point 4 and C2. Therefore, the third cluster, C3, is the 

one formed by these two clusters (Fig. 5.23). 

As we do not have a single cluster, we proceed to the fourth iteration, but before, 

it is important at this point to provide a deep explanation about why 2.8 is the 

minimum distance between clusters with the MAX definition distance algorithm. 

The proximity between clusters with MAX is defined as the distance between the 

two farthest points of the two clusters: 

Fig. 5.23 Third cluster MAX distances
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• The first two clusters considered are points 1 and 4, for which the distances, as 

seen in the previous matrix, are: {4.15, 3.39, 5.36, 3.41, 3,29, 2,53, 2,61}, and 

from all of them, the maximum, MAX, is 5.36.

• The second two clusters considered are C1 and C2; all the distances between all 

the points in both clusters must be calculated, that is, distance (3.2), distance 

(3.6), distance (5.2), and distance (5.6), which are: {4.13, 3.15, 3.42, 2.48}, and 

from all of them to take the maximum, that is, 4.13.

• The third two clusters considered are C1 and Point 1; the distances to be analyzed 

are (3,1) and (5,1), which are: {3.39, 3.41}, and the maximum is 3.41.

• The fourth two clusters to be considered are C1 and Point 4, the distances to be 

compared are (3,4) and (5,4), that are: {3.21, 2.53} and the maximum is 3.21.

• And fifth, two clusters to be compared are C2 and Point 1; the distances to be 

compared are (2,1) and (6,1), which are: {4.15, 3.29}, and the maximum is 4.15

• And finally, the last two clusters to be compared are C2 and Point 4; the distances 

to be compared are (2,4) and (6,4), which are {2.8, 2,61}, and the maximum 

is 2.8. 

Once you have all the distances between the clusters with the algorithm MAX, the 

minimum of all of them will be the selected one to merge both clusters in one, the 

distances obtained are: {5.6, 4.13, 3.41, 3.21, 4.15 and 2,8}, the minimum of all of 

them is 2.8, and in consequence the clusters merged in this iteration are C2 and Point 4. 

In Step A of the fourth iteration of the agglomerative hierarchical classification 

algorithm with the distance definition MAX, the new matrix of distances between 

clusters is obtained. 

p1 C1p3 C1p5 C3-C2p2 C3-C2p6 C3p4 

p1 0 

p2 4:15 0 

p3 3:39 0 4:13 

p4 5:36 3:21 0 0 

p5 3:41 0 0 3:42 2:53 

p6 3:29 3:15 2:48 0 0 0 

The distance between clusters is now between Point 1 and the clusters, C1 formed 

by points 3 and 5, and C3 identified in the previous iteration, and consequently, the 

distance between Point 4 and cluster C2 is 0 because they are in the same cluster. 

In Step B, the two closest clusters are merged. The data are now: 1. {0.89, 2.94}; 

C1 {3. {3.75, 1.12}; 5. {4.1, 1.8}} and C3 {C2 {2. {4.36, 5.21}; 6. {3.9, 4.27}}, 

4. {6.25, 3.14}}
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p1 C1p3 C1p5 C3-C2p2 C3-C2p6 C3p4 

p1 0 

p2 4:15 0 

p3 3:39 0 4:13 

p4 5:36 3:21 0 0 

p5 3:41 0 0 3:42 2:53 

p6 3:29 3:15 2:48 0 0 0 

The distances applying MAX are:

• The first two clusters considered are Points 1 and C1, for which the distances, as 

seen in the previous matrix, are 3.39 between points 1 and 3 and 3.41 between 

points 1 and 5, and from both of them, the maximum, MAX, is 3.41.

• The second and final two clusters considered are Points 1 and C3, for which the 

distances, as seen in the previous matrix, are 4.15 between points 1 and 2, 3.29 

between points 1 and 6, and 5.36 between points 1 and 4, and from all of them, the 

maximum, MAX, is 5.36. 

Once you have both the distances between the clusters with the MAX algorithm, 

the minimum of both of them will be the selected one to merge both clusters into one. 

Since the distances obtained are 3.41 and 5.36, the minimum of both of them is 3.41, 

and consequently, the clusters merged in this iteration are C1 and Point 1, that is, C4. 

The previous result means that the algorithm has finished because a final unique 

cluster is obtained, that one constituted by the previous cluster C3 and the new 

cluster C4, that will be C5 (Fig. 5.24).

• Group Average. Define the proximity between two clusters as the average of the 

distances between all the pairs that can be formed with points from the two 

clusters: 

proximity Ci,Cj = 

m 
n 

i= 1 
j= 1 

proximity xi, yj 

m * n 

Over the sample that has been solved, carry out step B of the agglomerative 

hierarchical clustering algorithm using the algorithm with the group average prox-

imity definition (see Fig. 5.14): 

First Iteration: If we take the distance matrix between the clusters, we consider 

that in the first iteration, each point constitutes a cluster.
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Fig. 5.24 Fourth and fifth clusters MAX distances 

p1 p2 p3 p4 p5 p6 

p1 0 

p2 4:15 0 

p3 3:39 4:13 0 

p4 5:36 2:80 3:21 0 

p5 3:41 3:42 0:76 2:53 0 

p6 3:29 1:05 3:15 2:61 2:48 0
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The two closest clusters are 3 and 5. Therefore, the first cluster, C1, is the one 

formed by these two points (see Fig. 5.16). 

As we do not have a single cluster, we go to the second iteration. 

Step A of the second iteration of the agglomerative hierarchical classification 

algorithm with the distance definition group average is performed, and the new data 

are as follows: 1. {0.89, 2.94}; 2. {4.36, 5.21}; 4. {6.25, 3.14}; 6. {3.9, 4.27} and C1 

{3. {3.75, 1.12}; 5. {4.1, 1.8}} 

p1 

p2 

C1p3 

p4 

C1p5 

p6 

p1 

0 

4:15 

3:39 

5:36 

3:41 

3:29 

p2 

0 

4:13 

2:80 

3:42 

1:05 

p4 

0 

2:53 

2:61 

p6 

0 

C1p3 

0 

3:21 

0 

3:15 

C1p5 

0 

2:48 

p1 

0 

4:15 

3:40 

5:36 

3:40 

3:29 

p2 

0 

3:78 

2:80 

3:78 

1:05 

p4 

0 

2:87 

2:61 

p6 

0 

C1p3 

0 

2:87 

0 

2:82 

C1p5 

0 

2:82 

The distance between clusters is now between points 1, 2, 4 and 6, and cluster 1 is 

formed by points 3 and 5 in the previous iteration, but now the distances change 

because it is done with the mean. 

proximity p1,C1ð Þ= 

2 
1 

i= 1 
j= 1 

proximity p1, p3ð Þ, p1, p5Þð Þð 

2 * 1 
= 

3:39þ 3:41 

2 
= 3:40 

proximity p2,C1ð Þ= 

2 
1 

i= 1 
j= 1 

proximity p2, p3ð Þ, p2, p5Þð Þð 

2 * 1 
= 

4:13þ 3:42 

2 
= 3:78 

proximity p4,C1ð Þ= 

2 
1 

i= 1 
j= 1 

proximity p4, p3ð Þ, p4, p5Þð Þð 

2 * 1 
= 

3:21þ 2:53 

2 
= 2:87 

proximity p6,C1ð  Þ= 

2 
1 

i= 1 
j= 1 

proximity p6, p3ð  Þ, p6, p5Þð Þð 

2 * 1 
= 

3:15þ 2:48 

2 
= 2:82
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6. In Step B, the minimum distance between clusters using the Group Average 

algorithm is used to select which two closest clusters must be merged. The data 

are now: 1. {0.89, 2.94}; 2. {4.36, 5.21}; 4. {6.25, 3.14}; 6. {3.9, 4.27} and C1 

{3. {3.75, 1.12}; 5. {4.1, 1.8}} 

p1 p2 p4 p6 C1p3 C1p5 

p1 0 

p2 4:15 0 

C1p3 3:40 3:78 0 

p4 5:36 2:80 0 2:87 

C1p5 3:40 3:78 2:87 0 0 

p6 3:29 1:05 2:61 0 2:82 2:82 

The two closest clusters are points 2 and 6. Therefore, the second cluster, C2, is 

the one formed by these two points (see Fig. 5.17). 

As we do not have a single cluster, we go to the third iteration. 

Step A of the third iteration of the agglomerative hierarchical classification 

algorithm with the distance definition group average is performed, and the new 

data are as follows: 1. {0.89, 2.94}; 4. {6.25, 3.14}; C1{3. {3.75, 1.12}; 5. {4.1, 

1.8}, C2{2. {4.36, 5.21}; 6. {3.9, 4.27}}} 

p1 

C2p2 

C1p3 

p4 

C1p5 

C2p6 

p1 

0 
4:15 

3:39 

5:36 

3:41 

3:29 

p4 

0 

2:53 

2:61 

C1p3 

0 

3:21 

0 

3:15 

C1p5 

0 

2:48 

C2p2 

0 

4:13 

2:80 

3:42 

1:05 

C2p6 

0 

p1 

0 
3:72 

3:40 

5:36 
3:40 

3:72 

p4 

0 

2:87 

2:70 

C1p3 

0 
2:87 

0 

3:30 

C1p5 

0 

3:30 

C2p2 

0 

3:30 

2:70 

3:30 

3:30 

C2p6 

0 

The distance between clusters is now between the two points 1 and 4, and the two 

clusters 1 and 2, but now almost all the distances change because it is done with 

the mean: 

proximity C1,C2ð Þ= 

2 
2 

i= 1 
j= 1 

proximity p3, p2ð  Þ, p3, p6Þ, p5, p2ð  Þ, p5, p6ððð 

2 * 2 

= 
4:13 þ 3:15þ 3:42 þ 2:48 

4 
= 3:30
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proximity p1,C2ð Þ= 

2 
1 

i= 1 
j= 1 

proximity p1, p2ð Þ, p1, p6Þð Þð 

2 * 1 
= 

4:15þ 3:29 

2 
= 3:72 

proximity p4,C2ð Þ= 

2 
1 

i= 1 
j= 1 

proximity p4, p2ð Þ, p4, p6Þð Þð 

2 * 1 
= 

2:80þ 2:61 

2 
= 2:70 

7. In Step B, the minimum distance between clusters using the Group Average 

algorithm is used to select which two closest clusters must be merged. The data 

are now: 1. {0.89, 2.94}; 4. {6.25, 3.14}; C1{3. {3.75, 1.12}; 5. {4.1, 1.8}, C2 

{2. {4.36, 5.21}; 6. {3.9, 4.27}}} 

p1 

C2p2 

C1p3 

p4 

C1p5 

C2p6 

p1 

0 
3:72 

3:40 
5:36 

3:40 

3:72 

p4 

0 

2:87 

2:70 

C1p3 

0 
2:87 

0 

3:30 

C1p5 

0 

3:30 

C2p2 

0 

3:30 
2:70 

3:30 

3:30 

C2p6 

0 

The two closest clusters are Points 4 and C2. Therefore, the third cluster, C3, is 

the one formed by these two clusters (see Fig. 5.18). 

As we do not have a single cluster, we go to the fourth iteration. 

8. Step A of the fourth iteration of the agglomerative hierarchical classification 

algorithm with the distance definition group average is performed, and the new 

data are as follows: 1. {0.89, 2.94}; 4. {6.25, 3.14}; C1{3. {3.75, 1.12}; 5. {4.1, 

1.8}, C2{2. {4.36, 5.21}; 6. {3.9, 4.27}}} 

p1 

C3:C2p2 

C1p3 

C3p4 

C1p5 

C3:C2p6 

p1 

0 
4:15 

3:39 
5:36 

3:41 

3:29 

C1p3 

0 
3:21 

0 

2:61 

C1p5 

0 

2:48 

C3:C2p2 

0 

4:13 
2:80 

3:42 

0 

C3:C2p6 

0 

C3p4 

0 

2:53 

2:61 

p1 

0 
4:27 

3:40 
4:27 

3:40 

4:27 

C1p3 

0 
3:15 

0 

3:15 

C1p5 

0 

3:15 

C3:C2p2 

0 

3:15 

0 

3:15 

0 

C3:C2p6 

0 

C3p4 

0 

3:15 

0 

The distance between clusters is now between point 1 and the two clusters C1 and 

C3, but now almost all the distances change because it is done with the mean.
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proximity C1,C3ð Þ  

= 

3 
2 

i= 1 
j= 1 

proximity p3, p2ð Þ, p3, p6Þ, p3, p4ð Þ  p5, p2ð Þ, p5, p6ð Þ, p5, p4ð Þðð 

2 * 3 

= 
4:13þ 3:15þ 3:21 þ 3:42þ 2:48þ 2:53 

6 
= 3:15 

proximity p1,C3ð Þ= 

3 

1 

i= 1 

j= 1 

proximity p1, p2ð Þ, p1, p6Þ p1, p4ð Þðð 

3 * 1 

= 
4:15þ 3:29þ 5:36 

3 
= 4:27 

9. In Step B, the minimum distance between clusters using the Group Average 

algorithm is used to select which two closest clusters must be merged. The data 

are now P1, C1, and C3. 

p1 

C3:C2p2 

C1p3 

C3p4 

C1p5 

C3:C2p6 

p1 

0 
4:27 

3:40 
4:27 

3:40 

4:27 

C1p3 

0 
3:15 

0 

3:15 

C1p5 

0 

3:15 

C3:C2p2 

0 

3:15 

0 

3:15 

0 

C3:C2p6 

0 

C3p4 

0 

3:15 

0 

The distances applying Group Average are:

• The first two clusters considered are Points 1 and C1, for which the mean distance 

applying the group average is 3.40. With this algorithm, as it is a mean, only one 

distance will be used.

• The second and final two clusters considered are Points 1 and C3, for which the 

mean distance applying the group average is 4.27.

• Finally, the third two clusters considered are C1 and C3, for which the mean 

distance applying the group average is 3.15. 

Once you have all the distances between the clusters with the algorithm Group 

Average, the minimum of all of them will be the selected one to merge both clusters 

into one. Since the distances obtained are 3.40, 4.27 and 3.15, the minimum is 3.15, 

and consequently, the clusters merged in this iteration are C1 and C3, that is, C4.
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Fig. 5.25 Fourth and fifth cluster group average distances 

The previous result means that the algorithm has finished because a final unique 

cluster is obtained, that one constituted by the new cluster C4, and the point, or 

cluster, 1, that will be C5 (Fig. 5.25). 

Exercises Solved in R 

In this section, the previous exercises will be solved using R software.
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1. It is known that the calculation speed of a microprocessor model depends on the 

temperature in a linear way, but it is also known that for different temperature 

intervals, the dependency functions (supervised classification) have different 

parameters. From the sample below, made up of the observations of temperatures 

and normalized speeds of 15 microprocessors, perform an analysis of 

unsupervised classification or clustering to establish which are the clusters for 

which the different functions should be defined (from the visual analysis of the 

data, it has been concluded that there is a high probability that there are three 

clusters) {speed, temperature}: 1. {3.5, 4.5 }; 2. {0.75, 3.25}; 3. {0, 3}; 4. {1.75, 

0.75}; 5. {3, 3.75}; 6. {3.75, 4.5}; 7. {1.25, 0.75}; 8. {0.25, 3}; 9. {3.5, 4.25}; 

10. {1.5, 0.5}; 11. {1, 1}; 12. {3, 4}; 13. {0.5, 3}; 14. {2, 0.25}; 15. {0, 2.5}. 

Solve it now with computer and R, using the k-means algorithm. 

Solution: Similar to the previous sections with the function k-means (m, cen-ters, 

iter.max). We start by introducing the matrix m, with the data to analyze in our case: 

x= 

3:5 4:5 

0:75 3:25 

0 3  

1:75 0:75 

3 3:75 

3:75 4:5 

1:25 0:75 

0:25 3 

3:5 4:25 

1:5 0:5 

1 1  

3 4  

0:5 3  

2 0:25 

0 2:5 

To introduce them, we use the matrix function, transpose it and display it. 

> (m <-t (matrix (c (3.5,4.5, 0.75,3.25, 0, 3, 1.75,0.75, 3,3.75, 3.75,4.5, 1.25,0.75, 

0.25,3, 3.5, 4.25,1.5,0.5, 1,1,3,4,0.5,3,2,0.25,0,2.5), 2, 15))) 

The second argument is the centers, which in the exercise asks us to be three and 

which we will introduce using the instruction: 

(c <-t (matrix (c (1,1, 2,2, 3,3), 2, 3))) 

which introduces the matrix with the same centroids that we used in the theoret-

ical resolution of the problem:
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c= 

1 1  

2 2  

3 3  

Finally, in the third argument {iter.max}, we are going to indicate, as in the 

previous case, that there are 4. 

If we introduce the values of the three arguments in the k-means function, we 

have the instruction: 

>(classifications = (kmeans (m, c, 4))) 

and we obtain the following result of the unsupervised classification or clustering: 

K-means clustering with 3 clusters of sizes 5, 5, 5 

Cluster means: 

[, 1] [, 2] 

1 1.50 0.65 

2 0.30 2.95 

3 3.35 4.20 

Clustering vector: 

[1]  3 2 2  1 3 3 1  2 3 1 1  3 2 1 2  

Next, we obtain the matrix for each cluster, similar to the first exercise. First, we 

add a column to the matrix m to put each data point in its corresponding cluster 

>(m = cbind (classifications \ $ cluster, m)) 

Then, with the subset instruction, we obtain the three arrays. The complete 

instruction is 

>mc1 = subset (m, m [, 1] == 1) 

>mc2 = subset (m, m [, 1] == 2) 

>mc3 = subset (m, m [, 1] == 3) 

And we end up eliminating the column that indicates the cluster 

>(mc1 = mc1 [, - 1]) 

>(mc2 = mc2 [, - 1]) 

>(mc3 = mc3 [, - 1]) 

2. It is known that the calculation speed of a microprocessor model depends on the 

temperature in a linear way, but it is also known that for different temperature 

intervals, the dependency functions (supervised classification) have different 

parameters. From the sample below, made up of the observations of tempera-

tures and normalized speeds of 15 microprocessors, perform an analysis of
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unsupervised classification or clustering to establish which are the clusters for 

which the different functions should be defined (from the visual analysis of the 

data, it has been concluded that there is a high probability that there are three 

clusters) {speed, temperature}: 1. {3.5, 4.5 }; 2. {0.75, 3.25}; 3. {0, 3}; 4. {1.75, 

0.75}; 5. {3, 3.75}; 6. {3.75, 4.5}; 7. {1.25, 0.75}; 8. {0.25, 3}; 9. {3.5, 4.25}; 

10. {1.5, 0.5}; 11. {1, 1}; 12. {3, 4}; 13. {0.5, 3}; 14. {2, 0.25}; 15. {0, 2.5}. 

Solve it now with computer and R, using Hierarchical Clustering. 

To solve the Agglomerative Hierarchical clustering problem with R, we again use 

the package LearnClust. To do that, we first introduce the sample data in R, and we 

do it, as in the previous case, with the matrix: 

(m <-t (matrix (c (3.5,4.5, 0.75,3.25, 0, 3, 1.75,0.75, 3,3.75, 3.75,4.5, 1.25,0.75, 

0.25,3, 3.5, 4.25,1.5,0.5, 1,1,3,4,0.5,3,2,0.25,0,2.5), 2, 15))) 

and following, we assign the value m to its transpose: 

(m<-t(m)) 

Once we have introduced the data we obtain, we calculate them hierarchical 

agglomerative clusterization using the Euclidean distance and the proximity defini-

tion MIN. To do that, we use the function included in the package agglomerativeHC, 

with the parameters m, which indicates the pair of data that we are going to cluster, 

'EUC', which indicates the type of distance that we are going to use, that in this case 

is the Euclidean, and 'MIN', which indicates the type of proximity that we are going 

to use, that are me closets points. With all of this, the instruction is: 

agglomerativeHC(m, 'EUC', 'MIN') 

However, we now that the package provides the hierarchical agglomerative 

clustering solution but also teaches how it works. To achieve this second objective, 

we know thT the.detail functions are included, which explain how the algorithms 

that implement the functions that do not have that extension work. 

agglomerativeHC.details(m, 'EUC', 'MIN') 

Next, we apply the function agglomerativeHC to the same data sample, with the 

same distance definition ‘MAX’, and we see that the result is the same that we have 

observed in the theoretical solution on the example. The full instructions are as 

follows: 

agglomerativeHC(m, 'EUC', 'MAX') 

Next, we learn how the algorithm operates with the instruction: 

agglomerativeHC.details(m, 'EUC', 'MAX') 

Next, the package can also be applied to learn more details about the technique. 

For example, the graphics of the clusters: 

cmax<- agglomerativeHC(m, 'EUC', 'MAX') 

plot(cmax$dendrogram)



Supervised Classification 

In this sixth chapter, we present the theoretical foundations of the supervised 

classification1 and the main techniques used to carry it out. 

Section A introduces, in a theoretical and, at the same time, practical ways all the 

basic theoretical knowledge related to supervised classification, that is, the 

concepts and techniques that allow us to perform the analysis from the decision 

trees to the regression functions. 

Section B presents the computer-based solving of the same examples used in section 

A to introduce theoretical knowledge. Section B presents the computer-based 

solving. The packages needed to carry out these computational solutions are also 

introduced. 

Section C consists of a set of statements of exercises about supervised classification 

in which detailed solutions can also be found.2 

A. Theory 

This first section of the chapter is structured in 5 subsections: 1. introduction, 

2. decision trees, 3. neural networks, 4. naïve Bayes, and 5. regression functions. 

1 The supervised classification of events is called supervised because the values of the characteristic 
to be classified will be classified into classes whose values have been previously defined, while that 
in the case of unsupervised classification, the values that define the different classes, centroids, are 
determined during the same classification process. In the event that the term classification is used 
without saying whether it is supervised or not, it usually refers to supervised classification. 
2 We repeat again here that it is very important in order to obtain the best results for the learning 
process throughout the use of the book, that the reader tries to solve the exercises by himself/herself 
before seeing their solutions, and that only once solved check whether the obtained solutions are 
correct. 
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Introduction 

Supervised classification studies seek to obtain a function, called a classification 

model, that allows obtaining the value of a certain characteristic of an object from the 

data that the rest of the characteristics of the same object. The parameters that define 

said function or classification model are determined using a definition or training 

sample in which, for each set of objects, there are the values of all the characteristics 

applicable to them, including those of the characteristic for which the classification 

model is being sought. 

To introduce the concept of classifying events with qualitative values through an 

example, we use the grades of a subject from a group of students. The qualifications 

will be made up of four marks, corresponding to the Theory, Laboratory, Practices 

and Global Qualification tests. The elementary events that make up each event 

student grades are each individual grade: E = {Theory, Laboratory, Practice, Overall 

Grade}. 

The elementary event that will be used as a classifier will be the global qualifi-

cation, and following what is indicated in the theory of the subject, the supervised 

classification begins by establishing the possible values of each elementary classi-

fying event. The two possible values for the global grade are Approved, Ap, and 

Fail, Ss, which allow establishing two complementary and disjoint equivalence 

classes, which will encompass all events (students) with a global pass grade and 

which will include events with a global rating of failure. 

The rest of the events will have the following four values: A, B, C, and D, where 

A will be the highest possible rating and D the lowest. The classification function 

sought in this case will be the one that, based on the values of the first three 

elementary events, allows classifying an event, or what is the same, based on the 

qualifications in theory, laboratory, and practical, to obtain the overall student grade. 

As mentioned above, different classification techniques can be used to obtain a 

classification function for events. This differentiation is based on the fact that each of 

them uses different algorithms. All of them use a sample or set of events for which 

the values of all elementary events are known, including the one that marks the 

classes, to define the classification function. Once defined, the function will be used 

to classify new events. The sample of events that will allow you to find the definition 

of the classification function is made up of eight events – 1. {A, A, B, Ap}; 2. {A, B, 

D, Ss}; 3. {D, C, C, Ss}; 4. {D, B, A, Ss}; 5. {B, C, D, Ss}; 6. {C, B, B, Ap}; 

7. {B, B, A, Ap}; 8. {C, D, C, Ss} – which are a set of academic qualifications made 

up of four grades: Theory, Laboratory, Practices and Global Qualification. Starting 

from this, the elementary events are as follows: 

E = <Theory, Laboratory, Practices, Global Qualification> 

The equivalence classes of a classifier event are as follows: 

Classifier = Global Qualification, which has two complementary and disjoint 

equivalence classes: Pass and Fail 

The classifier function based on the values A, B, C, and D of the first three events 

will define the value of the fourth, Pass or Fail.
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Different classification techniques can be used to obtain a classification function 

for events. This differentiation is based on the fact that each of them uses different 

algorithms. All of them use a sample or set of events for which the values of all 

elementary events are known, including the one that marks the classes, to define the 

classification function. Once defined, the function will be used to classify new 

events. 

Some of the best known and most used are as follows:

• Decision trees

• Neural networks

• Naïve Bayes

• Regression 

We are going to see how each of them works in a specific way. 

Decision Trees 

Decision trees. Hunt’s algorithm for supervised classification. 

The definition of the decision tree follows a process3 from 1 to k steps, where k is 

the number of elementary events that allow the analysed event to be fully classified. 

The maximum number of steps will be n-1 since if n is the dimension of the set P 

(E) that is being studied or the number of elementary events that make up the 

analysed events, one of them will be used as a classifier. Let us see how each step4 

is treated. 

A. Step A. Select an elementary event from the members of the event that is being 

classified and analyse the possible results it may have. Any of the events to be 

analysed can be selected to carry out this first step, except for the elementary 

event used as a classifier. This first event is called the root node because it has no 

other previous event analysed, and after it, from zero to k more elementary 

events will be analysed. Once the analysis has been carried out, it is determined 

3 Another way of defining how Hunt’s algorithm works that it is complementary to the one 
explained above and can help improve understanding of the concept is: Hunt’s algorithm follows 
a process based on the 1 to k steps explained in the overview of defining a decision tree. To carry out 
each step, that is, to define each node, a procedure is applied based on the observation of the class to 
which all the events of the sample belong, used to find the classification function not classified in 
one step (node) previous. Depending on the result of said observation, one of the following two 
actions will be carried out: 

1. If they all belong to the same class, the observed node is a terminal node or leaf. 
2. If they all do not belong to the same class, an elementary event is selected, a component of the 

analyzed events, whose value will allow us to divide the set of events into subsets. For each of 
the defined subsets, an intermediate node will be created in which the process will be repeated. 

4 To follow the same structure as in topic 2, we are going to call them steps A and B.
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Fig. 1 First classification 

whether it allows you to fully classify any event to which it belongs or, if not, go 

to the next step and analyse another elementary event. 

Choosing the root node. Of the four elementary events {Theory, Laboratory, 

Practices, Global Rating}, the last, Global Rating is the one that marks the class, 

so, following what has been seen in the theory, we cannot take it as the initial 

node. We take any of the other three as the initial node. In principle, we can 

choose it arbitrarily; later, we will see how to optimize the tree, but now we will 

only see how it is built, so we choose, for example, Theory as the initial node. 

Once chosen, we will analyse the relationship of its values with the Global 

Rating value. We analyse the events in the sample one by one; the first value is 

that of Theory and the second is that of Global Rating: 1. A, Ap; 2. A, Ss; 3. D, 

Ss; 4. D, Ss; 5. B, Ss; 6. C, Ap; 7. B, Ap; 8. C, Ss. 

As you can check if you have a theory grade of A, B, or C, you can have a 

final grade of both Ap, as in cases 1, 6, and 7, and of Ss, as in cases 2, 5, and 

8, whereas if you have a theory grade of D, you always have a grade of 

Ss. Consequently, Theory cannot be considered as a final node because it allows 

classifying the events whose classification is D, but not those that are A, B, or 

C. Consequently, the classification, after passing through the initial node The-

ory, would be (Fig. 1): 

And events 3 and 4 have been classified. 

B. In step B, and following, if there are any, intermediate nodes are arbitrarily 

chosen, which are new characteristics on which an analysis similar to that of step 

1 is going to be carried out, until the object is fully classified based on the values 

of the classifier character. 

Step B will be performed k times, with a maximum k equal to n-1.5 We may 

find the classification model before using the n-1 events, that is, using k events, 

in which case we would have k steps. It may also be that we will not find it even 

using the n-1 events or steps, in which case there would be no classification 

model. Let us now see how step 2 would be carried out6 and n-1, and all the 

others would be carried out following the same process: 

5 Since we have n events and one of them is the classifying event. 
6 Since step 1 is step A.
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Fig. 2 Second 
classification 

Step 2. 

If the result of the elementary event analysed in the node allows classifying 

the event that it belongs to, it is passed to a set of leaf nodes or terminal nodes in 

which it is specified, depending on the values that the analysed elementary event 

may have, the values of the classes to which the event can belong. If, on the other 

hand, the result of the elementary event does not allow classifying the event to 

which it belongs, then an internal node applied to another elementary event is 

passed, and the same analysis is carried out as in step A. 

Analysis of the internal node. Once the elementary event Theory has been 

analysed, we have seen that it does not allow us to fully classify the events in the 

sample and, consequently, any event that we analyse later, so we move on to an 

internal node. In the same way that when we analyse the initial node, we 

arbitrarily choose the elementary event for the first internal node and, as has 

also been said in step A, we will see later how this choice is optimized. We 

choose Laboratory and analyse the events in the sample that still remain unclas-

sified, which are 1, 2, 5, 6, 7, and 8. We analyse the value of Laboratory and the 

Global Qualification7 : 1. A, Ap; 2. B, Ss; 3. Classified in Step A. 4. Classified in 

Step A. 5. C, Ss; 6. B, Ap; 7. B, Ap; 8. D, Ss. 

As you can check, if you have a laboratory grade of A or B, you can have a 

final grade of both Ap, as in cases 1, 6, and 7, and Ss, as in case 2. However, if 

you have a grade of C or D, you always have a grade of Ss. Therefore, 

Laboratory cannot be considered as a final node because it allows classifying 

events whose qualification is either C or D but not those that are A or 

B. Consequently, the classification, after passing through the intermediate Lab-

oratory node, would be (Fig. 2): 

7 We repeat the Sample here to be able to see the values more clearly: 1. {A, A, B, Ap}; 2. {A, B, D, 
Ss}; 3. {D, C, C, Ss}; 4. {D, B, A, Ss}; 5. {B, C, D, Ss}; 6. {C, B, B, Ap}; 7. {B, B, A, Ap}; 
8. {C, D, C, Ss}
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Fig. 3 Final classification 

And events 5 and 8 have been classified. 

Step n-1. It would be done as step 2. 

Terminal node. In the example we are working on, having an E with four 

elementary events and having taken a P (E) of dimension four, that is, with all the 

subsets of E formed by four elementary events, the maximum number of steps 

and therefore, the number of nodes is 3, so step k and n-1 are going to be seen 

together at this point, but it does not vary at all what you would do if they were 

different steps, the only thing that would happen is that it would be done more 

times. Once the elementary event Laboratory has been analysed, we have seen 

that it does not allow us to fully classify the events in the sample and, conse-

quently, any event that we analyse later, so we go to the last possible node, which 

will be the Practices node. In addition, that it will have to be a final node. We 

analyse the events in the sample that still remain unclassified, which are 1, 2, 

6, and 7. We analyse the value of Practices and Global Qualification: 1. B, Ap; 

2. D, Ss; 3. Classified in Step A. 4. Classified in Step A. 5. Classified in Step 

2. 6. C, Ap; 7. A, Ap. 8 Classified in Step 2. 

If you have a laboratory grade of A or B, you always have a final grade of Ap, 

whereas if you have a grade of C or D, you always have a rating of Ss. Therefore, 

Practices can be considered as a final node because it allows the classification of 

events. Consequently, the classification, after passing through the terminal node 

Practices, would be (Fig. 3): 

Optimizing the Construction of a Decision Tree: ID3 Algorithm 

Once you have seen how a decision tree is defined or built, it is immediate to realize 

that for the same analysis, a set of classification functions based on decision trees can



be defined whose number is equal to all permutations or variations without repeti-

tion8 of the n elementary events taken from n to n, which compose the events of the 

subset of P (E) of dimension n analysed. And it is logical to think that some of those 

functions are more efficient than others, as it is. Consequently, the immediate 

question is if whether there is a way to obtain a classification model based on 

optimal decision trees. To determine the best way to sequentially decompose the 

sample to build the tree decision, and consequently what will be the best structure of 

the tree, each algorithm uses a solution. 
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Decision tree. Optimization of the definition of the classification function. In the 

example we are seeing, we have defined a classification function through a classi-

fication tree with three nodes, but, as mentioned above, no criteria were used in 

ordering which elementary events should be analysed before, so the possible per-

mutations, or variations without repetition of three elements taken three at a time, is 

3! = 3.2.1 = 6, that is, we have defined a tree of the six possible ones, that is, the 

nodes have been Theory-Laboratory-Practices, but they could have been 

Laboratory-Theory-Practices or any other of the possible permutations. 

In algorithm ID3, the optimization in the construction of the decision tree, that is, 

the determination of which is the best way to sequentially decompose the sample 

into subsets that will allow the construction of the tree, and consequently which will 

be the best structure of the same, is done by obtaining the magnitude called 

Information Gain of each division, which is denoted as ΔI. The information gain 

is obtained by measuring the impurity difference between the parent node and the 

child nodes resulting from the division performed. The greater the gain of informa-

tion, the better the division made and, consequently, the better the structure of the 

tree. Information Gain is not the way to construct the best decision tree, which is 

used not only by the ID3 algorithm but also by others, as we will see later. The ΔI is 

calculated as: 

Information Gain 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj 

where Ifather is the impurity of the father node, I(nj) is the impurity of node son 

j, N(nj) is the number of events associated with node son j, and N is the total number 

of events associated with node father. 

The number of events associated with the child nodes and the total number of 

events are both direct measures that can be obtained from observing the division 

performed, but impurity is an indirect measure for which a function must be defined 

of measurement, and in that sense, to measure the Impurity of a node and to do that

8 The equation to calculate the number of permutations or variations without repetition of n elements 
taken from n in n is pn = vn, n = n!



measurements, a set of different measures, based on the absolute frequencies of the 

existing classes in the node, has been defined. They will be introduced in the 

following.
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Entropy 

The ID3 algorithm use the Entropy that, for each node k with c classes, is calculated 

through the equation:9 

Ent nodeð Þ= -
c 

i= 0 
f i node k log 2 f i node kð Þ  

where fi node k is the relative frequency of class i in node k
10 and c is the number of 

classes. 

Decision tree. Optimization of the definition of the classification function with the 

ID3 Algorithm: Calculation of the Impurity nodes to obtain the information gain. 

Once we have seen how the ID3 algorithm works, what we are going to see is how to 

build the decision tree of the example we are working on, not arbitrarily choosing the 

elementary events that will constitute each node as in the previous case but choosing 

in each case the elementary event that provides the highest gain of information. 

Since we are working with the ID3 algorithm, we calculate the impurity of each node 

using the Entropy measurement. 

We start with the initial node and calculate the impurity of the node if we take 

Theory as an elementary event, as seen in the solution of the previous example. If we 

take Theory in the first node, we obtain a division of the events such that in the child 

nodes, we get the following: at node 1, N1, 3 events for each class, 1, 6, and 7 for the 

passed class and 2, 5, and 8 for the failed class. And at Node 2, N2, we have 0 events 

for the passed class and 2 events for the failed class, 3 and 4. 

Consequently, when theory is taken at the initial node, the tree is (Fig. 4): 

Therefore, the Entropy of Theory is as follows: 

For the parent node, before establishing the division, there are 3 events belonging 

to class Ap, which will be class 0; therefore, the relative frequency of class 0 is 3/8, 

which is the number of approved divided by the total number of qualifications 

available, and since we are in node 1 it will be f01; and 5 events belonging to the 

class Ss, and consequently, therefore, the entropy of the parent node is f11 = 5/8 

9 It is interesting to remember here, because it will be necessary to calculate entropy, how to 
calculate the logarithm of a number in any base. The calculation equation is: 

Logab= 
Logxb 

Logxa 

where x is whatever base we want, for example Ln. 
10 The first class is denoted with a 0, the second with a 1, etc.
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Fig. 4 First division with 
theory 

Ent fð Þ= -

1 

i= 0 

f ip log 2f ip = - f 01 log 2f 01 - f 02 log 2f 02 = 

= -
3 

8 
log 2 

3 

8
-

5 

8 
log 2 

5 

8 
=

- 0:375 - 1:415ð Þ- 0:625 - 0:678ð Þð Þ= 0:531þ 0:424= 0, 955 

This calculation will be valid and equal for the analysis of the other two 

elementary events. 

And for the child nodes obtained when the Theory event is used to partition the 

sample, the entropy is as follows: 

For Node 1, N1, for class 0, passed, 3/6 is the relative frequency, 3 passed in the 

6 grades in the node, and for class 1, fail, the relative frequency is 4/7. Consequently, 

the entropy of node 1 is: 

Ent 1ð Þ= -

1 

i= 0 

f ip log 2f i1 = -
3 

6 
log 2 

3 

6
-

3 

6 
log 2 

3 

6 

= - 0:5 - 1ð Þ- 0:5 - 1ð Þ= 1 

For Node 2, N2, for class 0, passed, 0/2 is the relative frequency, 0 passed for the 

2 grades in the node, and for class 1, failed, the relative frequency is 2/2. Conse-

quently, the entropy of node 2 is:11 

Ent 2ð Þ  = -

1 

i= 0 

f ip log 2f i1 = -
0 

2 
log 2 

0 

2
-

2 

2 
log 2 

2 

2 

= - 0 log 2 0ð ÞÞ- 0ð Þ= 0 

Once the impurities of the parent and child nodes have been obtained, as seen 

above, the information gain is equal to the impurity of the parent node minus the

11 Whenever a complete classification of events occurs in that node in a node, that is, there are no 
events in one class and all are classified in the other, its entropy will be 0.



weighted average of the impurities of the child nodes. We first calculate the weighted 

average of the impurities of the child nodes: As we have seen above, N(n1) is the 

number of events associated with child node 1, which in this case is 7, and N(n2) is  

the number of events associated with child node 2, which in this case is 2, and N is 

the total number of events in the parent node, which in this case is 8, so the weighted 

mean of impurity of the child nodes is:
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Fig. 5 First division with 
laboratory 

k 

j= 1 

N nj 

N 
I nj = 

N n1ð Þ  
N 

:1þ N n2ð Þ  
N 

:0= 

= 
6 

8 
:1þ 2 

8 
:0= 0:75 

Since the impurity of the parent node is 0.955, the information gain performing 

the first division with the elementary event Theory is: 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 955- 0:75= 0:205 

We then perform the same calculations for the elemental event Laboratory: 

When Laboratory is taken at the initial node, the tree is (Fig. 5): 

For Node 1, N1, for class 0, passed, 3/5 is the relative frequency, 3 passed in the 

5 grades in the node, and for class 1, failed, the relative frequency is 2/5. Conse-

quently, the entropy of node 1 is: 

Ent 1ð  Þ  = -

1 

i= 0 

f ip log 2f i1 = -
3 

5 
log 2 

3 

5
-

2 

5 
log 2 

2 

5 
= 

= - 0:6 - 0:73ð Þ- 0:4 - 1:32ð Þ= 0:96 

For Node 2, N2, for class 0, passed, 0/2 is the relative frequency, 0 passed for the 

2 grades in the node, and for class 1, failed, the relative frequency is 4/4. Conse-

quently, the entropy of node 2 is:
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Ent 2ð Þ  = -

1 

i= 0 

f ip log 2f i1 = -
0 

2 
log 2 

0 

2
-

4 

4 
log 2 

4 

4 

= - 0 log 2 0ð Þð Þ- 1 0ð Þ= 0 

Once the impurities of the parent and child nodes have been obtained, as seen 

above, the information gain is equal to the impurity of the parent node minus the 

weighted average of the impurities of the child nodes. We first calculate the weighted 

average of the impurities of the child nodes: As we have seen above, N(n1) is the 

number of events associated with child node 1, which in this case is 5, N(n2) is the 

number of events associated with child node 2, which in this case is 4, and N is the 

total number of events in the parent node, which in this case is 8, so the weighted 

mean of impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

N n1ð Þ  
N 

:1þ N n2ð Þ  
N 

:0= 

= 
5 

8 
:0:96þ 4 

8 
:0= 0:6 

And since the impurity of the parent node is 0.955, the information gain 

performing the first division with the elementary event Theory is: 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 955- 0:6= 0:355 

We then perform the same calculations for the last candidate elementary event, 

Practices: 

When practices at the initial node, the tree is (Fig. 6): 

We know that the entropy of the parent node, as in the two previous cases, is 

0.955 

And for the child nodes obtained when the Practices event is used to partition the 

sample, the entropy is: 

Fig. 6 First division with 
practices
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For Node 1, N1, for class 0, passed, 3/5 is the relative frequency, 3 passed in the 

5 grades in the node, and for class 1, failed, the relative frequency is 2/5. Conse-

quently, the entropy of node 1 is: 

Ent 1ð Þ  = -

1 

i= 0 

f ip log 2f i1 = -
3 

5 
log 2 

3 

5
-

2 

5 
log 2 

2 

5 
= 

= - 0:6 - 0:73ð Þ- 0:4 - 1:32ð Þ= 0:96 

: 

For Node 2, N2, for class 0, passed, 0/2 is the relative frequency, 0 passed for the 

2 grades in the node, and for class 1, failed, the relative frequency is 4/4. Conse-

quently, the entropy of node 2 is: 

Ent 2ð Þ  = -

1 

i= 0 

f ip log 2f i1 = -
0 

2 
log 2 

0 

2
-

4 

4 
log 2 

4 

4 

= - 0 log 2 0ð ÞÞ- 0ð Þ= 0 

Once the impurities of the parent and child nodes have been obtained, as seen 

above, the information gain is equal to the impurity of the parent node minus the 

weighted average of the impurities of the child nodes. We first calculate the weighted 

average of the impurities of the child nodes: As we have seen above, N(n1) is the 

number of events associated with child node 1, which in this case is 5, N(n2) is  

the number of events associated with child node 2, which in this case is 4, and N is 

the total number of events in the parent node, which in this case is 8, so the weighted 

mean of impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

N n1ð Þ  
N 

:1þ N n2ð Þ  
N 

:0= 

= 
5 

8 
:0:96þ 4 

8 
:0= 0:6 

And since the impurity of the parent node is 0.955, the information gain 

performing the first division with the elementary event Practices is: 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 955- 0:6= 0:355 

From the Entropy calculations for Theory, Laboratory, and Practices, 0.205, 

0.355, and 0.355, respectively, we see that the greatest information gain is obtained 

with Laboratory or Practices, so for the initial node, we select any of the two; we are 

going to select Laboratory. 

Once Laboratory is selected, the first level of the classification tree is (Fig. 7): 

And events 3, 4, 5, and 8 are already classified, so we will not use them for the 

next level analysis, which starts with the following sample:



• {A, A, B, Ap}

• {A, B, D, Ss}

• {D, C, C, Ss} Classified

• {D, B, A, Ss} Classified

• {B, C, D, Ss} Classified

• {C, B, B, Ap}

• {B, B, A, Ap}

• {C, D, C, Ss} Classified 
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Fig. 7 First level of 
classification tree 

Once the initial Laboratory node has been established, since two terminal nodes 

or leaves cannot be obtained from it, we proceed to analyse the first intermediate 

node, for which we have Theory and Practices as candidate elementary events. 

The parent node is now made up of only five events, since four events, 3, 4, 5, and 

8 have already been classified in the terminal node Fail, Ss. Therefore, for the parent 

node, before establishing the division, there are 3 events belonging to the class 

Approved, Ap, and 2 belonging to the class Fail, Ss. Taking this into account, we 

calculate its impurity. 

Ent fð Þ = -

1 

i= 0 

f ip log 2f ip = - f 01 log 2f 01 - f 02 log 2f 02 = 

= -
3 

5 
log 2 

3 

5
-

2 

5 
log 2 

2 

5 
=

- 0:6 - 0:73ð Þ- 0:4 - 1:32ð Þð Þ= 0, 97 

We begin by analysing Practices and we obtain a division of the events such that 

in the child nodes, we have, in node 1, 3 events, 1, 6, and 7, all in the approved class, 

grades A and B. In Node 2, we have 0 events for the approved class and 1 event, 

2, for the failed class, with grade C. The tree remains (Fig. 8): 

And for the child nodes obtained when the Practices event is used to partition the 

sample, the entropy is: 

For Node 1, N1, for class 0, passed, 3/3 is the relative frequency, 3 passed in the 

5 grades in the node, and for class 1, failed, the relative frequency is 0/3. Conse-

quently, the entropy of node 1 is:
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Fig. 8 Practices in the 
second level 

Ent 1ð Þ= -
1 

i= 0 
f ip log 2f i1 = -

3 

3 
log 2 

3 

3
-

0 

3 
log 2 

0 

3 
= 0 

For Node 2, N2, for class 0, passed, 0/2 is the relative frequency, 0 passed for the 

2 grades in the node, and for class 1, failed, the relative frequency is 4/4. Conse-

quently, the entropy of node 2 is: 

Ent 2ð Þ= -
1 

i= 0 
f ip log 2f i1 = -

0 

2 
log 2 

0 

2
-

4 

4 
log 2 

4 

4 
= 0 

Once the impurities of the parent and child nodes have been obtained, as seen 

above, the information gain is equal to the impurity of the parent node minus the 

weighted average of the impurities of the child nodes. We first calculate the weighted 

average of the impurities of the child nodes: As we have seen above, N(n1) is the 

number of events associated with child node 3, which in this case is 5, N(n2) is  

the number of events associated with child node 2, which in this case is 2, and N is 

the total number of events in the parent node, which in this case is 5, so the weighted 

mean of impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

N n1ð Þ  
N 

:1þ N n2ð Þ  
N 

:0= 

= 
3 

5 
:0 þ 2 

5 
:0= 0 

And since the impurity of the parent node is 0.97, the information gain 

performing the first division with the elementary event Theory is: 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 97- 0= 0:97 

From the calculations of the Entropy for Practices, we have seen that the impurity 

of the children does not subtract anything from that of the father, so if we calculate 

the information gain with the classification made by Theory it could only be the



same. In consequence, with Practices we already have a complete classification of 

the events, so it would not be necessary to calculate the information gain by Theory 

and the classifier model will be (Fig. 9): 
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Fig. 9 Final classification 

Although the classification model is already finished, we are going to analyse 

what would have happened if we had analysed Theory at this second level. If we 

only analyse the Theory rating and the Global rating, we have:

• {A, Ap}

• {A, Ss}

• Classified

• Classified

• Classified

• {C, Ap}

• {B, Ap}

• Classified 

And we realize that if we take A or B, we have Approved and Failed, so we will 

not be able to have the two nodes with only one class because even if in one node we 

put only C that only has approved, in the other there would be A and B. Therefore, 

since there are not two nodes with zero impurity, the information gain will be less 

than for practices. Furthermore, if we used Theory, we would not have considered 

the D rating. 

Optimizing the Construction of a Decision Tree: CART Algorithm 

Once we have seen how the ID3 algorithm works, which is based on the information 

gain obtained through the impurity measurement that entropy gives us, we will see 

the CART algorithm, which uses the impurity measurement measure called the Gini
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Gini 

CART algorithm uses the Gini, which, for each node k with c classes, is calculated 

through the equation: 

Gin nodeð Þ= 1-
c- 1 

i= 0 
f i nodeð Þ2 

where fi node k is the relative frequency of class i in node k
12 and c is the number of 

classes. 

And we remember how Gain of Information is measured. 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj 

where Ifather is the impurity of the father node, I(nj) is the impurity of node son j, 

N(nj) is the number of events associated with node son j, and N is the total number of 

events associated with node father. 

Decision tree. Optimization of the definition of the classification function with the 

CART Algorithm: Calculation of the Impurity nodes to obtain the information Gain. 

Once we have seen how the CART algorithm works, what we are going to see now is 

how to build the decision tree of the example we are working on, not arbitrarily 

choosing the elementary events that will constitute each node as in the previous case 

but choosing in each case the elementary event that provides the highest gain of 

information. Since we are working with the CART algorithm, we calculate the 

impurity of each node using the Gini measurement. 

We start with the initial node and calculate the impurity of the node if we take 

Theory as an elementary event, as seen in the solution of the previous example.13 If 

we take Theory in the first node, we know that we obtain a division of the events 

such that in the child nodes, we have the following: in node 1, N1, 3 events for the 

approved class, 1, 6, and 7; and three events, 2, 5, and 8 for the fail class. And at 

Node 2, N2, we have 0 events for the passed class and 2 events for the failed class, 

3 and 4. 

Therefore, the Gini of Theory is: For the parent node, before establishing the 

division, there are 3 events belonging to class Ap, which will be class 0; therefore, 

the relative frequency of class 0 is 3/8, which is the number of approved divided by 

the total number of qualifications available, and since we are in node 1, it will be f01; 

and 5 events belonging to the class Ss, f11 = 5/8; consequently, the entropy of the 

parent node is: 

12 The first class is denoted with a 0, the second with a 1, etc. 
13 The images are the same as in the ID3 example, we are not going to repeat it here so as not to be 
reiterative.
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Gin fð Þ  = 1-
c- 1 

i= 0 

f ip 
2 
= 1- 3 

8 

2 þ 5 
8 

2 
= 

= 1- 0:14þ 0:39ð Þ= 0, 47 

This calculation will be valid and the same for the analysis of the other two 

elementary events. 

And for the child nodes obtained when the Theory event is used to partition the 

sample, the Gini is: 

For Node 1, N1, for class 0, passed, 3/6 is the relative frequency, 3 passed in the 

6 grades in the node, and for class 1, failed, the relative frequency is 3/6. Conse-

quently, the entropy of node 1 is: 

Gin 1ð Þ  = 1-
c- 1 

i= 0 

f i1 
2 
= 1- 3 

6 

2 þ 3 
6 

2 
= 

= 1- 0:25þ 0:25ð Þ= 0, 5 

For Node 2, N2, for class 0, passed, 0/2 is the relative frequency, 0 passed for the 

2 grades in the node, and for class 1, failed, the relative frequency is 2/2. Conse-

quently, the entropy of node 2 is:14 

Gin 2ð Þ  = 1-
c- 1 

i= 0 

f i1 
2 
= 1- 0 

2 

2 þ 2 
2 

2 
= 

= 1- 0þ 1ð Þ= 0 

Consequently, once the impurities of the parent and child nodes have been 

obtained, as seen above, the information gain is equal to the impurity of the parent 

node minus the weighted average of the impurities of the child nodes. We first 

calculate the weighted average of the impurities of the child nodes: As we have seen 

above, it is the number of events associated with child node 1, which in this case is 

6, the number of events associated with child node 2, which in this case are 2, and 

N is the total number of events in the parent node, which in this case is 8, so the 

weighted mean of impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

6 

8 
:0:5þ 2 

8 
:0= 0:375 

And since the impurity of the parent node is 0.47, the information gain 

performing the first division with the elementary event Theory is: 

14 As we know whenever a complete classification of events occurs in that node in a node, that is to 
say that in one class there are no events and all are classified in the other, as happened with entropy, 
its Gini will be 0.
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ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 47- 0:375= 0:095 

Once the information gain obtained by choosing Theory as the elementary event 

for the first node has been calculated, the calculations are made to see if any other 

elementary event provides more information gain, in which case it would be selected 

instead of Theory for the initial node. To be able to compare it, you have to choose 

the same unit of measurement for impurity. As it would be very long to do it with the 

three units of measurement, and as each of the three works has already been 

explained, for this first node we are going to do the calculations with the Gini 

index, that is, you must use in the same node the same algorithm. 

We now select Laboratory15 as the initial event and obtain a division of the events 

such that in the children nodes we have, in node 1, 3 events for the Ap class, 1, 6, and 

7 for the approved class; and 2 events 2 and 4 for the class Fail. And in Node 2, we 

have 0 events for the passed class and 3 events for the failed class, 3 and 5. 

If we calculate the Gini when the Laboratory event is used to classify the sample, 

we obtain the following: 

The parent node calculation is the same as for Theory, since nothing has changed, 

since as we said above, this calculation will be valid and the same for the analysis of 

the other two elementary events, Laboratory and Practices. Therefore, the parent 

node has 3 events belonging to class Ap and 5 belonging to class Ss; therefore, the 

Gini of the parent node is 0.47. 

And for the child nodes, it is as follows: 

For Node 1, N1, for class 0, passed, 3/5 is the relative frequency, 3 passed in the 

5 grades in the node, and for class 1, failed, the relative frequency is 2/5. Conse-

quently, the Gini of node 1 is: 

Gin 1ð Þ  = 1-
c- 1 

i= 0 

f i1 
2 
= 1- 3 

5 

2 þ 2 
5 

2 
= 

= 1- 0:36þ 0:16ð Þ= 0, 48 

For Node 2, N2, for class 0, passed, 0/2 is the relative frequency, 0 passed in the 

2 grades in the node, and for class 1, fail, the relative frequency is 3/3. Consequently, 

the Gini of node 2 is: 

Gin 2ð Þ  = 1-
c- 1 

i= 0 

f i1 
2 
= 1- 0 

2 

2 þ 3 
3 

2 
= 

= 1- 0þ 1ð Þ= 0 

15 We repeat the sample here to be able to see the values more clearly: 1. {A, A, B, Ap}; 2. {A, B, D, 
Ss}; 3. {D, C, C, Ss}; 4. {D, B, A, Ss}; 5. {B, C, D, Ss}; 6. {C, B, B, Ap}; 7. {B, B, A, Ap}; 
8. {C, D, C, Ss}.



A. Theory 353

Consequently, once the impurities of the parent and child nodes have been 

obtained, as seen above, the information gain is equal to the impurity of the parent 

node minus the weighted average of the impurities of the child nodes. We first 

calculate the weighted average of the impurities of the child nodes: As we have seen 

above, it is the number of events associated with child node 1, which in this case is 

5, and it is the number of events associated with child node 2, which in this case is 

3, and N is the total number of events in the parent node, which in this case is 8, so 

the weighted mean of impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

5 

8 
:0:48þ 3 

8 
:0= 0:3 

And since the impurity of the parent node is 0.47, the information gain 

performing the first division with the elementary event Laboratory is: 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 47- 0:3= 0:17 

From this result, it can be concluded that the information gain is greater than 

Theory if the elementary event Laboratory is used, since the laboratory event is 0.17 

and the theory event is 0.095, which is why Laboratory would be chosen. We are 

now going to analyse Practices. 

If we take Practices,16 we obtain a division of the events such that in the 

children nodes we have, in node 1, 3 events for the class Ap, 1, 6, and 7 for the 

approved class; and 1 event, 4, for the fail class. In node 2, we have 0 events for the 

passed class and 4 events for the failed class, 2, 4, 5, and 8. 

As mentioned above, the impurity measure to be used will be the Gini index. The 

Laboratory Gini is as follows: 

The parent node calculation is the same as for Theory and Laboratory, but we are 

going to remember it here; therefore, the parent node has 3 events belonging to class 

Ap and 5 belonging to class Ss, and consequently, the Gini of the parent node is: 

Gin fð Þ  = 1-
c- 1 

i= 0 

f ip 
2 
= 1- 3 

8 

2 þ 5 
8 

2 
= 

= 1- 0:14þ 0:39ð Þ= 0, 47 

And for the child nodes the Gini is as follows: 

For Node 1, N1, for class 0, passed, 3/4 is the relative frequency, 3 passed in the 

4 grades in the node, and for class 1, failed, the relative frequency is 1/4. Conse-

quently, the Gini of node 1 is as follows: 

16 We repeat the sample here to be able to see the values more clearly: 1. {A, A, B, Ap}; 2. {A, B, D, 
Ss}; 3. {D, C, C, Ss}; 4. {D, B, A, Ss}; 5. {B, C, D, Ss}; 6. {C, B, B, Ap}; 7. {B, B, A, Ap}; 
8. {C, D, C, Ss}.



354 Supervised Classification

Gin 1ð Þ  = 1-
c- 1 

i= 0 

f i1 
2 
= 1- 3 

4 

2 þ 1 
4 

2 
= 

= 1- 0:5625þ 0:0625ð Þ= 0, 625 

For Node 2, N2, for class 0, passed, 0/4 is the relative frequency, 0 passed in the 

4 grades in the node, and for class 1, failed, the relative frequency is 4/4. Conse-

quently, the Gini of node 2 are: 

Gin 2ð Þ = 1-
c- 1 

i= 0 

f i1 
2 
= 1- 0 

4 

2 þ 4 
4 

2 
= 

= 1- 0þ 1ð Þ= 0 

Consequently, once the impurities of the parent and child nodes have been 

obtained, as seen above, the information gain is equal to the impurity of the parent 

node minus the weighted average of the impurities of the child nodes. We first 

calculate the weighted average of the impurities of the child nodes: As we have seen 

above, it is the number of events associated with child node 1, which in this case is 

4, and it is the number of events associated with child node 2, which in this case is 

4, and N is the total number of events in the parent node, which in this case is 8, so 

the weighted mean of impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

4 

8 
:0:625þ 4 

8 
:0= 0:3125 

And since the impurity of the parent node is 0.47, the information gain 

performing the first division with the elementary event theory is: 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 47- 0:3125= 0:1575 

From this result of the Gini calculations for Theory, Laboratory, and Practices, 

0.095, 0.17, and 0.1575, respectively, it can be concluded that the information gain is 

greater than that of Theory if the elementary event Practices is used in the initial 

node, but it is lower than the use of Laboratory, so Laboratory would be chosen. 

And events 3, 4, 5, and 8 are already classified, so we will not use them for the 

next level analysis. 

{A, A, B, Ap} 

{A, B, D, Ss} 

{D, C, C, Ss} Classified 

{D, D, A, Ss} Classified 

{B, C, B, Ss} Classified 

{C, B, B, Ap} 

{B, B, A, Ap} 

{C, D, C, Ss} Classified
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Once the initial Laboratory node has been established, since two terminal nodes 

or leaves cannot be obtained from it, we proceed to analyse the first intermediate 

node, for which we have Theory and Practices as candidate elementary events. 

The parent node is now made up of only five events, since four, events 3, 4, 5, and 

8 have already been classified in the terminal node Suspense, Ss. Therefore, for the 

parent node, before establishing the division, there are 3 events belonging to the 

class Approved, Ap, and 2 belonging to the class Suspense, Ss. Taking this into 

account, we calculate its impurity with the Gini. 

Gin fð Þ = 1-
1 

i= 0 

f ip 
2 
= 1- 3 

5 

2 þ 2 
5 

2 
= 

= 1- 0:36þ 0:16ð Þ= 0:48 

We begin by analysing Practices and we obtain a division of the events such that 

in the child nodes we have, in node 1, 3 events, 1, 6, and 7, all in the approved class, 

grades A and B. And in Node 2, we have 0 events for the passed class and 1 event, 

2, for the failed class, with grade C. 

And for the child nodes obtained when the Practices event is used to partition the 

sample, the Gini is as follows: 

For Node 1, N1, for class 0, passed, 3/3 is the relative frequency, 3 passed in the 

5 grades in the node, and for class 1, failed, the relative frequency is 0/3. Conse-

quently, the Gini of node 1 is: 

Gin 1ð Þ  = 1-
c- 1 

i= 0 

f i1 
2 
= 1- 3 

3 

2 þ 0 
3 

2 
= 

= 1- 1þ 0ð Þ= 0 

For Node 2, N2, for class 0, passed, 0/2 is the relative frequency, 0 passed in 

4 grades in the node, and for class 1, failed, the relative frequency is 2/2. Conse-

quently, the Gini of node 2 is: 

Gin 2ð Þ  = 1-
c- 1 

i= 0 

f i1 
2 
= 1- 0 

2 

2 þ 2 
2 

2 
= 

= 1- 0þ 1ð Þ= 0 

Consequently, once the impurities of the parent and child nodes have been 

obtained, as seen above, the information gain is equal to the impurity of the parent 

node minus the weighted average of the impurities of the child nodes. We first 

calculate the weighted average of the impurities of the child nodes: As we have seen 

above, it is the number of events associated with child node 1, which in this case is 

3, and it is the number of events associated with child node 2, which in this case is 

2, and N is the total number of events in the parent node, which in this case is 8, so 

the weighted mean of impurity of the child nodes is:
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k 

j= 1 

N nj 

N 
I nj = 

3 

8 
:0 þ 2 

8 
:0= 0 

And since the impurity of the parent node is 0.48, the information gain 

performing the first division with the elementary event Theory is: 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 48- 0= 0:48 

From the Gini calculations for Practices, we have seen that the impurity of the 

children does not subtract anything from that of the father, so if we calculate the 

information gain with the classification made by Theory, it could only be the same. 

In consequence, with Practices we already have a complete classification of the 

events so it would not be necessary to calculate the information gain by Theory and 

the classifier model will be (Fig. 10): 

We realize that, as is logical, the classifier model that we obtain using the CART 

algorithm and the Gini impurity measure is the same as we obtained using the ID3 

algorithm and the Entropy impurity measure. 

Optimizing the Construction of a Decision Tree: Error Algorithm 

Error is defined as: 

Err nodeð Þ= 1-m  axi f i nodeð Þ  

We have carried out all the calculations to obtain the information gain of the first 

node using the elementary event Theory to the end to give more clarity and 

consistency to the example, but as said above, the impurities and the information

Fig. 10 Final classification



gain were to be calculated using the three steps and you will not stop doing it. We 

now calculate the impurities using the Error.
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When the Theory event is used to partition the sample, the impurity measure 

Error is: 

We know that the parent node has 3 events belonging to class Ap and 5 belonging 

to class Ss; therefore, the error of the parent node is: 

Err fð Þ= 1- max i f ip = 1- max i 
3 

8 
, 
5 

8 
= 1- 0, 625= 0, 375 

And for the child nodes, the error is: 

Err 1ð Þ= 1- max i f i1ð Þ  = 1- max f 01, f 11ð Þ= 1- max 
3 

6 
, 
3 

6 
= 

= 1- 0:5= 0:5 

Err 2ð Þ= 1- max i f i1ð Þ  = 1- max f 02, f 12ð Þ= 1- max 
0 

2 
, 
2 

2 
= 1- 1= 0 

Consequently, the weighted mean impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

6 

8 
:0:5þ 2 

8 
:0= 0:375 

And since the impurity of the parent node is 0.375, the information gain 

performing the first division with the elementary event Theory is: 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 375- 0:375= 0 

Once the initial node has been established, and since two terminal nodes or leaves 

cannot be obtained from it, we proceed to analyse the first intermediate node, for 

which we have theory and practices as candidate elementary events. 

The parent node is now made up of only five events, since three, events 3, 5, and 

8, have already been classified at the terminal node Ss. Therefore, for the parent 

node, before establishing the division, there are 3 events belonging to class Ap and 

2 belonging to class Ss. For this second node, we are going to make the calculations 

with the unit of measurement Error (this calculation will be valid and the same for 

the analysis of the other elementary event). 

If we take Theory, we obtain a division of the events such that in the child nodes 

we have, in node 1, 4 events: 3 events, 1, 6, and 7, for the approved class, and 

1 event, 2, for the failed class. And in Node 2, we have 0 events for the passed class 

and 1 event for the failed class, elementary event 2.
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Consequently, the error when using elementary event Theory to partition the 

sample in the analysed parent node, which is the second node or first intermediate 

node, is: 

Err fð Þ= 1- max i f ip = 1- max i 
3 

5 
, 
2 

5 
= 1- 0, 6= 0, 4 

And for the child nodes obtained, the error is: 

Err 1ð Þ= 1- max i f i1ð Þ  = 1- max f 01, f 11ð Þ= 1- max i 
3 

4 
, 
1 

4 
= 

= 1- 0, 75= 0, 25 

Err 2ð Þ= 1- max i f i2ð Þ  = 1- max f 01, f 11ð Þ= 1- max i 
0 

1 
, 
1 

1 
= 

= 1- 1= 0 

Consequently, the weighted mean impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

4 

5 
:0:25þ 1 

5 
:0= 0:2 

Since the impurity of the parent node is 0.375, the information gain performing 

the first division with the elementary event Theory is: 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 4- 0:2= 0:2 

Once Theory has been analysed, we will see what information we gain if we 

choose Practices. If we take Practices, we obtain a division of the events such that in 

the child nodes we have, in node 1, 3 events, 1, 6, and 7, all in the approved class. In 

Node 2, we have 0 events for the passed class and 2 events, 2 and 4, for the failed 

class. 

Consequently, the Theory Error in the analysed parent node, which is the second 

node or first intermediate node, is: 

Err fð Þ= 1- max i f ip = 1- max i 
3 

5 
, 
2 

5 
= 1- 0, 6= 0, 4 

And for the child nodes obtained, the error is: 

Err 1ð  Þ= 1- max i f i1ð  Þ= 1- max f 01, f 11ð Þ= 1- max i 
3 

3 
, 
0 

3 
=  = 1- 1= 0
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Fig. 11 Final classification 

Err 2ð Þ= 1- max i f i2ð Þ  = 1- max f 01, f 11ð Þ= 1- max i 
0 

2 
, 
2 

2 
= 

= 1- 1= 0 

Consequently, the weighted mean impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

3 

5 
:0 þ 2 

5 
:0= 0 

And since the impurity of the parent node is 0, the information gain performing 

the first division with the elementary event Theory is: 

ΔI = Ifather -
k 

j= 1 

N nj 

N 
I nj = 0, 4- 0= 0:4 

From this result, it can be concluded that the information gain is greater if the 

elementary event Practices than Theory is used in the intermediate node, but it is also 

that a complete classification of the events in two leaf or terminal nodes has already 

been achieved and consequently the final tree looks like (Fig. 11): 

Optimizing the Construction of a Decision Tree: Other Approaches 

In some cases, the use of the information gain measure is not enough to solve the 

problem of looking for the best division because, for example, there may be two or 

more elementary events that provide the same information gain. To solve this, the 

measure known as the Gain Ratio is used, which is the existing proportion between 

the information gain and the Division Information. More formally, it is defined as:
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Gain Ratio=
ΔI 

Division Information 

And the division information is defined as: 

Division Information= -

k 

i= 1 

p dið Þ log 2p dið Þ  

Where k is the number of divisions produced by the elementary event, and p(di) is the 

relative frequency of division i, that is, the number of events that fall in that division 

divided by the total number of event values. 

Decision tree. Profit Ratio. Division Information. We are going to calculate the 

division information and the profit ratio of the intermediate node Practices of the 

exercise we are doing. 

Division Information = -

k 

i= 1 

p dið Þ log 2p dið Þ  

= p d1ð Þ log 2p d1ð Þ þ  p d2ð Þ log 2p d2ð Þ  

= 
3 

5 
: log 2 

3 

5 
þ 2 

5 
: log 2 

2 

5 
= - 0:97 

There are only two divisions k = 2 and p(d1) is the relative frequency of the first 

division, which are the number of events that fall in that division divided by the total 

number of events. 

The profit ratio is: 

Gain Ratio=
ΔI 

Division Information 
= 

0, 4

- 0:97 
= - 0:41 

Once the classification has been completed from a decision tree (or any other 

classification technique) to establish the degree of precision with which it classifies a 

set of events from a random experiment, within the set of equivalence classes 

previously defined for these events, the calculation of the classical probability of 

classification of the events is used, or in its correct equivalence class, a measure 

called accuracy, which is more formally defined as: 

8 Aif g1 
i= 1 ⊂ P Eð Þ:f Aið Þ  : P Eð Þ→C P Eð Þð Þ=e fð Þ= 

ncorrect classifications 
nclassifications 

, 

C(“P (E))” are the equivalence classes defined on P(E). 

or in an incorrect equivalence class, a measure called the error ratio, which is 

more formally defined as:



n
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8 Aif g1 
i= 1 ⊂ P Eð Þ:f Aið Þ  : P Eð Þ→C P Eð Þð Þ=re fð Þ= 

incorrect classifications 

nclassifications 
, 

As seen from its definition, the accuracy and the error ratio are complementary 

probabilities, e (f) = 1 - re (f). The threshold of acceptance of an accuracy, or error, is 

not fixed but will be set arbitrarily a priori and will depend on the objectives of the 

study. 

Neural Networks 

As we know from what has been studied in Topic 6, every random experiment has an 

associated sample space E, as the set of all the elementary events of the random 

experiment, P (E) 

From this knowledge, we are going to study the concept of the neural network. 

Classification studies based on artificial neural networks seek to define a function, 

called the neural network model, that allows, from the qualitative values of n-1 

elementary events, of the n elementary events that make up an event to determine the 

value of the remaining elemental event. Neural networks work with numerical 

values, so it is necessary to convert qualitative values into numerical values to be 

able to operate with them. 

Artificial neural networks are composed of two or more layers, each of which is 

composed of one or more nodes, which can be input if values are introduced in the 

network layer or output if values are obtained. These nodes are also known as 

neurons or units. Each input node is connected by means of a weighted connection 

with an output node in such a way that the values of those nodes whose connections 

have a greater weight will have a greater relevance in the calculation of the final 

result. Therefore, it is known as training a neural network, which is actually defining 

or specifying the neural network to optimize it for the resolution of a specific 

classification problem consisting of determining the weights of the connections 

between nodes, together with another value called polarization, which will be 

subtracted from the value resulting from the aggregation of the neuronal 

connections. 

Neural network of events. To introduce the concept of a neural network of events, 

we will use an example very similar to the one we saw in the supervised classifica-

tion when we were studying the decision tree technique, although we will introduce 

some modifications that allow us to see more clearly how a neural network works. 

The events that we are going to classify are the grades of a subject from a group of 

students. The qualifications will be made up of three marks, the qualifications of the 

Theory, Laboratory, and Global Qualification tests. The elementary events are each 

of the marks individually E = {Theory, Laboratory, Global Score}. All elementary 

events will have two possible values: Approved, which will become a 1 to be able to 

apply the network, and Fail, for which we will take the value -1. The classification 

function sought in this case will be that which, based on the values of the first three



elementary events, allows classifying an event, or what is the same, depending on the 

qualifications in theory and laboratory, obtaining the overall student grade. 
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To obtain the neural network that best relates the events, different types of neural 

networks can be used. This differentiation is based on the fact that each of them has a 

different structure. All of them use a sample or set of events for which the values of 

all elementary events are known, including the one to be inferred, to define the neural 

network. Once the function is defined, it will be used to infer the value of new events. 

Sample. The sample of events that will allow finding the definition of the 

regression function is made up of the following four events: 1. {Ap, Ap, Ap}; 

2. {Ap, Ss, Ss}; 3. {Ss, Ap, Ss}; 4. {Ss, Ss, Ss}. Or what, in its transformed values, 

to be able to work with the network are: 1. {1, 1, 1}; 2. {1,-1,-1}; 3. {-1, 1,-1}; 

4. {-1, -1, -1}. 

Among the best known and most commonly used types of neural networks are the 

following:

• Two-layer artificial neural network or perceptron

• Multilayer artificial neural network 

We are going to see how each of them works in a specific way. 

Two-Layer Artificial Neural Network or Perceptron: Rosenblatt 

Algorithm 

A perceptron is the simplest artificial neural network model. It was developed by 

Frank Rosenblatt in 1957. The perceptron consists of two layers, an input layer with 

n-1 input nodes, where n is the number of elementary events that are had, and an 

output layer with a single node. Through the input nodes, the values of the n-1 

elementary events of which their value is known will be introduced into the network 

(the elementary event n is the dependent event), and through the output node, the 

perceptron will provide the value of the unknown elemental event. 

Following the generic operation of a neural network, the output node of the 

perceptron will obtain the output value through a weighted sum of the values 

obtained from the input nodes, that is, adding the weighted connections between 

the output node and those connected with it, which in this case are all the inputs. The 

mathematical equation that defines a perceptron is: 

y0 = 

1, if 
n- 1 

i= 1 

wixi ≥ θ

- 1, if 
n- 1 

i= 1 

wixi < θ 

or what is the same, if we clear θ we have:
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y0 = 

1, if 
n- 1 

i= 0 

wixi ≥ 0

- 1, if 
n- 1 

i= 0 

wixi < 0 

where w0 = - θ and x0 = 1 

where wi is the weight of the connection of node xi with the final node, and θ is the 

value of the polarization. y′ is the value that, for the elementary event whose value is 

unknown, gives the two-layer neural network or perceptron, and y is the real value of 

said elementary event, which we only know in the values of the training sample. 

Therefore, to train or define a perceptron for the resolution of a specific classifi-

cation problem, it is necessary to obtain the weights of each of the connections 

between the input and output nodes and add them by means of a sum, from which the 

polarization value is subtracted. To do this, the sample of complete events will be 

used, that is, the values of all its elementary events, which are available, are known. 

To determine the weights that define the perceptron, a 3-step process is followed: 

Step A. Step A consists of two substeps: 

Step 1. The perceptron is initialized by arbitrarily assigning weights, comprised in 

the interval [-1, 1], to the connections of each node with the final node that is found. 

Step 2. The value of y′ is calculated for the first event in the training sample being 

used. The order of analysis of the events is chosen arbitrarily. 

Step A of definition of a perceptron.17 Step A consists of two substeps: 

Step 1. Choice of initial values of the weights. The first thing to do is to arbitrarily 

choose the values for the weights in the interval [-1, 1]. As we are working with 

events composed of three elementary events, following the equation above, we must 

define three weights w1, w2, w3, and the values chosen are: 

w1 = 0:6,w2 = 0:3,w3 = - 0:2 

Step 2. Calculation of y′ for the first event. 

Next, taking the sample of events that we are using, the events are calculated, which 

for event 1 are: 

y0 = 

n- 1 

i= 0 

wixi = - 0:6 1ð Þ þ  0:3 1ð Þ- 0:2 1ð Þ= - 0:5 

Since -0.5 < 0, the value of y′ = - 1 does not match with y 

Step 2. If the value of y′ is equal to that of y, y′ is calculated for the second event 

using the same weights, and this process is repeated in the same way as long as the

17 We rewrite the sample to make the text easier to read: 1. {1, 1, 1}; 2. {1, -1, -1}; 3. {-1, 1, -1}; 
4. {-1, -1, -1}.



value of y′ coincides with y for the different events of the training sample. In the 

event that y′ and y do not match, for the first event analyzed or for any subsequent 

event, the weights must be recalculated. For which the equation is used:
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wi k þ 1ð Þ=wi kð Þ þ  λ y- y0 kð Þð Þxi 

where k refers to the iteration in the calculation of weights and λ is a factor called the 

learning ratio, with a value in the interval [0,1], which is arbitrarily chosen by the 

network designer. It must be taken into account that when observing the equation, if 

λ is close to 0, the new value of the weights will be very close to the old value, and if 

it is close to 1, the new value will be heavily influenced by the amount of adjustment 

made in the iteration. Once the weights have been recalculated, step 1.2 is carried out 

with the next event in the sample. 

Step 2 of the definition of a perceptron. Recalculation of weights. As the value of 

y′ = - 1 does not coincide with y, the weights are recalculated, for which the 

following equation is used: 

wi k þ 1ð Þ=wi kð Þ þ  λ y- y0 kð Þð Þxi 

where k = 1 because it is the first iteration, and for λ, the most neutral value possible 

λ = 0.5 is taken, with which the calculations remain: 

w0 2ð Þ=w0 1ð Þ þ  0:5 y- y0 1ð Þð Þx0 = 

= - 0:6þ 0:5 1- - 1ð Þð Þ  1ð Þ= - 0:6þ 1= 0:4 

w1 2ð Þ=w1 1ð Þ þ 0:5 y- y0 1ð Þð Þx1 = 

= 0:3þ 0:5 1- - 1ð Þð Þ  1ð Þ= 0:3þ 1= 1, 3 

w2 2ð Þ=w2 1ð Þ þ  0:5 y- y0 1ð Þð Þx2 = 

= - 0:2þ 0:5 1- - 1ð Þð Þ  1ð Þ= - 0:2þ 1= 0:8 

Substep 1.2 Calculation of y′ for the second event. 

Next, taking the sample events that we are using, the events are calculated as 

follows: 

Event 2: 

y0 = 

n- 1 

i= 0 

wixi = 0:4 1ð Þ þ  1:3 1ð Þ þ 0:8 - 1ð Þ= 0, 9 

Since 0.9 is > 0, the value of y′ = 1 is different from y. 

Step 2. Recalculation of weights. Consequently, we have to redo step 2 and 

recalculate the weights:
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wi k þ 1ð Þ=wi kð Þ þ  λ y- y0 kð Þð Þxi 

where k = 2 because it is the second iteration, and for λ, the most neutral value 

possible λ = 0.5 is taken, with which the calculations remain: 

w0 3ð Þ=w0 2ð Þ þ  0:5 y- y0 2ð Þð Þx0 = 

= 0:4 þ 0:5 1- - 1ð Þð Þ  1ð Þ= - 0:4- 1= - 0:6 

w1 3ð Þ=w1 2ð Þ þ  0:5 y- y0 2ð Þð Þx1 = 

= 1:3þ 0:5 1- - 1ð Þð Þ  1ð Þ= 1:3- 1= 0, 3 

w2 3ð Þ=w2 2ð Þ þ  0:5 y- y0 2ð Þð Þx2 = 

= 0:8þ 0:5 1- - 1ð Þð Þ - 1ð Þ= 0:8þ 1= 1:8 

We return to substep 1.2 

Substep 1.2 Calculation of y′ for the third event. 

Event 3: 

y0 = 

n- 1 

i= 0 

wixi = 0:4 1ð Þ þ  1:3 1ð Þ þ 0:8 - 1ð Þ= 0, 9 

Since 0.9 is > 0, the value of y′ = 0.9, which does not match y. 

Step 2. Recalculation of the weights.18 Consequently, we have to redo step 2 and 

recalculate the weights: 

where k = 3 because it is the third iteration and λ = 0.5, with which the calculations 

remain: 

w0 4ð Þ=w0 3ð Þ þ 0:5 y- y0 3ð Þð Þx0 = 

= - 0:6þ 0:5 1- - 1ð Þð Þ  1ð Þ= - 0:6- 1= - 1:6 

w1 4ð Þ=w1 3ð Þ þ  0:5 y- y0 3ð Þð Þx1 = 

= 0:3þ 0:5 1- - 1ð Þð Þ - 1ð Þ= 0:3þ 1= 0:8 

w2 4ð Þ=w2 3ð Þ þ  0:5 y- y0 3ð Þð Þx2 = 

= 1:8þ 0:5 1- - 1ð Þð Þ  1ð Þ= 1:8- 1= 0:8 

We return to substep 1.2 

Substep 1.2 Calculation of the fourth event.

18 We rewrite the sample to make the text easier to read: 1. {1, 1, 1}; 2. {1, -1, -1}; 3. {-1, 1, -1}; 
4. {-1, -1, -1}.
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n- 1

n- 1

n- 1

Event 4:
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y0 = 

i= 0 

wixi = - 1:6 1ð Þ þ  1:3 - 1ð Þ þ 0:8 - 1ð Þ= - 3:7 

Since -3.7 < 0, the value of y′ = - 1 matches y. Therefore, there is no need to 

recalculate the weights. 

Step 3. Once we have some weights that give us a correct classification, we apply 

them to the rest of the events that had an incorrect classification to see if they 

either classify them correctly or they serve as a basis to continue with the 

correction of the weights. 

Event 1: 

y0 = 

i= 0 

wixi = - 1:6 1ð Þ þ  1:3 1ð Þ þ  0:8 1ð Þ= 0:5 

Since 0.5 is > 0, the value of y′ = - 1 matches y 

Event 2: 

y0 = 

i= 0 

wixi = - 1:6 1ð Þ þ  1:3 1ð Þ þ  0:8 - 1ð Þ= - 0:6 

since -0.6 is < 0, the value of y′ = - 1, which matches y 

Event 3: 

y0 = 

i= 0 

wixi = - 1:6 1ð Þ þ  1:3 - 1ð Þ þ 0:8 1ð Þ= - 2:1 

since -2.1 is < 0, the value of y′ = - 1, which matches y 

Since event 4 was already well classified, we already have a well-defined neural 

network that classifies the grades following the same pattern as the sample of grades 

used. The perceptron is: 

y0 = 

1, if 
2 

i= 0 

wixi ≥ 0,

- 1, if 
2 

i= 0 

wixi < 0 

with w0 = - 1:6,w1 = 1:3,w2 = 0
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The perceptron can only find an optimal solution if the problem is linearly 

separable. 

In the example seen above, it has been chosen for its simplicity to teach the 

fundamentals of how a perceptron works, but it uses all the possible events that can 

be had to train the network, so it is not possible to verify how it would classify the 

network. 

Naïve Bayes 

In this subsection, the use of probability concepts to solve the problem of supervised 

classification is introduced. This use of probability to solve problems of supervised 

classification arises from the fact that not always all the factors and characteristics 

that can affect the performance of a classifier to correctly classify an event are 

known, and it is very possible that the set of attributes used is not enough to obtain 

a deterministic classification. That is, the same set of values of the used attributes 

introduced in the classifier could be classified into different classes. This is because 

the unknown values of the characteristics not considered are not being introduced in 

the classifier. Even if all the attributes were considered, the classification could not 

be deterministic if the scales used to measure the values of those characteristics 

present any ambiguities. 

As an example of when a probabilistic approximation to the problem of super-

vised classification can be used is the classification of the expectation of life for a 

person. Even if many characteristics of the genetical information of the person, the 

health, and the way of life, the food that eat, the exercise that does, is introduced, 

other factors that for sure impact in the classification can be forgotten. In addition, 

even if all of them were introduced, the way to measure most of them is going to be 

ambiguous, for example, which amount of water drinks or how much exercise 

practices every day. 

The problem of supervised classification is stated as the calculation of the 

probability for a specific value, corresponding to the class, for the variable B. If 

the probability of B were unconditional, that is, without the impact of the occurrence 

of any other variable, it would be calculated as P (B), but if the occurrence of B 

was conditioned for the occurrence of other single event, as A, we saw in the chapter 

of probability that the probability of B, is P (B | A), because B and A are related. This 

is the problem that must be solved to have the probability of B when we have the 

values of not only one A but multiple As. 

To develop the classifier for each pair of values of A and B in the training set, it 

would be necessary to know a posterior P (B | A), and every register in the test set 

should be classified in class B, which gives the higher value for P (B | A). 

As an example of the probabilistic approach we follow using the previous one, we 

are going to classify persons that reach the eighth ten years. As training set we take: 

Male or Female; Pathology: Cardiac, Respiratory, None; Monthly days of Exercise; 

Reach the Age. Persons will be classified by Reach the Age or not. For example, we



can have a register in the test set with the following set of values for the variables: 

Male, Respiratory Pathology, 3 days of exercise. To classify this person as reaching 

the age of eighty or not reaching the age of eighty, using the probability approach, 

we must calculate the probability a posteriori to reach it, given the values of the rest 

of the characteristics observed in the training set. If the probability of Yes is higher 

than the probability of No, the person is classified as having a long life expectancy. 
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We know, from chapter “Probability”, that Bayes Probability allows us to 

calculate the probability a posteriori from the probability a priori using the equation 

P BjAð Þ= 
P AjBð ÞP Bð Þ  

P Að Þ  

In addition, as we are going to compare the values of P(B|A) for different values 

of B, but ever with the same set of As, the denominator, P(A) is ever the same and 

can be ignored, and the probability a priori of B, P(B), can be calculated from the test 

set calculating the amount of data that belongs to class B. Consequently, the 

remaining value in the equation that we need to calculate is P(A|B). In the following, 

two different techniques to solve it are introduced, both of which are included in the 

set known as Bayesian Classifiers and are Naïve Bayes and Bayesian Belief 

Network. 

Naïve Bayes Classifier 

Naïve Bayes classifier estimates the need value of P(A|B) when there is more than 

one characteristic, or As, as is usual, assuming that they are independent. Conse-

quently, as we saw in chapter “Probability”, their probability of co-appearance is 

calculated by multiplying their individual probability of appearance, that is, using 

the equation: 

P AjBð Þ= 

n 

i= 1 

P AijBð Þ  

where each set of characteristics that constitutes an instance is configured by the 

n values of n As and B. 

A1, ::,An,Bf g  

Consequently, although the estimation of the probabilities a posteriori of each 

combination of kinds of classes and attribute values is a difficult problem because it 

requires a very large training set, even for a few attributes, the Naïve Bayes classifier, 

assuming the independence of attributes, allows us to solve it in an easier way 

because instead of having to calculate the probability of each combination of As 

and B, only is needed to calculate the probability of a given Ai, which produces a 

very large reduction in the training set needed.



(continued)

A. Theory 369

To classify a test instance, the probability a posteriori of all the possible values of the 

classifier, that is, the characteristic used to classify, must be calculated for all the sets of 

values of the rest of the characteristics, {A1, ..,An,B}, and that one with more proba-

bility will allow us to classify the instance. As we saw above, the equation used is: 

P BjAð Þ= 
P AjBð ÞP Bð Þ  

P Að Þ  

where 

P AjBð Þ= 

n 

i= 1 

P AijBð Þ  

Consequently, we have 

P BjAð Þ= 

n 

i= 1 

P AijBð ÞP Bð Þ  

P Að Þ  

As we saw that P(A) is the same for all of them, the needed equation is 

P BjAð Þ= 

n 

i= 1 

P AijBð ÞP Bð Þ  

Consequently, we will need to calculate 
n 

i= 1 

P AijBð Þ  for all the qualitative and 

quantitative characteristics in the problem. Let’s see now how we calculate them. 

Qualitative Characteristics 

For qualitative attributes, the conditional probability P(Ai|B) is calculated as the 

relative frequencies of the values of the characteristic, such as Ai, in the training set, 

when and that is very important, the characteristic B takes each one of the classifi-

cation values or classes. 

To see an example of the calculation of the conditional probability of Qualitative 

Characteristics, we come back to the problem of life expectation. The complete 

training set is: 

Data identifier Gender Pathology Monthly exercise days More than eighty 

1 Male Cardiac 7 No 

2 Female Respiratory 24 Yes 

3 Female Cardiac 13 No
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Data identifier Gender Pathology Monthly exercise days More than eighty 

4 Male Respiratory 8 No 

5 Female None 21 Yes 

6 Male Respiratory 4 No 

7 Male None 8 No 

8 Female Cardiac 22 Yes 

9 Female Respiratory 23 Yes 

10 Female Cardiac 14 No 

With these data, we can calculate the probability for each value of each characteristic 

Ai, that is, Male and Female for A1 Gender; and Cardiac, Respiratory, or None, for 

A2, Pathology; for each class in B, that are more than eighty, yes or not. 

P(Ai|B) = P (Male | > 80) = 0/4 

P (Male | < 80) = 4/6 

P (Female | > 80) = 4/4 

P (Female | < 80) = 2/6 

P(Ai|B) = P (Cardiac | > 80) = 1/4 

P (Cardiac | < 80) = 3/6 

P (Respiratory | > 80) = 2/4 

P (Respiratory | < 80) = 2/6 

P (None | > 80) = 1/4 

P (None | < 80) = 1/6 

Quantitative Characteristics 

For quantitative characteristics, when they have quantitative continuous data, the 

conditional probability P(Ai|B) cannot be applied in the same way as for qualitative 

characteristics, and there are two main ways to calculate the required probabilities:

• The first way is to convert the continuous value into a discrete value and apply the 

same manner as for qualitative characteristics. To do that, we can use the 

grouping of data into classes, as we saw in chapter two, through the use of 

intervals; that is, we divide the continuous data into intervals and use the mark 

if the interval is the discrete value that represents the continuous values of that 

class. The problem of this solution is the correct selection of the number of 

intervals.

• The second way is to fit a probability distribution for the observed data of the 

characteristic and to use the training set to obtain the parameters of that distribu-

tion. The most commonly used distribution to make a first approximation is the 

Normal or Gaussian probability distribution that was introduced in chapter three. 

Normal distribution is characterized by the parameters, mean, and standard
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deviation, that, as we know, for populations are called by the Greek letters 

μ and σ. The equation is: 

P AijBð Þ= 
1 

2π
p 

∙ σ 
exp -

a- μð Þ2 
2σ2 

To see an example of the calculation of the conditional probability of quantitative 

continuous characteristics, we return to the problem of life expectations. The con-

tinuous value in this case is the time dedicated to exercise each month. We use the 

second way to calculate P(Ai|B), which in this case is P (monthly time of exercise | 

not reaching the age expectation of 80). We suppose that the time of exercise has a 

Normal probability distribution, and consequently, we must find its mean and 

standard deviation. To calculate both of them, we use the training set of life 

expectation: 

μ= x= 
7þ 13þ 8þ 4þ 8þ 14 

6 
= 

54 

6 
= 9 

σ = s 

= 
7-14:4ð Þ2þ 13-14:4ð Þ2þ 8-14:4ð Þ2þ 4-14:4ð Þ2þ 8-14:4ð Þ2þ 14-14:4ð 2 

6 
= 6:42 

From these two data, we have characterized the Normal distribution as 

P Time of exercicej< 80ð Þ= 
1 

2π
p 

∙ 6, 42 
exp -

a- 9ð Þ2 
2:41, 16 

With this equation, we can calculate the probability of the number of days of 

exercise for someone who has not reached the eight decades. For example, if 

someone who does not reach eighty years of age has dedicated 15 days monthly to 

exercise, that is, a = 15: 

P 15j< 80ð Þ= 
1 

2π
p 

∙ 6, 42 
exp -

15- 9ð Þ2 
2:41, 16 

Here, we must take into account that we are obtaining the probability of a point 

through a density function of probability and, consequently, should be zero, and the 

obtained probability is for an interval of approximately a. 

Once we have seen how to obtain the conditional probability of the qualitative 

and quantitative characteristics, we are going to solve the complete problem of the 

supervised classification of the expectation of life. We classify one person who is 

male, has a respiratory disease, and practices exercise 15 days per month. The



Þ

problem is to classify him, that is, if he belongs to the group that lives more than 

80 years or not. 
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Consequently, from a probabilistic point of view, we must establish the proba-

bility a posteriori 

P > 80jAð Þ  and P < 80jAð Þ  

and the highest probability will establish to which class the person belongs. 

From the above, we know that the equations that must be used to calculate both 

probabilities are: 

P > 80jAð Þ= 

3 

i= 1 

P Aij> 80ð ÞP > 80ð Þ  

P < 80jAð Þ= 

3 

i= 1 

P Aij< 80ð ÞP < 80ð Þ  

where the three A characteristics are Gender, Health, and Days of Exercise. We have 

calculated their probabilities a posteriori for this case in the previous exercises. 

P(Ai|B) = P (Male | > 80) = 0/4 

P (Male | < 80) = 4/6 

P (Respiratory | > 80) = 2/4 

P (Respiratory | < 80) = 2/6 

Consequently, to solve the exercise, we only need to calculate P(15 | >80) 

We need to calculate the mean and the standard deviation for the data >80, that is: 

μ= x= 
7þ 13þ 8 þ 4 þ 8 þ 14 

6 
= 

54 

6 
= 9 

σ = s 

= 
7-14:4ð Þ2þ 13-14:4ð Þ2þ 8-14:4ð Þ2þ 4-14:4ð Þ2þ 8-14:4ð Þ2þ 14-14:4ð 2 

6 
= 6:42 

From these two data, we have characterized the Normal distribution as 

P 15j> 80ð Þ= 
1 

2π
p 

∙ 6, 42 
exp -

15- 9ð Þ2 
2:41, 16 

= 

We need to calculate P(>80) and P(<80), and from the training set, both amounts 

can be calculated.
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P > 80ð Þ= 4=10 

P > 80ð Þ= 6=10 

Consequently, 

P > 80jAð Þ= 

3 

i= 1 

P Aij> 80ð ÞP > 80ð Þ= P (Male | > 80). P (Respiratory 

| > 80). P(15 | >80).P > 80ð Þ= 
0 
4
: 2 
4
:x: 4 

10 
= 0 

P < 80jAð Þ= 

3 

i= 1 

P Aij< 80ð ÞP < 80ð Þ= P (Male | < 80). P (Respiratory 

| < 80). P(15 | <80).P < 80ð Þ= 
4 
6
: 2 
6
:x: 6 

10 
= 

Consequently, as P(<80|A) > P(>80|A), this person is classified in the class that 

does not reach the eighth decade, that is, No. 

Regression Functions 

Regression studies19 seek to define a function, called a regression model, that allows, 

from the quantitative values of n-1 elementary events of the n elementary events 

that make up an event, to determine the value of the remaining elementary event, 

with the objective of obtaining the value of one of them, the dependent one, as a 

function of the rest of them, the independent ones. 

The term regression has its origin in the Latin term regressio, -ōnis and means 

retrocession or action of going back. It was first introduced in the mid-nineteenth 

century by the English geneticist Francis Galton, based on a discovery he made in his 

studies of genetic inheritance, which he called “regression to the mean”, and which 

consisted of what heights of the children tended to “return” to the average height of 

the population, that is, the average height of the children of tall parents was lower 

than the average height of their parents and that the average height of the children of 

short parents was higher than the average height of their parents. Galton developed 

regression analysis to study this effect, which he referred to as the “regression to 

mediocrity”. Although the RAE dictionary does not yet include this mathematical 

meaning of the term regression, important dictionaries in the English language, such 

as Webster, do include it (Webster): “//d: a functional relationship between two or 

more correlated variables that is often empirically determined from data and is used 

especially to predict values of one variable when given values of the others <the 

regression of y on x is linear>; specifically: a function that yields the mean value of a

19 In most data analysis books, regression studies are included within the supervised classification 
chapter since it can be understood as the search for a classification model to determine the value of 
an elementary event. In this text we have opted for this organization that seems better to understand 
the concepts.



random variable under the condition that one or more independent variables have 

specified values ”.
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Example of Regression. To introduce the concept of event regression, we use the 

grades of a subject from a group of students. The qualifications will be formed by 

two grades, the qualifications of the Theory and Laboratory tests. The elementary 

events are each of the grades individually E = {Theory, Laboratory}. Each grade can 

have any real value between 0 and 10. The regression function sought in this case 

will be the one that, based on the values of the first elementary event, the theory 

grade, allows obtaining the student’s practice grade. 

To obtain the regression function that best relates the events, different regression 

techniques can be used. This differentiation is based on the fact that each of them 

uses different mathematical functions. All of them use a sample or set of events for 

which the values of all elementary events are known, including the one to be 

inferred, to define the regression function. Once the function is defined, it will be 

used to infer the value of new events. 

Example of Regression. Sample. The sample of events that will allow finding the 

definition of the regression function is made up of the following ten events: 1. {2.5, 

3.7}; 2. {2.2, 1.7}; 3. {4.2, 4.5}; 4. {6.3, 5.1}; 5. {5.3, 7.2}; 6. {7.4, 8.5}; 7. {8.2, 

7.2}; 8. {9.5, 10}; 9. {5, 5.3 }; 10. {9, 7.3} 

In any case, to know which function can best fit the observed data, it is advisable 

to first make the scatter diagram of the same. If the typical shape of different linear 

and nonlinear functions is previously known, it can be seen which of them best suits 

the analysed diagram. It is also very useful not only to perform the representation 

with ordinary numerical scales but also to use logarithmic scales on one axis, called 

semilogarithmic representations, or in the two axes, called logarithmic representa-

tions, since, as will be seen later, logarithmic transformations allow a better analysis 

of the data. 

The best known and most commonly used regression techniques are as follows:

• Linear regression of polynomials (or linear fit)

• Nonlinear regression of polynomials

• Regression or nonlinear fit with other types of equations other than polynomials 

We are going to see how each of them works in a specific way. 

Linear Regression of Polynomials (or Linear Fit) for Two Events 

We begin by studying the case of two-dimensional events, that is, those formed by 

only two elementary events. The linear fit with a linear equation can be defined as 

“equation whose variables are of the first degree” and a linear function can be 

defined as “The one whose variable or variables are of the first degree ”. And a 

polynomial can be defined as: “An expression composed of two or more algebraic 

terms joined by the plus or minus signs. Those with two or three terms are given the 

special names of binomial and trinomial, respectively” and linear can be defined as 

“That it has effects proportional to the cause”. From the data of observed events



formed by two elementary events tries, following the definitions given above in the 

text and in the footnote references, to obtain an equation or linear function that 

relates both elementary events. 
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Mathematically the linear regression function is obtained as follows: if we call the 

regression function f; to the elementary input events xi; and to the elementary output 

events yi; and f(xi) to the elementary output events calculated through the linear 

regression function, the sum of the difference between the real value of each 

elementary event in the sample considered the output value and the value obtained 

for said elementary event, if the function defined with input value is used, the 

elementary event to which each output event is related is given by the function: 

y= aþ bx 

where a and b are the regression coefficients. 

The most widely used adjustment method is that of Least Squares, which is based 

on finding the function that minimizes the sum of the square of the difference 

between the real value of each elementary event in the sample, considering the 

output value, and the value that is obtained for said elementary event if the function 

defined with the input value is used to calaculate de output obtained when the 

same elementary event is introduced. That difference is called the remainder. The 

sum of all those differences in the sample is called the quadratic error, or the sum of 

the squares of the residuals. If the difference between the observed value of 

every elementary event in the sample and the value obtained for said elementary 

event if the function is used, is calcaluted and it is not squared, and the sum of all the 

differences is obtained, the result is called the absolute error. Taking into account its 

definitions, the mathematical expressions of both errors are: 

ea= 
n 

i= 1 
yi - ycið Þ  

ec= 
n 

i= 1 
yi - ycið Þ2 

Example of Regression. Least squares method. Taking the sample defined in the 

previous step, the linear least squares regression function will be the one that 

minimizes the difference of the sum described. In this case, the values to 

calcualte said difference would be: for example, for the first event, value 3.7, and 

the value that we would obtain from introducing it as an input value in linear 

function or regression line is value 2.5. For the second event, the value is 1.7, and 

the value that we would obtain from introducing it as an input value in linear 

function or regression line is value 2.2. These values would be calculated, in the 

same way, for the rest of the events until the entire sample is completed. 

Consequently, the least squares adjustment method seeks that the following 

summation is minimum:
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n 

i= 1 
yi - ycið Þ2 

where yi is the value observed for elementary event y, corresponding to elementary 

event xi, in the event formed by the pair of elementary events (xi, yi), and yci is the 

value obtained for elementary event y when xi is introduced into the linear regression 

equation. From this premise, we will find the values of the parameters a and b. 

To obtain the minimum value of the equation, the following calculations are 

performed: 

First, the squared binomial is developed:20 

n 

i= 1 
yi - ycið Þ2 = y2 þ y2 c - 2yyc 

Second, yci is replaced by its value based on the values of the final equation that 

will be obtained, 

yci = aþ bxi 

That is, we substitute this equation in the previous equation, and we obtain: 

y2 þ a þ bxið Þ2 - 2y aþ bxið Þ  

Third, to compute the values of a and b that minimize the equation, we derive 

with respect to a and b and set the equations equal to 0. 

∂ 
n 
i= 1 y2 i þ a2 þ b2 x2 i þ 2abxi - 2yia- 2byixi 

∂a 
= 

n 

i= 1 

aþ bxi - yið Þ= naþ b xi - yi = 0 

∂ 
n 
i= 1 y2 i þ a2 þ b2 x2 i þ 2abxi - 2yia- 2byixi 

∂b 
= 

n 

i= 1 

2bx2 i þ 2axi - 2yixi = b x2 i þ a xi - yixi = 0 

: 

If we multiply the first by ∑xi and the second by n, we have: 

20 We do not write in all the sums the limits of the summation to improve the readability of the text, 

but in all of them it is 
n 
i= 1.
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naþ b xi - yi xi = 0 

b x2 i þ a xi - yixi n= 0 

and we obtain the system of equations known as the normal equation. We are going 

to solve it in two ways: 

The first is similar to a system of equations; for this, we subtract them and obtain: 

na xþ b x x- y x- nb x2 - na x þ n yx= 0 

Solving for the value of b, we have 

b= 
x y- n xy 

xð Þ2 - n x2 

and dividing the numbered and denominator by n, we have: 

b= 
nxy- xy 

nx2 - x2 

b is often called the adjustment coefficient.21 If the equations seen in the data topic of 

covariance,22 correlation,23 and standard deviation are taken, the value of b can be 

obtained as: 

21 A coefficient can be defined as: (Co and efficient) .//4. m. Mat. Constant factor that multiplies an 
expression, generally located to its left. 
22 To obtain sxy, the covariance of x and y, that is a measure of the dependence between x and y, the 
following equation is used 

sxy = 

n 

i= 1 

xiyi 

n
-

n 

i= 1 

xi 

n 
: 

n 

j= 1 

yj 

n 
= 

n 
i= 1 

n 

j= 1 

xi - xð Þ  yj - y 

n 

23 As the covariance is not a normalized value, other measure, correlation, is defined. Correlation is 
obtained with the equation 

rxy = 
sxy 

sxsy 

The values of r_xy are in the interval [-1 and 1]. 
If the linear correlation is perfect, that is, if the values of x and y lie on a line, the value of r will be

-1 if it has a negative slope and 1 if it has a positive slope. 
If r is equal to 0, there is no linear dependence between the variables, which implies either that 

the variables are independent, or that there is a nonlinear dependence between them.
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b= 
xy 

s2 x 
= rxy = 

y 

sx 

a is solved as a function of b in the first equation: 

a= 
y- b x 

n 
→ a= y- bx 

Linear regression by the least squares method.24 Following the equations above, 

to calculate the regression of the sample we are working with, we need to calculate x, 

y, sx and/or sxy or rxy. However, if we take the calculation equation for rxy, we see that 

it is equal to rxy = 
sxy 
sxsy 

, so what we have to calculate is x, y, sx and/or sxy. 

We calculate each of these magnitudes: 

x= 

n 

i= 1 

f ixi 

n 

i= 1 

f i 

= 
2:5þ 2:2þ 4:2þ 6:3þ 5:3þ 7:4þ 8:2þ 9:5þ 5þ 9 

10 
= 5:96 

y= 

m 

j= 1 

f jyj 

m 

j= 1 

f j 

= 
3:7þ 1:7þ 4:5þ 5:1þ 2 7:2ð Þ þ  8:5þ 10þ 5:3þ 7:3 

10 
= 6:05 

sx = 

n 

i= 1 

f i xi - xð Þ2 

n 

i= 1 

f i 

= 
2:5- 5:96ð Þ2 þ . . .  þ 9- 5:96ð Þ2 

10 
= 2:44 

sy = 

m 

j= 1 

f j yj - y 
2 

m 

j= 1 

f j 

= 
3:7- 6:05ð Þ2 þ . . .þ 7:3- 6:05ð Þ2 

10 
= 2:32 

sxy = 

n 
i= 1 

m 
j= 1f ijxiyj 

n 
i= 1f i

- x:y= 
2, 5:3:7þ . . .þ 9:7, 3 

10
- 5:96ð Þ  6:05ð Þ  

= 41:23- 36:05= 5:17 

24 To make the text easier to read, we remember here that the sample we are working with is 1. {2.5, 
3.7}; 2. {2.2, 1.7}; 3. {4.2, 4.5}; 4. {6.3, 5.1}; 5. {5.3, 7.2}; 6. {7.4, 8.5}; 7. {8.2, 7.2}; 8. {9.5, 10}; 
9. {5, 5.3}; 10. {9, 7.3}.
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rxy = 
sxy 

sxsy 
= 

5:17 
2:44ð Þ  2:32ð Þ  = 0:91 

Consequently, the equation of the linear function is: 

b= 
sxy 

s2 x 
= 

5:17 

2:442 
= 0:92 

a= y- bx= 6:05- 0, 92:5, 6= 0:88 

y= aþ bx= 0:88þ 0:92x 

The second way is through matrix algebra. We remember that the normal 

equation is: 

naþ b xi - yi xi = 0 

b x2 i þ a xi - yixi n= 0 

If we eliminate in the first equation ∑xi, we have: 

naþ b xi - yi = 0 

b x2 i þ a xi - yixi n= 0 

If we clear a and b, we have: 

n xi 

xi x2 i 

a 

b 
= 

yi 

yixi 

Therefore, solving for the matrix 
a 

b 
, we have the solution for a and b: 

a 

b 
= 

n xi 

xi x2 i

- 1 
yi 

yixi
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Linear Regression of Polynomials (or Linear Fit) for Three Events 

As in the previous case of two dimensions, the linear fit of the data of observed 

events formed by three elementary events tries to obtain a linear equation or function 

that relates both elementary events. In this case, a line will not be obtained in a plane 

but a plane in space. This is the last dimension in which we can obtain a graphical 

representation to be able to visually observe the behaviour of the data. 

Mathematically, the linear regression function is obtained as follows: if we 

call the regression function f; to the elementary input events xi e yi; and to the 

elementary output events zi; and  fi to the elementary output events calculated 

through the linear regression function, the sum of the difference between the real 

value of each elementary event in the sample considered the output value and the 

value obtained for said elementary event, if the function defined with input value is 

used, the elementary event to which each output event is related is given by the 

function: 

z= aþ bxþ cy 

where a, b, and c are the regression coefficients. This function is called the fit 

plane.25,26 To perform the adjustment and obtain the parameters a, b, and c, the 

least squares method will be used, as in the case of two dimensions; therefore, it must 

be minimized: 

n 

i= 1 
zio - zicð Þ2 

To obtain the minimum value in this equation, we carry out a process similar to the 

one we did in dimension two, consisting of the following steps: first, substitute zic by its 

value as a function of the values of a, b, and c, using the equation; second, following the 

calculation rules, the equation resulting from the previous step is derivedwith respect to 

a, b, and c, which are the two variables whose values make the value of the equation a 

minimum,wewant to calculate; third, the three resulting equations are set equal to zero; 

fourth, zio is solved in both equations, obtaining a system of three equations with three 

unknowns called the system of normal equations: 

25 Quadratic can be defined as: “//2. adj. Mat. Which has squares as the highest power” and defines 
parable as: “(From lat. parabŏla, and east from Gr.) .//2. F. Geom. Locus of the points of the plane 
equidistant from a line and a fixed point, which results from cutting a right circular cone by a plane 
parallel to a generatrix”. 
26 
t is called an adjustment plane because it is geometrically a plane. It is proved from the following 

proposition: if x is taken constant, the equation is that of a line in three-dimensional space; and if y is 
taken constant, the equation is another line in three-dimensional space. Consequently, the equation 
is the one that contains both lines and therefore is the equation of the plane of fit.
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n 

i= 1 

zi0 - aþ bxþ cyð Þð Þ2 

d
n 
i= 1 zi0 - a þ bx þ cyð Þð Þ2 

da 
=

- 2 
n 

i= 1 

zi0 - aþ bxþ cyð Þð Þ: 
n 

i= 1 

1= 0 

d
n 
i= 1 zi0 - a þ bx þ cyð Þð Þ2 

db 
=

- 2 
n 

i= 1 

zi0 - aþ bxþ cyð Þð Þ: 
n 

i= 1 

x= 0 

d
n 
i= 1 zi0 - a þ bx þ cyð Þð Þ2 

dc 
=

- 2 
n 

i= 1 

zi0 - aþ bxþ cyð Þð Þ: 
n 

i= 1 

y= 0 

and you get 

n 

i= 1 
zio = a:nþ b n 

i= 1 
xi þ c n 

i= 1 
yi 

n 

i= 1 
zio :xi = a 

n 

i= 1 
xi þ n 

i= 1 
xi 
2 þ c n 

i= 1 
xi 

n 

i= 1 
yi 

n 

i= 1 
zio :yi = a 

n 

i= 1 
yi þ b n 

i= 1 
xi 

n 

i= 1 
yi þ n 

i= 1 
yi 
2 

This system is solved, as in the previous case, by using matrix calculation. 

Linear Regression of Polynomials (or Linear Fit) for K Events 

It is not possible to make graphical representations, so the adjustments must be 

made directly through mathematical calculations and observation of the results 

obtained. 

The linear fit of the data of k observed characteristics tries to obtain an equation or 

linear function that relates the k characteristics. That is, if we have k characteristics 

x, y, z,. . .  k the linear fit will obtain an equation such as: 

k= aþ bxþ cy . . .þ tj 

To carry out the adjustment and obtain the parameters a, b,. . ., t, the least squares 

method is used; therefore, it must be minimized:
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n 

i= 1 
kio - kicð Þ2 

To obtain the minimum value in the equation, proceed as in the previous 

subsection. 

No Linear Regression of Polynomials (or Linear Fit) for 2 Events 

We start with the simplest nonlinear fit, which is the quadratic.27 The quadratic or 

parabolic nonlinear fit of the data of two observed characteristics tries, following the 

definitions given above, to obtain a quadratic or parabola equation or function that 

relates both characteristics. That is, for the characteristics x and y between which 

there is a binary relationship, the quadratic nonlinear fit will obtain an equation 

such as: 

y= aþ bxþ cx2 

To carry out the adjustment and obtain the parameters a, b, and e, the least squares 

method is used, which, as in the previous subsection, consists of minimizing the sum 

of the squares of the differences between the values of the dependent variable, 

obtained through the measured or observed data and those obtained through the 

above equation. That is, in minimizing: 

n 

i= 1 
yio - yic 

2 

To obtain the minimum value in the equation, the following process is followed: 

first, yic is replaced by its value based on the values of a, b, and c, using the initial 

equation; second, following the calculation rules (say more), the equation resulting 

from the previous step is derived with respect to a, b, and e, which are the two 

variables whose values make the value of the equation a minimum, we want to 

calculate; third, the three resulting equations are set equal to zero; fourth, we solve 

for yio in both equations, obtaining a system of three equations with three unknowns 

called the system of normal equations: 

n 

i= 1 
yi0 - aþ bxi þ cxi 2 

2 

27 Quadratic can be defined as: “//2. adj. Mat. Which has squares as the highest power” and defines 
parable as: “(From lat. parabŏla, and east from Gr.) .//2. F. Geom. Geometric location of the points 
of the plane equidistant from a line and a fixed point, which results from cutting a right circular cone 
by a plane parallel to a generatrix”.
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d
n 
i= 1 yi0 - a þ bxi þ cxi 2ð Þ  2 

da 
=

- 2 
n 

i= 1 
yi0 - aþ bxið Þ  = 0 

d
n 
i= 1 yi0 - a þ bxi þ cxi 2ð Þ  2 

db 
=

- 2 
n 

i= 1 
yi0 - aþ bxi þ cxi 2 xi = 0 

d
n 
i= 1 yi0 - a þ bxi þ cxi 2ð Þ  2 

de 
=

- 2 
n 

i= 1 
yi0 - aþ bxi þ cxi 2 xi 

2 
= 0 

Operating, we obtain: 

n 

i= 1 

yio = n:a þ b 
n 

i= 1 

xi þ c 
n 

i= 1 

xi 
2 

n 

i= 1 

yio xi = a 
n 

i= 1 

xi þ b 
n 

i= 1 

xi 
2 þ c 

n 

i= 1 

xi 
3 

n 

i= 1 

yio 
2xi = a 

n 

i= 1 

xi 
2 þ b 

n 

i= 1 

xi 
3 þ c 

n 

i= 1 

xi 
4 

Solving for a in the first, substituting its value in the second and solving the value 

of b in the first and substituting its value in the third, the value of c is obtained based 

on the observed data. Once the value of c is obtained, the values of a and b are 

obtained through the system of equations. 

Events of Dimension k 

The adjustment of the data of two characteristics by means of curves of degree 

greater than two or k-th, whose general equation is given by the one presented below, 

is carried out following the same procedure described in the two previous 

subsections. 

y= aþ bxþ . . .  þ kxk 

No Linear Regression of No Polynomials (or Linear Fit) for 2 Events 

It is possible that the two-feature data could have a better fit, that is, with less error, 

using equations other than polynomials. These equations are described in the 

following subsections.
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Exponential Nonlinear Fit 

The exponential nonlinear fit from the data of two observed characteristics tries, 

following the definitions given above, to obtain an equation or exponential function 

that relates both characteristics. That is, regardless of the characteristics x and y, 

between which there is a binary relationship, the exponential adjustment will obtain 

an equation such as: 

y= abx 

To carry out the adjustment and obtain the parameters a and b, one method used is 

to use the logarithmic function to convert the above equation into the linear 

equation28 

log yð Þ= log að Þ þ  log bð Þx 

and use the least squares method on the above equation to obtain the values of log(a) 

and log(b). Once these are obtained, the exponential function on them is used to 

obtain the values of a and b. 

Geometric Nonlinear Fit 

The geometric nonlinear fit of the data of two observed characteristics tries to obtain 

an exponential equation or function called geometric that relates both characteristics. 

That is, whether the characteristics x and y exist between which there is a binary 

relationship, the geometric fit will obtain an equation29 such as: 

y= axb 

To perform the adjustment and obtain the parameters a and b, one method used is 

to use the logarithmic function to convert the above equation into the linear equation. 

log yð Þ= log að Þ þ  blog xð Þ  

and on the above equation the least squares method is used to obtain the values of log 

(a) and b. Once these are obtained, the exponential function on them is used to obtain 

the value of a. 

28 This equation is called semilogarithmic (it must be by dealing with logarithms a of the variables 
and see how to write semilogarithmic). 
29 This equation is called a double logarithmic (it must be by dealing with logarithms of the two 
variables).
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Linear Regression: Validity Analysis 

Once the regression has been carried out, it is essential to know to what extent the 

results obtained through it will be good because that is what makes sense of it. To 

carry out this, numerous methods have been developed, which are based on the 

analysis of residues.30 Let us see some of the most used. 

To measure how good the regression fit we have performed is, the r squared 

analysis obtains the coefficient of determination or square correlation a, for which 

the following two parameters must be previously calculated: 

Calculated deviation or dispersion, SSR, of the y values is calculated through the 

regression function, yi. This value is calculated as the sum of the squares of the 

difference between the value calculated for each x through the equation of the line, 

yi, and the mean of the value of y, y. The calculation equation is: 

SSR= 

n 

i= 1 

yi - yð Þ2 

Observed deviation or dispersion, SSy, of the observed y values, yi $. This value is 

calculated as the sum of the squares of the difference between the observed value for 

each y and the mean value of y, y. The calculation equation is: 

SSy= 

n 

i= 1 

yi - yð Þ2 

Once the two previous values have been obtained, the coefficient of determination 

or square correlation r2 is calculated as the ratio between SSR and SSy. The 

calculation equation is: 

r2 = 
SSR 

SSy 

Once we have them, the square correlation allows us to determine how good the 

adjustment is since r2 will have a value that will vary between 0 and 1. In such a way 

that 0 indicates that there is no adjustment between both magnitudes, while 1 indi-

cates that the fit is perfect. 

Standard Error of the Residuals 

Once the linear (straight) regression has been obtained, we must analyse to what 

extent it correctly establishes the relationship between the variables. The second

30 Residue can be defined as: “(From lat. Residŭum) .//4. m. Mat. Rest of subtraction and division”.



analysis is the standard error of the estimate or residual standard deviation. To do 

this, we calculate the following:
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The standard error, sr, of the residuals or difference between the observed values 

of y, yi, and those calculated through the regression function, yi 

sr = 

n 
i= 1 yi - yið Þ2 

n 

A value of sr close to 0 indicates a good fit of the line. 

B. Computer-Based Solving 

As in the other chapters, this subsection starts with a reminder of what computer-

based supervised classification solving means, that is, the application of a systematic 

process of designing, implementing, and using programming tools to solve the 

association problem. In this chapter, for reasons of space, we apply computer-

based solving only to the first of the techniques introduced in section A, the Decision 

Trees. 

From the sample: 1. {A, A, B, Ap}; 2. {A, B, D, Ss}; 3. {D, C, C, Ss}; 4. {D, B, 

A, Ss}; 5. {B, C, D, Ss}; 6. {C, B, B, Ap}; 7. {B, B, A, Ap}; 8. {C, D, C, Ss}, using 

Hunt’s algorithm and a Decision Tree, the classification function for the qualifica-

tions {Theory, Laboratory, Practices, Global Qualification}, in which the elementary 

classifying event is the Global Rating, which can have the values Pass, Ap, and Fail, 

Ss; and the rest of the elementary events can have the values A, B, C and D. 

Supervised Classification Exercises Solved in R 

In this subsection, the Hunt- and Decision-Tree-supervised classification technique 

will be used for the classification of the elementary classifying event Global Rating, 

which can have the values Pass, Ap, and Fail, Ss, using the rest of the elementary 

events, or students marks, which can have the values A, B, C, and D. 

When we start R, there is a set of packages that are loaded by default. To 

determine which packages are loaded, we use the function getOption (). The 

instruction is as follows: 

>getOption ("defaultPackages"). 

This set of initially loaded packages can be modified by reprogramming the start 

code. In windows, the file that controls this startup code is
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Rprofile 

and is in the folder 

Program Files/R/R-3.1.2/library/base/ 

In this file, there is a piece of code that is 

dp <- c ("datasets "," utils "," grDevices "," graphics "," stats "," 

methods ") 

In this variable, we can include or remove the packages we want. If we removed 

them all, only the base package would remain, which is not listed because it cannot 

stop loading for the system to work. We are going to include the foreing package 

within the default packages because we use it a lot, as we have seen in previous 

practices. For which we introduce it after methods. The instruction is as follows: 

dp <- c ("datasets", "utils", "grDevices", "graphics", "stats", 

"methods", "foreign") 

In R, with the packages loaded by default, association analysis cannot be 

performed, so we will have to load a package that does allow it. Among the various 

existing packages at http://CRAN.R-Project.org, we will use the rpart package in this 

exercise. 

The first thing we do is check if we have it among the standard library packages, 

for which we use the library () function that gives us the size of the packages we 

have and we see that it is not among them, so we have to install it. There are many 

different alternatives to install a package, and we are going to see one of them, 

which, although it is not the shortest, allows us to see more additional options. We 

introduce in R the function: help.start (), which opens the R help page in a browser 

window. It is a page that is essential to know because within it is all the information 

necessary to work with R. In the case at hand, we will click on the resources link, 

which takes us to a new page that structures the resources available for R. Click on 

the link: http://CRAN.R-project.org/within the third section 3. Archives, and we go 

to a new page where all the downloadable files for R. We click on the Packages link 

and we get to a new page where all the packages are available for R. We click on 

Table of available packages, sorted by name, and search the rpart package. It takes 

us to a new page where there is absolutely all the information about the package and 

the downloadable archives. 

It is very important to know that each package has a page of this type because it is 

important not to load them blindly without knowing anything about them. We 

download the file: Windows binaries: rpart_4.1-9.zip because we are working on 

Windows. It is important to also download the manual of the package to be able to 

consult it Reference manual: rpart.pdf. We download both things in the downloads 

folder and return to R. 

To install the package, we use the Packages menu. Within the Packages menu, we 

click the option to install package(s) from local zip files and a window opens that

http://cran.r-project.org
http://cran.r-project.org/within


allows us to select the rpart_4.1-9.zip file from the download directory. As it was 

already created when we did practice 4, the library 
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c:/users/jjcg/documents/R/win-library/3.1 d 

does not ask us anything about whether we want to create it, as it did in practice 

4, but within folder 3.1 create a new folder called rpart and install the library in 

it. Next, we loaded the rpart package in R using the 

>library (rpart) 

function. We execute the search () function to verify that it is installed correctly. 

Once we have the rpart package installed, we begin to solve exercise 1. 

The first thing we have to do is enter the values of the events of the sample with 

which we work in R. It is very important to take into account that the events must be 

represented as a data frame, and a matrix or array will not be valid for the analysis 

with the functions of the rpart library. However, to enter the data in R, it is easier if 

we enter them as a matrix and then convert the matrix into a data frame. We 

introduce the matrix as follows: In each column, we will represent the values of 

the different elementary events with which we work {Theory, Laboratory, Practices, 

Global Qualification}, although to facilitate the treatment of the data, we will call 

them {T, L, P, GC}, and in each row, we will call the values of a determinated event 

(observation). According to this, the matrix corresponding to the observed sample 

1. {A, A, B, P}; 2. {A, B, D, F}; 3. {D, C, C, F}; 4. {D, B, C, F}; 5. {B, C, D, F}; 

6. {C, B, B, P}; 7. {B, B, A, P}; 8. {C, D, C, F}, P means Passed, F means Fail, is: 

T L  P  GC  

e1 A A B  P  

e2 A B  D  F  

e3 D C  C  F  

e4 D B  C  F  

e5 B C  D  F  

e6 C B  B  P  

e7 B B A  P  

e8 C D  C  F  

We write the matrix in a txt document, named "sample.txt". 

Once entered, we convert it into a data frame with the instruction 

>m = data.frame (sample) 

Then, we perform the classification analysis using the rpart functions.
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The function that we will use to obtain the classification tree is rpart (), which will 

provide us with the classification tree defined by the arguments:

• The first argument is the function we want, which is for which variable we will 

have the classification and depending on which other variables; in this case it is 

CG ~ T + L + P, as all variables are, it can also be written as CG ~.

• The second argument specifies from which data frame the data are obtained; it is 

written as data = m or simply m.

• The third argument specifies what type of classification we want (regression, 

classification, etc.). In this case, since it is qualitative data, it is a classification and 

it is written as method = "class", although if it is not specified as all data is 

character takes it by default. We assign the tree the variable name t (from tree). 

Therefore, the final instruction is 

>t = rpart (C. G ~., Da-ta = m, method = "class") 

Once the instruction is executed, we enter t to see what we have obtained, and we 

see that the result is 

n = 8 

node), split, n, loss, yval, (yprob) 

* denotes terminal node 

1) root 8 3 Ss (0.3750000 0.6250000) * 

This is not what we expected because it only obtains a terminal node for the 

classification tree. This is because the sample has very little data and the program 

does not do a larger division, as we have been able to do by hand in theory. To see 

the partition, we have to enter more data, for which we generate a new sample txt file 

repeating the values 5 times in a row. If we do the analysis again, we see that we 

make a partition in the variable L, 

>t = rpart (CG ~ L, data = mm, method = "class") 

and in the variable P, 

>fit = rpart (CG ~ L, data = mm, method = "class") 

and if we take all 

>t = rpart (CG ~., data = m, method = "class") 

it divides the variable P. 

The result is: 

n= 9
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node), split, n, loss, yval, (yprob) 

* denotes terminal node 

1) root 9 3 Ss (0.3333333 0.6666667) 

2) L=A,B 5 2 Ap (0.6000000 0.4000000) 

4) P=A,B 3 0 Ap (1.0000000 0.0000000) * 

5) P=C,D 2 0 Ss (0.0000000 1.0000000) * 

3) L=C,D 4 0 Ss (0.0000000 1.0000000) * 

We can perform the same analysis using the tree package. 

The first thing we do is check if we have them among the standard library 

packages, for which we use the library () function and we see that they are not 

between them, so we have to install them. As seen, the packages can be downloaded 

from 

http://CRAN.R-project.org/- 3. Archives - Packages - Table of available packages -

sorted by name 

and look for the package tree. We downloaded the .zip and the manual. Windows 

binaries: tree \1.0-37.zip and Reference manual: tree.pdf. 

To install the package, we click the menu Packages, and within that menu, we 

press the option install package(s) from local zip files. 

Window opens that allows us to select the file tree \ _4.1-9.zip 

Once we have the package installed in the 3.3 library, we load them in R using the 

function 

>library (rpart) 

We introduce the instruction 

>library (tree) 

To check that they are installed correctly, we execute the function 

search () 

When we perform the analysis with the tree package, and the function that we use 

to obtain the classification tree is tree(), which provides us with the classification tree 

defined by the arguments. 

The first argument is the function we want, and it is the same as in rpart, that is, for 

which variable we will obtain the classification and depending on which other 

variables; in this case it will be a global rating based on the rest of qualifications, 

which is written as CG ~ T + L + P, since the global qualification is going to be 

obtained based on all the rest of the variables that we have, and it can also be written 

as CG ~. 

The second argument, like rpart, specifies from which data frame the data are to 

be obtained; it is written data = sample or simply shows.

http://cran.r-project.org/-
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The third argument specifies the minimum cut we want, which is written as 

mincut = 1. 

The fourth argument is minsize = 2, which we must put because we have very 

little data, and if we do not put it, it will not perform the calculations. 

We assign the tree the variable name sorttree, so the instruction remains 

>sorttree = tree (C. G ~., data = sample, mincut = 1, minsize = 2) 

Once the instruction is executed, we enter the instruction 

> sorttree 

to see what we have obtained and see that the result is 

node), split, n, deviance, yval, (yprob) 

* denotes terminal node 

1) root 9 11.46 Ss (0.3333 0.6667) 

2) L: A,B 5 6.73 Ap (0.6000 0.4000) 

4) P: A,B 3 0.00 Ap (1.0000 0.0000) * 

5) P: C,D 2 0.00 Ss (0.0000 1.0000) * 

3) L: C,D 4 0.00 Ss (0.0000 1.0000) * 

C. Supervised Classification Analysis Exercises Solved 

This subsection has two parts. In the first part, a set of exercises solved in detail are 

presented to allow you to check if all the knowledge has been correctly acquired. The 

advice is to try to solve the exercises by yourself, and then to get the solution to 

check it with the proposed one by the book. This procedure will make this subsection 

truly useful for you. In the second part, the same exercises will be solved in R. As in 

the previous section, in this chapter, for reasons of space, section C will be applied 

only to the first of the techniques introduced in section A, the Decision Trees. 

Hand-Made Exercises 

1. For the data in the sample with the characteristics of 10 vehicles of four different 

types, 1. {B, 4, 5, Car}; 2. {A, 2, 2, Motorbike}; 3. {N, 2, 1, Bicycle}; 4. {B, 6, 4, 

Truck}; 5. {B, 4, 6, Car}; 6. {B, 4, 4, Car}; 7. {N, 2, 2, Bicycle}; 8. {B, 2, 1, 

Motorbike}; 9. {B, 6, 2, Truck}; 10.{N, 2, 1, Bicycle}, the elements of each 

event are: {LicenseType, NumberWheels, NumberPass, VehicleType }. It must 

be done first manually, using Hunt’s algorithm and the CART algorithm, that is, it
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must be obtained using the Gain of information measure and through the measure 

Gini impurity, sorting function, and the classification exercise of the type of 

vehicle taking into account the other characteristics. 

To solve the exercise applying the Hunts method, the following steps are applied: 

First, the exercise is going to be solved manually because the Hunt algorithm and 

the CART algorithm are going to be applied, and consequently, the measure of 

impurity will be Gini. The classifier event is Type of Vehicle. 

How the classifier is Type of Vehicle, we have: 

Classifier = Type of vehicle, which has four classes, c= 4, and the Type of 

Vehicle classes are {Car=3, Motorbike=2, Bicycle=3, Truck=2} 

In Step A, we calculate the impurity for the initial father node: 

Gin fð Þ= 1-
c- 1 

i= 0 

f ip 
2 ; c= 4→ = 1-

c- 3 

i= 0 

f ip 
2 
= 

= 1-
3 

10 

2 

þ 2 

10 

2 

þ 3 

10 

2 

þ 2 

10 

2 

= 0, 74 

Then, we calculate the impurities of the nonclassifying elementary events to see 

which of them provides the greatest information gain; all that characteristics, that 

cannot be type of vehicle, because that is the classifier, are analysed. Taking this into 

account, Type of License is selected for the first node. 

If the Type of License is taken, the following binary division tree of the sample 

events can be established (Fig. 12). 

Once the division is established in the two nodes, we calculate the impurity of 

each one of them using the Gini: 

Node 1. The types of cards A and B have been grouped in this node, and there are 

7 events in the sample, 1, 2, 4, 5, 6, 8, and 9. For each of the classes, there are 3 cars, 

corresponding to events 1, 5, and 6; 2 motorcycles, corresponding to events 2 and 8; 

and 2 trucks, corresponding to events 4 and 9. In addition, there is no bicycle. 

Consequently, the Gini of this node is: 

Fig. 12 First division with 
license
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Gin 1ð Þ= 1-
c- 3 

i= 0 

f i1 
2 
= 1-

3 

7 

2 

þ 2 

7 

2 

þ 2 

7 

2 

þ 0 

7 

2 

= 0, 65 

Node 2. For the second node, not having a license has been taken, and a classification 

of bicycles is obtained. You have events 3, 7, and 10, all of which are bicycles, and 

you do not have any other type of vehicle. Consequently, before calculating its 

impurity, it will be zero: 

Gin 2ð Þ= 1-
c- 3 

i= 0 

f i1 
2 
= 1-

0 

3 

2 

þ 0 

3 

2 

þ 0 

3 

2 

þ 3 

3 

2 

= 0 

Once the impurities of the parent and child nodes have been obtained, as seen 

above, the information gain is equal to the impurity of the parent node minus the 

weighted average of the impurities of the child nodes. We first calculate the weighted 

average of the impurities of the child nodes: As we have seen above, it is the number 

of events associated with the child node 1, which in this case is 7, and it is the 

number of events associated with the child node 2, which in this case are 3, and N is 

the total number of events in the parent node, which in this case is 10, so the 

weighted mean of impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

7 

10 
:0:65þ 3 

10 
:0= 0:46 

Since the impurity of the parent node is 0.375, the information gain performing 

the first division with the elementary event Theory is: 

ΔI = Ifather -
2 

j= 1 

N nj 

N 
I nj = 0, 74- 0:46= 0:28 

There are other ways to make a binary division of the events over the possible 

values of the characteristic Type of License: A-BN, B-AN, NA-B,. . .  In all of them 

information gain is lower. In most of them, because the Gini of none nodes is 0, and 

in those in which the value is 0, the other node has an impurity higher than the 

calculated one. 

Before we analyse another characteristic, let us see what happens if a nonbinary 

analysis is performed (Fig. 13). 

How can we see in the figure, it cannot be done because Motorbike would be 

classified in two different terminal nodes for this step. 

Now Wheels are going to be analysed. 

Before starting to calculate the impurities, we analyse which binary division gives 

us the smallest impurity in the sum of the child nodes and therefore the greatest 

information gain, and it will be the one that gives us a classification in a node and is



2,4 - 631 with which we have the following binary division tree of the sample events 

(Fig. 14). 
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Fig. 13 First nonbinary 
division with license 

Fig. 14 First division with 
wheels 

Once the division is established in the two nodes, we calculate the impurity of 

each one of them using the Gini: 

Node 1. The number of wheels 2 and 4 have been grouped in this node, and there are 

8 events in the sample, 1, 2, 3, 5, 6, 7, 8, and 10. For each of the classes, there are 

3 cars, corresponding to events 1, 5, and 6; 2 motorcycles, corresponding to events 

2 and 8; and 3 bicycles, corresponding to events 3, 7, and 10. In addition, there is no 

truck. Consequently, the Gini of this node is: 

Gin 1ð Þ= 1-
c- 3 

i= 0 

f i1 
2 
= 1-

3 

8 

2 

þ 0 

8 

2 

þ 2 

8 

2 

þ 3 

8 

2 

= 0, 66 

Node 2. For the second node, having 6 wheels has been taken, and a classification of 

the trucks is obtained. You have events 4 and 9, all of them trucks, and you do not 

31 It is left to the reader to verify that other binary divisions would provide less information gain.



C. Supervised Classification Analysis Exercises Solved 395

have any other type of vehicle. Consequently, before calculating its impurity, it will 

be zero: 

Gin 2ð Þ= 1-
c- 3 

i= 0 

f i1 
2 
= 1-

0 

2 

2 

þ 2 

2 

2 

þ 0 

2 

2 

þ 0 

2 

2 

= 0 

Once the impurities of the parent and child nodes have been obtained, as seen 

above, the information gain is equal to the impurity of the parent node minus the 

weighted average of the impurities of the child nodes. We first calculate the weighted 

average of the impurities of the child nodes: As we have seen above, it is the number 

of events associated with child node 1, which in this case is 8, and it is the number of 

events associated with child node 2, which in this case is 2, and N is the total number 

of events in the parent node, which in this case is 10, so the weighted mean of 

impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

8 

10 
:0:65þ 2 

10 
:0= 0:53 

Since the impurity of the parent node is 0.48, the information gain performing the 

first division with the elementary event Theory is: 

ΔI = Ifather -
2 

j= 1 

N nj 

N 
I nj = 0, 74- 0:53= 0:21 

This information gain is lower than the previous information gain that we have for 

Type of License, that is, ΔI= 0.28 because there are more zeros in the child nodes in 

this Type License division and the impurity of the child nodes is lower. For that 

reason, Type License is selected for the first node against wheels. 

As was done for License, a nonbinary division for wheels is analysed, for which 

we first perform a graphic partition. 

As seen in the figure, if we make a nonbinary partition, two elementary events, 

cars and trucks, can be classified, so this partition would present a greater informa-

tion gain. We would only have to calculate the Gini of Node 1 because the other two 

would be 0. We do it: 

Gin 1ð Þ= 1-
c- 3 

i= 0 

f i1 
2 
= 1-

0 

5 

2 

þ 0 

5 

2 

þ 2 

5 

2 

þ 3 

5 

2 

= 0, 52 

Taking this into account, the weighted mean impurity of the child nodes is 

k 

j= 1 

N  nj 

N 
I  nj = 

5 

10 
:0:52þ 3 

10 
:0þ 2 

10 
:0= 0:26
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Fig. 15 First nonbinary 
division with wheels 

Fig. 16 Division with 
passengers 

Since the impurity of the parent node is 0.48, the information gain performing the 

first division with the elementary event Theory is: 

ΔI = Ifather -
2 

j= 1 

N nj 

N 
I nj = 0, 74- 0:26= 0:48 

That is, a much higher information gain than those calculated thus far, so if we 

allowed nonbinary partitions, this would be the optimal one of those calculated thus 

far (Fig. 15). 

Now, passengers will be analysed. 

As in the previous case, before starting to calculate the impurities, we analyse 

which binary division gives us the least impurity in the sum of the child nodes and 

therefore the greatest information gain, and we see that there is no32 binary nor 

nonbinary division that allows classification because elements of the same class 

always remain in different child nodes. As an example, one of the possible division 

trees is presented (Fig. 16). 

Therefore, the elementary event or characteristic Number of Places could never 

be taken as a first-level classifier. Consequently, for the two possible options for the

32 The verification of this statement is left to the reader.



initial node, the characteristic license is selected, although if multiple division would 

be considered, wheels, in its multiple division could have been chosen, which will be 

done later. If License is taken, the N brand is already classified.
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Now, the second node is selected, which is the first intermediate node. We 

calculate the impurity of the parent node, which has changed because events 3, 7, 

and 10 are already classified, and now we only have 7 events: 

{B, 4, 5, Car} 

{A, 2, 2, Moto} 

{N, 2, 1, Bicycle \} Classified 

{B, 6, 4, Truck} 

{B, 4, 6, Car} 

{B, 4, 4, Car} 

{N, 2, 2, Bicycle} Classified 

{B, 2, 1, Moto} 

{B, 6, 2, Truck} 

{N, 2, 1, Bicycle} Classified 

Consequently, we have 3 cars, 2 motorbikes, and 2 trucks, so the Gini of the 

impurity of the father node is calculated again because it has changed, now with only 

the no classified events, that are those ones in branch A, B, because the three in the 

N branch has already been classified. For that reason, there are seven events now. 

Consequently, the Gini of the father node is: 

Gin fð Þ  = 1-
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f ip 
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i= 0 

f ip 
2 
= 

= 1-
3 

7 

2 

þ 2 

7 

2 

þ 2 

7 

2 

= 0, 65 

The first characteristic analysed is wheels. The division tree is (Fig. 17): 

Once the division is established in the two nodes, we calculate the impurity of 

each one of them using the Gini:

Fig. 17 Division with 
wheels



Node 1. The number of wheels 2 has been grouped in this node, and there are 

2 events in the sample corresponding to events 2 and 8, motorcycles. In addition, you 

do not have a car or truck. Consequently, the Gini of this node is 0:
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Gin 1ð Þ= 0 

Node 2. For the second node, having 4 or 6 wheels has been taken, and a classifi-

cation of cars and trucks is obtained. There are events 4 and 9, all of trucks, and 

events 1, 5, and 6, corresponding to cars, and 3 bicycles, corresponding to events 

3, 7, and 10. Consequently, the Gini of this node is: 

Gin 1ð Þ= 1-
c- 2 

i= 0 

f i1 
2 
= 1-
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þ 0 

5 

2 

= 0, 48 

Once the impurities of the parent and child nodes have been obtained, as seen 

above, the information gain is equal to the impurity of the parent node minus the 

weighted average of the impurities of the child nodes. We first calculate the weighted 

average of the impurities of the child nodes: As we have seen above, it is the number 

of events associated with child node 1, which in this case is 2, and it is the number of 

events associated with child node 2, which in this case is 5, and N is the total number 

of events in the parent node, which in this case is 7, so the weighted mean of impurity 

of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

2 

7 
:0 þ 5 

7 
:0:48= 0:34 

Since the impurity of the parent node is 0.65, the information gain performing the 

first division with the elementary event Theory is: 

ΔI = I father -
2 

j= 1 

N nj 

N 
I nj = 0, 65- 0:34= 0:31 

The information gain for this division is the same as that for 2,4 - 6; for that 

reason, 2 - 4,6 is chosen. 

Now Passengers is analysed. One of the possible binary divisions is analysed, 2 -

4,6. The division tree for this case is (Fig. 18): 

Once the division is established in the two nodes, we calculate the impurity of 

each one of them using the Gini: 

Node 1. With 1 or 2 seats, we have a truck, event 9, and two motorcycles, events 

2 and 8, and no car\footnote {We put 0 directly in the sum of the car in the 

summation}. Consequently, the Gini of this node is:



Gin 1ð Þ  = 1-
c- 1 

i= 0 

f i1 
2 
= 

= 1-
1 

3 

2 

þ 2 

3 

2 

= 1- 0:11þ 0:44ð Þ= 0, 45 

Node 2. For the second node, having 4, 5 or 6 seats have been taken. You have 

events 1, 5, and 6, all cars, and event 4, a truck, and you have no motorcycles. 

Consequently, the impurity will be: 

Gin 2ð Þ  = 1-
c- 1 

i= 0 

f i1 
2 
= 

= 1-
3 

4 

2 

þ 1 

4 

2 

= 1- 0:56þ 0:06ð Þ= 0, 38 
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Fig. 18 Division with 
passengers 

Once the impurities of the parent and child nodes have been obtained, as seen 

above, the information gain is equal to the impurity of the parent node minus the 

weighted average of the impurities of the child nodes. We first calculate the weighted 

average of the impurities of the child nodes: As we have seen above, it is the number 

of events associated with the child node 1, which in this case is 3, and it is the 

number of events associated with the child node 2, which in this case is 4, and N is 

the total number of events in the parent node, which in this case is 7, so the weighted 

mean of impurity of the child nodes is: 

k 

j= 1 

N nj 

N 
I nj = 

3 

7 
:0:45 þ 4 

7 
:0:38= 0:43 

And since the impurity of the parent node is 0.65, the information gain 

performing the first division with the elementary event Theory is: 

ΔI = Ifather -
2 

j= 1 

N  nj 

N 
I  nj = 0, 65- 0:43= 0:22
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The information gain ΔI = 0.22 is less than what we have for Wheels, which was 

ΔI = 0.31, but it is not only in this division, it is in all the binary divisions that we can 

do, since in none of them would get a classifier node, and the same would happen for 

the multiple.33 Therefore, in the second level, we choose Wheels. 

Before going on to analyse the second level, we could reanalyse the Type of 

Licensed as a candidate for this level because the same classifying elementary events 

can be used at different levels. However, the same thing would happen as with 

squares; in this case, it would be a motorcycle that would be in two different nodes, 

and we could not obtain a classifier node. Therefore, the second intermediate node is 

wheels, and the classified events are now: 

{B, 4, 5, Car } 

{A, 2, 2, Moto} Classified 

{N, 2, 1, Bicycle} Classified 

{B, 6, 4, Truck \} 

{B, 4, 6, Car \} 

{B, 4, 4, Car \} 

{N, 2, 2, Bicycle \} Classified 

{B, 2, 1, Moto \} Classified 

{B, 6, 2, Truck \} 

{N, 2, 1, Bicycle \} Classified 

Now, the second intermediate node will be selected. 

They must be analysed only for the unclassified events, those that are in the 

branch with values 4 and 6 because the branch with value 2 is already classified and 

they are motorbikes. Therefore, in the parent node of the second level, we only have 

events 1, 4, 5, 6, and 9, three cars, and two trucks. Consequently, we recalculate the 

Gini of the parent node: 

Gin fð Þ= 1-
c- 1 

i= 0 
f ip 

2 
= 1-

3 

5 

2 

þ 2 

5 

2 

= 0, 48 

V: Classifier; {Car=3, Truck=2} 

To look for the possible classifying event in this second level, as we already know 

elementary events well, we will start with Wheels. If we take Wheels, the division 

tree remains (Fig. 19). 

Once the division has been established in the two nodes, we calculate the impurity 

of each one of them using the Gini: 

Node 1. The number of wheels 4 has been grouped in this node, and there are 

3 events in the sample corresponding to events 1, 5, and 6, cars. In addition, you do 

not have a truck. Consequently, the Gini of this node is 0:

33 The reader can check it.



Gin 1ð Þ= 1-
c- 2 

i= 0 
f i1 

2 
= 1-

3 

3 

2 

= 1- 1= 0 

Node 2. The number of wheels 6 has been grouped in this node, and there are 

2 events in the sample corresponding to events 4 and 9, truck. In addition, you do not 

have a car. Consequently, the Gini of this node is 0:
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Fig. 19 Wheels divison 

Gin 2ð Þ= 1-
c- 2 

i= 0 
f i1 

2 
= 1-

2 

2 

2 

= 1- 1= 0 

Once the impurities of the parent and child nodes have been obtained, as seen 

above, the information gain is equal to the impurity of the parent node minus the 

weighted average of the impurities of the child nodes. In this case, the weighted 

average of the impurities of the child nodes will be zero since they are both zero: 

k 

j= 1 

N nj 

N 
I nj = 

3 

5 
:0 þ 2 

5 
:0= 0 

Since the impurity of the parent node is 0, the information gain performing the 

first division with the elementary event Theory is: 

ΔI = Ifather -
2 

j= 1 

N nj 

N 
I nj = 0, 48- 0= 0 

If Passengers or License is analysed, their information gain is worse and does not 

allow the finalization of the classification; for that reason, this second intermediate 

node can be only a terminal node for the whole classification model only if wheels 

are selected, and in this case, the classification model is finished. Consequently, the 

qualifier model using binary divisions is (Fig. 20): 

If the multiple division is used in the first level, with wheels in that level, cars and 

trucks would be classified directly and using a license in the second level, for which



it would be the only possible qualifier34 all the elementary events would be classi-

fied, as seen in the picture (Fig. 21). 
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Fig. 20 Final binary classification 

Fig. 21 Final non-binary classification 

The information gain for this division is the same as that for 2,4 - 6; for that 

reason, 2 - 4,6 is chosen. 

34 The reader can check it.
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Exercises Solved in R 

In this subsection, the previous exercises will be solved using the R software. 

Once we have the rpart package loaded by default, we begin to solve the 

supervised classification analysis problem with R. 

1. For the data in the sample with the characteristics of 10 vehicles of four different 

types, 1. {B, 4, 5, Car}; 2. {A, 2, 2, Moto}; 3. {N, 2, 1, Bicycle}; 4. {B, 6, 4, 

Truck}; 5. {B, 4, 6, Car}; 6. {B, 4, 4, Car}; 7. {N, 2, 2, Bicycle}; 8. {B, 2, 1, 

Moto}; 9. {B, 6, 2, Truck}; 10. {N, 2, 1, Bicycle}, the elements of each event are 

{LicenseType, NumberWheels, NumberPass, VehicleType}. It must be done first 

manually using Hunt’s algorithm and the CART algorithm, that is, it must be 

obtained using the Gain of information measure and through the measure Gini 

impurity, sorting function, and the classification exercise of the type of vehicle 

taking into account the other characteristics. Solve the problem using R. 

For solving the exercise with R, the following procedure is applied: As we 

already have the rpart and tree packages loaded, we begin to solve exercise directly 

with their use. The first thing we have to do is enter the values of the events of the 

sample we are working with in R. We remember that the events must be represented 

as a data frame, but as in exercise 1, to introduce the data in R, we introduce it as a 

matrix and then we convert the matrix into a data frame. We introduce the matrix as 

follows: In each column, we will represent the values of the different elementary 

events with which we work {LisenseType, NumberWheels, PassengerNumber, 

VehicleType}, although to facilitate the treatment of the data, we will call them 

{L, R, P, V }, and in each row, we will call the values of a given event (observation). 

According to this, the matrices corresponding to the observed sample are as follows: 

1. {B, 4, 5, Car}; 2. {A, 2, 2, Moto}; 3. {N, 2, 1, Bicycle}; 4. {B, 6, 4, Truck}; 5. {B, 

4, 6, Car}; 6. {B, 4, 4, Car}; 7. {N, 2, 2, Bicycle}; 8. {B, 2, 1, Moto}; 9. {B, 6, 2, 

Truck}; 10. {N, 2, 1, Bicycle}. 

L  W  P  V  

e1 B 4  5  C 

e2 A 2  2  M 

e3 N 2  1  B 

e4 B 6  4  T 

e5 B 4  6  C 

e6 B 4  4  C 

e7 N 2  2  B 

e8 B 2  1  M 

e9 B 6  2  T 

e10 N 2  1  B
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As in the previous cases, we introduce the data to be analysed through a.txt file; 

for this, we write the matrix in a txt document with the name "vehicles.txt". We will 

assign the data from the file to an array that we will call qualifications through the 

instruction 

>vehicles = read.table ("vehicles.txt") 

If we are using RStudio, we only need to go to the card files in the corresponding 

window and navigate to the directory in which the file vehicles are and select that 

directory as the working directory. Set at working directory. 

Next, we convert the matrix into a data frame that we call the sample with the 

instruction 

>sample = data.frame (cvehicles) 

Once we have the data frame, we perform the classification analysis first using the 

rpart() functions as in the previous exercise. For the rpart () function, we know that 

the instruction is 

>classification = rpart (V ~., data = sample, method = "class", minsplit 

= 1) 

Once the instruction is executed, we enter the instruction 

>classification 

to see what we have obtained and see that the result is 

n= 10 

node), split, n, loss, yval, (yprob) 

* denotes terminal node 

1) root 10 7 Bike (0.3000000 0.2000000 0.3000000 0.2000000) 

2) C=N 3 0 Bike (1.0000000 0.0000000 0.0000000 0.0000000) * 

3) C=A,B 7 4 Car (0.0000000 0.2857143 0.4285714 0.2857143) 

6) R>=3 5 2 Car (0.0000000 0.4000000 0.6000000 0.0000000) 

12) R>=5 2 0 Truck (0.0000000 1.0000000 0.0000000 0.0000000) * 

13) R< 5 3 0 Car (0.0000000 0.0000000 1.0000000 0.0000000) * 

7) R< 3 2 0 Moto (0.0000000 0.0000000 0.0000000 1.0000000) *



Association 

In this final chapter, we are going to see the theoretical foundations of events 

Association1 analysis and the main techniques used to carry it out. As in all the 

previous chapters, it is structured in three subsections. 

Subsection A introduces, in a theoretical and, at the same time, practical way, all 

the basic theoretical knowledge related to the association analysis, that is, the 

concepts and techniques that allow us to perform the analysis, from the association 

of events composed of a single ementary event to the association of events formed by 

more than one elementary event. 

Subsection B presents the computer-based solution. The same association anal-

ysis solved as examples in subsection A is solved with the use of the R computa-

tional environment. The packages needed to carry out these computational solutions 

are also introduced. 

Section C will consist of a set of statements of exercises about association in 

which detailed solutions can also be found in this section of the chapter.2 

A. Theory 

This first subsection of this chapter is structured in 4 subsubsections: 1. Introduction. 

2. Analysis of the Association of Events Composed of a Single Elementary Event. 

3. Analysis of the Association of Events Composed of More Than a Single Elemen-

tary Event. 4. Apriori Algorithm. 

1 Association analysis is also called in certain texts, especially statistics, as dependency analysis; and 

in data science texts, such as pattern search. The Dictionary of the Spanish Language [1] defines 

dependence as: “(//3. F. Relation of origin or connection.” 
2 We repeat again here that it is very important in order to obtain the best results for the learning 

process throughout the use of this book, that the reader tries to solve the exercises by himself before 

seeing their solutions, and that only once solved check if the obtained solutions are correct. 
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Introduction 

As we know, from what was studied in chapter “Probability”, Probability, every 

random experiment has an associated sample space E = {ei. . .en}, which is the set of 

all elementary events that can occur in the experiment. We also know that, from it, an 

event space, or set of parts of E, P (E), can be defined as one whose elements are all 

possible subsets of E. Based on this knowledge, we study what the association 

analysis of disjoint events consists of. 

The studies of analysis of association of disjoint events try to discover if the joint 

appearance of some events exceeds a threshold value for, at least,3 two measures that 

are complementary to each other, the support and the confidence. In addition, other 

measures are also used to complement the information on the degree of association 

between these events, such as the contingency and the correlation measures, and 

others that have also been defined, some of which will be introduced in this chapter. 

First, in this chapter, we will define all these measures and their application in the 

case of the analysis of the association of two events composed of a single elementary 

event, and then, we will define the measures and their application to the analysis of 

the association of events formed by more than one elementary event. Although this 

way of presenting the subject entails the repetition of the exposition of some 

concepts, we prefer to do it this way because we continue to apply the principle 

that guides the entire conception of this book, which is based on the fact that we 

think that the best way to understand the concepts in depth is to present a practical 

example immediately after presenting the theoretical bases of the concept, although 

it may happen, as in this case, that this implies repeating the theoretical definitions of 

some concepts. 

The association analysis can give us a result that there is a relationship between 

both disjoint events, in which case it will be said that there is an association or 

dependency between both values of the characteristics. The other possible result is 

that there is no relationship between the two of the observed values of both 

characteristics, in which case it will be said that there is independence between 

them. In the event that there is an association or dependence between the two disjoint 

events, it can be attractive when the frequency of occurrence of one of the events 

increases as the frequency of occurrence of the dependent event increases or 

repulsion when the frequency of one of the events increases as the frequency of 

the dependent event decreases. 

In this introductory subsubsection on the analysis of association of disjoint 

events, it is also very important to indicate the fact that in association studies it is 

essential to bear in mind the fact that elementary events are not symmetric or 

equiprobable and consequently to be able to establish the probability of appearance 

of the elements of P (E), it is essential to have a sample of events. 

Once the concepts of support, confidence, contingency, and correlation have been 

seen, we can establish what the purpose of an association analysis is going to be. For

3 There are others as the Lift.



instance, if support and confidence are used, given a sample space E, its set P (E), 

and some set support and confidence threshold values arbitrarily based on the 

interests of the study, an association study will try to establish, from a sample of 

available events, which sets of P (E) can be considered associated, that is, whenever 

one of the sets is observed, the other will also be observed with a probability greater 

than or equal to that established by the threshold values. To consider the two 

associated sets, minimum thresholds for the support and confidence values will be 

arbitrarily established in each case.
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Analysis of the Association of Events Composed by a Single 

Elementary Event 

We will begin to see in detail the definition and how the measures indicated above 

are calculated and used to perform association analysis. For this, we start with the 

simplest type of study, which is the one constituted by the association analysis of two 

event disjoints, each formed by a single elementary event. We will see the associ-

ation coefficients: Support, Confidence, Contingence, and Correlation. 

To obtain these events, we will start from the simplest case, which is that of a 

sample space whose elementary events can be grouped into two subgroups, each 

consisting of k mutually exclusive elementary events. Once we have seen this case, 

we will increase the complexity of the problem starting by taking a sample space 

made up of more than two subsets with mutually exclusive elementary events. 

Starting from said sample space, with subsets formed by exclusive elements, the 

set P (E) will be reduced to sets of one and two dimensions, regardless of the number 

of elementary events that constitute E. 

In this first example, we use the following sample space: E = {Job, No Job, Pass, 

No Pass}, which refers to the students of Data Science Fundamentals, and Job means 

that the student combined studies and work; No Job means that the student dedicated 

his/her full time to study; Pass, that the student passed the course; and No Pass, that 

the student did not pass the course. Since Data Science Fundamentals is a four-

course subject, there are many students that combine Job and Studies, and the final 

goal of the analysis is to know if the fact that they combine both things is associated 

with Pass, or Not Pass, the course. As has been said in the theoretical description, we 

will begin to see the association using sample spaces composed of subsets formed by 

exclusive elementary events, and in this case, there are two subsets with exclusive 

elements that they are: {Job, No Job} and {Pass, No Pass}. 

Starting from the sample space E = {Job, No Job, Pass, No Pass}, established in 

the previous exercise, and taking into account that we have the two subsets with 

exclusive elements {Job, No Job} and {Pass, No Pass}, the set P (E) will be formed 

by the following sets: P (E) = {∅, {Job}, {No Job}, {Pass}, {No Pass}, {Job, Pass}, 

{Job, Not Pass}, {No Job, Pass}, {No Job, Pass}}. From here on, the association 

analysis that we are going to perform will be done only for those events formed by a



single elementary event, which are not exclusive, that is, they have a union event 

within the set P(E); that is, we can study the association of Job with Pass but not of 

Job with No Job. 
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Association of two events composed of a single elementary event. As mentioned 

in the introduction, to carry out an association analysis, it is essential to have a 

sample that allows us to calculate the values of the measures used to determine the 

degree of association. In this case, the sample we are going to have is the ten students 

of the subject Data Science Fundamentals: {1 {No Job, No Pass}, 2 {No Job, Pass}, 

3 {Job, No Pass}, 4 {No Job, No Pass}, 5 {Job, Pass}, 6 {Job, Pass}, 7 {Job, Pass}, 

8 {No Job, No Pass}, 9 {Job, Pass}, 10 {Job, Pass}}. 

Once we have E, P (E), and a sample, we are going to begin the association 

analysis by calculating the first two measures, which, as we have seen in the 

introduction, are support and confidence. We are going to see the definition of 

both measures, and we are going to continue with the example to see, in a practical 

way, how they are applied. 

Support 

To be able to compare with the threshold value referred to in the previous paragraph, 

the degree of association4 between various events is established as the calculation 

of the classical probability5 of appearance of the elements of the set P (E) that 

encompass such events. This measure is called Support, s, which is more formally 

defined as: 

8 Aif g1 
i= 1 ⊂ P Eð Þ  con Ai \ Aj =∅8i≠ j, s : P €→ℝ

þ=s Ai [ Aj = 

nAi[Aj 

nT 

The acceptance threshold of support is not fixed but will be arbitrarily set a priori 

and will depend on the objectives of the study. 

The support is interesting since it gives us a measure of how frequent the 

association we are looking for is because although the association of the elements 

was very strong, if this association were observed very seldom, it might not be of 

interest to study it. 

Once we have defined the sample that allows us to establish the probability of 

appearance of the different events, we calculate the support of the association of the 

disjoint events A1 = {Job} and A2 = {Pass}. What we have to calculate is the 

classical probability of appearance of the set A1 [ A2 = {Job, Pass}, as a set formed

4 In order not to repeat throughout the text the terminology: “search for patterns or association of 

disjoint events,” from here on we will only use “association of events” as it is the most widely used 

terminology. 
5 It is very important to bear in mind that the definition of probability that will be used in association 

studies will be the classic one and from here on, whenever we refer to probability, it will be the 

classic one.



only by these elements or within as a subset of any set of P(E) that contains, among 

others, said elements, but in this case, that possibility will not be given. As seen 

above, this probability is given by:
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p A1 [ A2ð Þ= s ðA1 [ A2 þ = 
nA1[A2 

nT 

Examining the sample, {1 {No Job, No Pass}, 2 {No Job, Pass}, 3 {Job, No 

Pass}, 4 {No Job, No Pass}, 5 {Job, Pass}, 6 {Job, Pass}, 7 {Job, Pass}, 8 {No Job, 

No Pass}, 9 {Job, Pass}, 10 {Job, Pass}}, the number of elements that the set 

contains A1 [ A2 = {Job, Pass}, are 5: 5 {Job, Pass}, 6 {Job, Pass}, 7 {Job, Pass}, 

9 {Job, Pass}, and 10 {Job, Pass}, and the total number of events in the sample is 

equal to 10. 

Consequently, the support of the association of events A1 = {Job} and A2 = 

{Pass} is: 

s A1 [ A2ð Þ= 
nA1[A2 

nT 
= 

5 

10 
= 0:5 

Therefore, this association has 50% support. As it is a probability, the support 

moves in a range from 0 to 1. Once we have seen how it is calculated and what is the 

value of the support of the association {Job, Pass}, we are going to calculate the 

support of the rest of possible associations: {Job, No Pass}, with a support of: 

s A1 [ A2ð Þ= 
nA1[A2 

nT 
= 

1 

10 
= 0:1 

and therefore of 10%; {No Job, Pass}, with a support of 1/10, and therefore a 10%; 

and {No Job, No Pass} with a support of 2/10 and therefore 20%. 

If we had established 25% support to determine which associations we would 

continue to analyse, we would continue only with the association {Job, Pass} 

because it would be the only one that appears enough time to make its analysis 

interesting. However, 25% is a very low value to take it as valid to select which 

associations are of interest to continue analysing. The logical thing would be to 

select those that have a value above 75%. 

Confidence 

As mentioned in the previous paragraph, measuring only the probability, or fre-

quency, of the appearance of the association studied in the available sample is not 

enough to establish the degree to which the events studied are associated. For this 

reason, the second measure referred to at the beginning of this chapter called 

Confidence,  c,  is  defined, which will measure the classic probability of appearance 

of the association for a subset of the original sample composed only of the events in



which one of the two sets whose association is being analysed. The one that is the 

origin of the association, that is, the confidence that a second set appears when the 

first has appeared, will be measured. More formally, it is defined as: 
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8 Aif g1 
i= 1 ⊂ P Eð Þ con Ai \ Aj =∅8i≠ j, c : P Eð Þ→ℝ

þ=c Ai [ Aj = 

nAi[Aj 

nAi 

However, in this case, the sense of the association means for the confidence 

calculations because the denominator, nAi
, can change. For that reason, for confi-

dence, we must calculate both senses of the association. 

As was also said at the beginning of the subsubsection, as with the support, for 

trust, there will be an acceptance threshold, which will not be fixed but will also be 

arbitrarily set a priori and will depend on the objectives of the study. It is also 

important to realize that the confidence measure of an association, contrary to what 

happened with the support, is not the same, neither reversing the sense of the 

association, much less for all combinations of associations of disjoint sets. This 

results in the same union set. 

Example of calculation of confidence of two events composed of a single 

elementary event. We calculate the confidence of the association of the selected 

disjoint events of the previous example. These are {Job, Pass}, {Job, Not Pass}, {No 

Job, Pass}, and {No Job, Pass}. What we have to calculate is the probability of 

appearance, for example, of the set {Job, Pass}, but unlike the previous example, we 

do not calculate it on the complete sample, {1 {No Job, No Pass}, 2 {No Job, Pass}, 

3 {Job, No Pass}, 4 {No Job, No Pass}, 5 {Job, Pass}, 6 {Job, Pass}, 7 {Job, Pass}, 

8 {No Job, No Pass}, 9 {Job, Pass}, 10 {Job, Pass}}, but taking a subset of it formed 

only by those events that contain or are equal to the set: A1 = {Job}. The reduced 

sample is composed of the six events: {3 {Job, No Pass}, 5 {Job, Pass}, 6 {Job, 

Pass}, 7 {Job, Pass}, 9 {Job, Pass}, 10 {Job, Pass}}. Therefore, to calculate the 

confidence we use the equation: 

p A1 [ A2ð Þ= c A1 [ A2ð Þ= 
nA1[A2 

nA1 

As we know from the previous example, the number of elements that the set 

contains A1 [ A2 = {Job, Pass}, are 5: 5 {Job, Pass}, 6 {Job, Pass}, 7 {Job, Pass}, 

9 {Job, Pass}, and 10 {Job, Pass}; and the total number of events in the reduced 

sample, from the previous paragraph, is nA1 
= 6, consequently the confidence of the 

association of the events A1 = {Job} → A2 = {Pass} 

c A1 [ A2ð Þ= 
nA1[A2 

nA1 

= 
5 

6 
= 0:83 

Again, since it is a probability, the support moves in a range that goes from 0 to 1; 

therefore, this association would have an 83.3% confidence level.
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Once we have seen how it is calculated and what is the value of the confidence of 

the association {Job, Pass}, we calculate the confidence of the rest of the possible 

associations: A1 = {Job} → A2 = {No Pass}, with a confidence of 

c A1 [ A2ð Þ= 
nA1[A2 

nA1 

= 
1 

6 
= 0:16 

and therefore of 16.6%; A1 = {No Job} → A2 = {Pass}, with a confidence of 1/4, 

and therefore a 25%; and A1 = {No Job} → A2 = {No Pass} with a confidence of 

3/4 and therefore 75%. 

If we had established a 75% confidence to determine which associations have 

enough confidence to be considered associated, we would considered associated 

only the associations A1 = {Job} → A2 = {Pass}{Job, Pass} and A1 = {No Job} → 

A2 = {No Pass} because it would be the only ones with a confidence equal or over 

75%. 

However, as we have seen in the theory, the sense of the association means for the 

confidence calculations because the denominator can change. For that reason, for 

confidence, we must calculate both senses of the association. 

Now, we calculate the confidence of the reverse associations, and we start with 

A1 = {Pass} → A2 = {Job}, that is, 

c A1 [ A2ð Þ= 
nA1[A2 

nA1 

= 
5 

6 
= 0:83 

In this case, the result does not change because, although in this case the reduced 

sample change is 2 {No Job, Pass}, 5 {Job, Pass}, 6 {Job, Pass}, 7 {Job, Pass}, 

9 {Job, Pass}, 10 {Job, Pass}}, the nA1 
is the same as in the other sense, but we are 

going to see that this is not the same in all the cases. We calculate the support of the 

rest of the possible associations: 

A1 = {No Pass} → A2 = {Job} has a confidence of 

c A1 [ A2ð Þ= 
nA1[A2 

nA1 

= 
1 

4 
= 0:25 

that, as we can see, it is very different from the obtained value for A1 = {Job} → 

A2 = {No Pass}, which was 0.16. 

For the rest A1 = {Pass} → A2 = {No Job}, the confidence is 1 
6 
= 0:16; and for 

A1 = {No Pass} → A2 = {No Job}, the confidence is 3 
4 
= 0:75 

Those are also different from the previous ones. 

Contingency 

In addition, as mentioned at the beginning of this subsubsection, other measures 

are used to measure the degree of association between these events. Now we are



going to introduce a new one, the contingency. We are going to see its theoretical 

definition and how it is used through the practical application example that we are 

using. 
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In the definitions of support and confidence, the values of the acceptance thresh-

old have been discussed, and in both cases, it has been said that they were arbitrarily 

set by whoever was performing the association analysis. Although this is correct, 

there is a value, called Contingency, that allows setting the value of the confidence 

threshold from the values of the events in the available sample, allowing elimination, 

if desired. The name “contingency” comes from the fact that the use of this value is 

closely linked to the use of contingency tables for the description of the data. In 

addition to serving to set the trust acceptance threshold, contingency can be used as a 

measure of association in itself. 

The theoretical basis on which the contingency calculation rests is based on the 

fact that if two events A1 and A2 are formed by a single elemental event from a 

sample space such that both elemental events belong to two distinct subsets of the 

sample space and, consequently, they are not mutually exclusive; if they are inde-

pendent, then the association confidence, or what is the same, of the appearance of 

A1 when A2 is given must be proportional to the relative frequency of appearance of 

A1 in the complete sample. Therefore, if nA1[A2 
is the number of times that A1 and 

A2 appear together in the sample and nA2 
is the number of times that A2 appears, the 

confidence of the association will be: 

c A1 [ A2ð Þ= 
nA1[A2 

nA2 

The relative frequency of appearance of A1 in the whole sample is: 

fr A1ð Þ= 
nA1 

nT 

and if A1 and A2 are independent, it must be verified that: 

c A1 [ A2ð Þ= 
nA1[A2 

nA2 

= 
nA1 

nT 
= fr A1ð Þ  

Therefore, the threshold must be exceeded in the confidence of the association so 

that it can be said that it exists between the two events. 

If we solve nA1[A2 
for the equality above, we obtain the absolute frequency, also 

called the theoretical frequency or contingency, which the union set of the two 

events must have to be considered to establish that both events are associated. This 

frequency is: 

nA1[A2 
= 

nA2
:nA1 

nT
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If to denote the absolute frequency, we substitute n for f; we call event A1 p and 

event A1 q; and we write the above equation with addends, we have that the 

contingency of independence for the two events f′ is:6 

f 0 pq = 

n 
j= 1fpj 

m 
i= 1fiq 

i=m 

j= n 

i= 1 

j= 1 

fij 

and, consequently, p and q will be dependent when it is verified: 

f 0 pq ≫ 

n 
j= 1fpj 

m 
i= 1fiq 

i=m 

j= n 

i= 1 

j= 1 

fij 

There will be a dependence of repulsion in the case that 

f pq < 

n 
j= 1fpj 

m 
i= 1fiq 

i=m 

j= n 

i= 1 

j= 1 

fij 

→ f pq < f 0 pq 

and attraction in the case that 

f pq > 

n 
j= 1fpj 

m 
i= 1fiq 

i=m 

j= n 

i= 1 

j= 1 

fij 

→ f pq > f 0 pq 

Starting from the theoretical basis of the definition of contingency, which, as we 

have seen, is based on the definition of two subsets, formed by exclusive elementary 

events, within the sample space, we can define characteristics that encompass all the 

values of the exclusive events of each subset. In such a way that the first subset 

would define the first characteristic, whose possible values would be each of the 

exclusive events belonging to said subset, and the second subset would define the 

second characteristic, whose possible values would be each of the exclusive events 

belonging to said subset. 

6 The equation is written for mxn tables, that is, when the two subsets of the sample space are formed 

by n exclusive events, the first, and m exclusive events, the second.
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We are going now to see an example of the use of the contingency to measure the 

association of two events composed of a single elementary event. In the previous 

examples, the support and confidence thresholds have been chosen arbitrarily, and 

we are now going to perform the analysis using contingency. The first thing we will 

do is to generate the contingency table of the elementary events treated with the 

sample {1 {No Job, No Pass}, 2 {No Job, Pass}, 3 {Job, No Pass}, 4 {No Job, No 

Pass}, 5 {Job, Pass}, 6 {Job, Pass}, 7 {Job, Pass}, 8 {No Job, No Pass}, 9 {Job, 

Pass}, 10 {Job, Pass}}. In each column, we write one of the two exclusive elemen-

tary events belonging to the first subset of the sample space, that is, A1 {Job} and A2 

{No Job}. In each row, we write the other two exclusive elementary events, that is, 

B1 {Pass} and B2 {No Pass}, in each cell, we write the absolute frequency of 

appearance of the union set of both elementary events. The table is: 

2 × 2 crosstab or contingency table 

A1 A2 Total 

B1 f11 f12 f11+f12 

B2 f21 f22 f21+f22 

Total f11+f21 f12+f22 f11+f12+f21+f22 

Contingency table with the problem values 

Job No Job Total 

Pass 5 1 6 

No Pass 1 3 4 

Total 6 4 10 

If we recall what was seen in the theoretical description of the contingency, from 

observing the values in the table, it could be concluded that if the event composed of 

the only elementary event {Pass} was independent of the value of the event 

composed of the only event elemental {Job}, the relative frequency of appearance 

of {Pass}, that is, students that pass the course, should be kept constant when 

calculating the relative frequency of {Pass} when the event {Job} also occurs, that 

is, when the relative frequency of appearance of students that pass the course 

between students with jobs is calculated. This is: 

f 11 
f 11 þ f 21 

= 
f 11 þ f 12 

f 11 þ f 12 þ f 21 þ f 22 

Substituting the values, we have: 

5 

5 þ 1 
= 0, 83≠

5þ 1 
5þ 1þ 1þ 3 

= 0, 6 

Therefore, there is a dependency relationship between passing the course and 

having a job. Later, it will be seen that type.
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Once these calculations have been carried out, it is very important to note that, 

when performing them, we have also obtained the value that, from the contingency 

calculation, the confidence threshold should have for the possible associations of the 

event {Pass} with the rest of events, {Job} or {No Job}, which should be 60%. That 

is, if trust had a higher value, there would be an association between the events. 

If the above equation is taken and the value f11 is cleared, the theoretical 

frequency f 0 11 is obtained, which should have the union sequence {Pass, Job} for 

these values to be independent. It is given by the equation: 

f 0 11 = 
f 11 þ f 21ð Þ  f 11 þ f 12ð Þ  
f 11 þ f 12 þ f 21 þ f 22 

If the result obtained for the pair of values {Pass, Job} f 0 11 = 1 and f11 = 2 is  

observed, it can be concluded, as seen in the theoretical description of the contin-

gency, that there is an association relationship between {Pass, Job}, and taking into 

account that 2>1, that is, f 0 11 < f 11, it is concluded that it is attraction. This means 

that students with jobs are associated with or tend to Pass the course. 

To reinforce the understanding of the concept of contingency, we now analyse the 

association of the events {No Pass} and {No Job}. In this case, we have: 

f 22 
f 12 þ f 22 

= 
f 21 þ f 22 

f 11 þ f 12 þ f 21 þ f 22 

Substituting the values, we have: 

3 

1þ 3 
= 0:75≠

1þ 3 
5þ 1þ 1þ 3 

= 0, 4 

Therefore, there is a strong attraction dependency relationship between No Pass 

and No Have a Job. This means that students without jobs often do not pass the 

course. 

Having seen the case of a 2 × 2 contingency table, we are now going to see an 

example, based on the way to reach the university for a set on 25 students of a course 

of advanced data since, of a m × n contingency table. m will by 2 since we are going to 

take the students that have passed the course and those ones that have not passed the 

course, those are two exclusive elementary events; n will be 5, since we are going to 

take 5 different transportation ways to reach the university, Car, Bus, Train, Bike and 

Walking. The contingency table is: 

Crosstabulation or contingency table 

Car Bus Train Bike Walking Total 

Pass 1 5 8 3 2 19 

No Pass 5 0 0 1 0 6 

Total 6 5 8 4 2 25
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In this case, we are going to analyse the association between the events formed by 

the elementary events {Car} and {Pass}, that is, we are going to observe if the fact 

that a student passes the course is associated with reaching the university by car. To 

do this to the values a1 (Pass the course) and b1 (transport way by car) of said table, 

the theoretical descriptions seen in for the concept of contingency in mxn tables are 

applied, in this case 2 × 5, and the value is obtained for contingency: 

f 0 11 = 

5 
j= 1f 1j 

2 
i= 1f i1 

2 

5 

i= 1 

j= 1 

fij 

= 
1þ 5þ 8þ 3 þ 2ð Þ  1þ 5ð Þ  

6þ 5 þ 8þ 4þ 2 
= 4:56 

As f11 = 1, this implies that f 11 < f 0 11, and therefore, there is a repulsion associ-

ation between passing the course and reaching the university by car since, as 

happened for the 2 × 2 tables, for the mxn tables, it is verified that if f pq < f 0 pq, 

you have a dependence on repulsion, and if f pq > f 0 pq, you have a dependence on 

attraction. Consequently, the analysis carried out means that students who arrive by 

car tend to not pass the course. 

If we analyse the rest of pairs of variables, we have: 

To see other examples, we will analyse whether some of the transportation 

methods are associated with passing or not passing the data science course. 

If the contingency calculation equation is applied to the values {Pass} → {Bus}, 

the following is obtained: 

f 0 12 = 

5 
j= 1f 1j 

2 
i= 1f i2 

2 

5 

i= 1 

j= 1 

fij 

= 
1þ 5þ 8þ 3þ 2ð Þ  5þ 0ð Þ  

6þ 5þ 8þ 4þ 2 
= 3:8 

As f12 = 5, this implies that f 12 > f 0 12, and therefore, there is dependence between 

passing the course and going to the university by bus. It is a dependency of 

attraction. This means that students who pass the course are associated with going 

to the university by bus. 

We now analyse if there is an association between the elemental event {No Pass} 

and the elemental event {Car}. 

If the concept of characteristic7 is introduced, the concept of contingency of 

characteristics can also be introduced, that is, contingency between the complete 

subsets defined in the sample space and not only between the exclusive elementary 

events that form said subsets. To calculate this contingency between characteristics,

7 Traditionally in textbooks, contingency has been described on the concept of characteristics and 

their possible values. Defining on the basis of elementary events is new to this book.
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6 4 10

the Yule and Pearson contingency coefficients are used, among others.8 Let us now 

see how both are calculated:
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Q= 
f 11f 22 - f 12f 21 
f 11f 22 þ f 12f 21 

As an example of the use of the Yule contingency to measure the association of 

two characteristics or subsets of events, it is necessary to have previously defined 

some characteristics that define the subsets of the sample space. If we take the 

sample space used in the first example of Contingency: {Pass, No Pass, Job, No 

Job}, we can define a first characteristic that is if the students pass the data science 

course, which groups together the exclusive elemental events {Pass, No Pass}, and a 

second, which is if they have Job or not that groups together the exclusive elemen-

tary events {Job, No Job}. The data that we have on these two characteristics in the 

table of the students. 

Contingency table with the values of the problem 

Course 

Pass No Pass Total 

Occupation Job 

No Job 

Total 

and we apply the equation for calculating the Yule contingency, we have: 

Q= 
f 11f 22 - f 12f 21 
f 11f 22 þ f 12f 21 

= 
5 � 3- 1 � 1 
5 � 3þ 1 � 1 

= 0:875 

This indicates that there is a strong dependence of attraction between to have 

Job or No have Job and Pass or No Pass the course.

• Pearson C contingency: It is given by the equation: 

C= 
χ2 

χ2 þ 

m 

n 

i= 1 

j= 1 

fij 

8 For example, the PHI contingency coefficient.
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The Chi-square value, χ2 , is called the contingency coefficient9 and is given by 

the equation: 

χ
2 
= 

m 

i= 1 

n 

j= 1 

nij - n0ij 
2 

n ′ ij 

For each j 

n ′ ij = 

m 

i= 1 

fij: 
n 

j= 1 

fij 

m:n 

The value of C is in the range (0,1). Values close to 0 indicate independence, and 

values close to 1 indicate dependency. 

To see an example of calculating the contingency of Pearson C, we are going to 

study again the association between the means of transport used to go to the university 

and to pass or not pass the data science course, when both variables are analysed 

jointly. If we take the table of manner of transport and pass or not the course for the 

25 students and the equations for calculating the contingency of Pearson C, we have: 

Crosstabulation or contingency table 

Car Bus Train Bike Walking Total 

Pass 1 5 8 3 2 19 

No Pass 5 0 0 1 0 6 

Total 6 5 8 4 2 25 

χ
2 
= 

2 

5 

i= 1 

j= 1 

nij - n0 ij 

2 

n0 ij 
= 

1- 19�6 
25 

2 

19 � 6 
25 

þ 
5- 19�5 

25 

2 

19 � 5 
25 

þ 
8- 19�8 

25 

2 

19 � 8 
25 

þ 
3- 19�4 

25 

2 

19 � 4 
25 

þ 
2- 19�2 

25 

2 

19 � 2 
25 

þ 
5- 6�6 

25 

2 

6 � 6 
25 

þ 
0- 6�5 

25 

2 

6 � 5 
25 

þ 
0- 6�8 

25 

2 

6 � 8 
25 

þ 
1- 6�4 

25 

2 

6 � 4 
25 

þ 
0- 6�2 

25 

2 

6 � 2 
25 

= 16:32 

9 The contingency coefficient can also be used to determine the probability of dependence of the two 

characteristics through Pearson’s χ2 distribution function, such that for a value of χ2 with ν degrees 

of freedom and for a significance level α the characteristics will be considered independent when 

χ
2 
< χα, υ 

2



A. Theory 419

Once the value of χ2 = 6.5 is calculated, the value of C is calculated as follows: 

C= 
χ2 

χ2 þ 

m 

n 

i= 1 

j= 1 

fij 

= 
16:322 

16:322 þ 25 
= 0:956 

Therefore, a value so close to one indicates a high degree of association between 

the two characteristics. They present a great dependence. 

Correlation 

The fourth coefficient that we are going to see is the correlation coefficient, which 

we know can be defined as “Measure of the existing dependency between random 

variants.” We are going to apply it to qualitative ordinal data because in the chapter 

about regression, we saw how it can be applied to quantitative data. 

To calculate the existing correlation between two events formed by elementary 

events whose values are ordinal qualitative, it is essential to be able to convert these 

qualitative values to numerical values (it is important to know that each of these 

events could be considered an ordering of a given characteristic). As they are ordinal 

qualitative values, they can be ordered according to some criteria in such a way that 

the numerical value of the order of each of them can be taken as their numerical 

value. In this way, each characteristic corresponds to a natural number. Once this is 

done, different coefficients can be used to calculate the correlation between both 

variables. Let us look at the Spearman, Kendall, and Goodman-Kruskal correlation 

coefficients.

• Spearman’s correlation coefficient: It is given by the equation 

rs = 1-
6 

n 
i= 1d

2 
i 

n 
i f i 

3
-

n 
i f i 

where di = ai - bi and -1 ≤ rs ≤ 1. When there is total dependence ai = bi and 

therefore di = 0 and rs = 1. When there is independence rs = - 1. 

Now, we are going to see an example of the application of Spearman’s correlation 

coefficient to the analysis of the association of two characteristics with ordinal 

qualitative values. To study the correlation between two ordinal qualitative charac-

teristics we need, as has been said in the previous paragraph, they can be ordered in 

some way, so the characteristics used thus far in this topic cannot be used. Two new 

characteristics will be used, related to those previously seen, and which also corre-

spond to data science course characteristics, for which they are easily ordered. They 

are given in the next Table and are the position in which the chapter is taught. The
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first chapter studied in the course will be the first, and the relative success of the 

students in that chapter, that is, the first chapter, will be the chapter for which the 

students have obtained the best academic results. 
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Ordering of the chapters according to the relative success of the students in that chapter 

Chapter Schedule Success 

Introduction 1 2 

Data 2 1 

Anomalies 3 3 

Probability 4 4 

Clustering 5 5 

Classification 6 7 

Association 7 6 

The following table presents the values of the coefficients used in the Spearman 

equation. 

Spearman’s coefficients 

Chapter ai bi di = ai - bi d2 i fij 

Introduction 1 2 -

Data 2 1 1 1 1 

Anomalies 3 3 0 0 1 

Probability 4 4 0 0 1 

Clustering 5 5 0 0 1 

Classification 6 7 -

Association 7 6 1 1 1 
n 
i= 1d

2 
i = 4

n 
i f i = 8 

If the Spearman coefficient is applied, we have: 

rs = 1-
6 

7 
i= 1d

2 
i 

7 
i f i 

3

-
7 
i f i 

= 1-
6:4 

7ð Þ3 - 7 
= 1- 0, 07= 0, 92 

Therefore, when rs is close to 1, there is dependence between the order in which 

the chapter has been taught and the academic results of the students.

• Kendall’s correlation coefficient: It is given by the equation: 

τ= 

2 
n 
i= 1Pi -

n 
i= 1Qi 

n 
i f i 

n 
i f i - 1 

where Q is the total number of inversions of bi with respect to ai and P is the 

number of permanence.
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To calculate Kendall’s correlation coefficient, the first thing to do is to order the 

table in which the data of the two characteristics are displayed in such a way that in 

one of them, the values are ordered from lowest to highest, and the other character-

istic will then appear in the order that corresponds to the values. In the event that any 

value has the same order number for both characteristics, that value is eliminated 

from the table and from the analysis. 

Once the table has been ordered, the investments and permanence for each value 

are quantified in the variable that is not ordered from lowest to highest. By invest-

ment Qi, we mean the number of values less than Qi that are found in rows greater 

than Qi. By permanence Pi is understood the number of values greater than Pi that 

are found in rows greater than Pi. 

Once all these previous results have been calculated, the equation is introduced, 

and the coefficient is obtained. The τ coefficient verifies 1 ≤ τ ≤ 1. When the value is 

close to 0, it indicates low correlation, and when it is close to 1 or -1, it indicates 

high correlation. The Kendall coefficient presents the problem that when there are 

ties, it cannot reach the limit values 1 and -1 because the denominator is always 

greater than Q and P. 

To see an example of Kendall’s correlation coefficient for the study of the 

association of two characteristics with ordinal qualitative values, we return from 

the table with the chapters and the relative success of the students in that chapter. 

If the investments and permanence are quantified, the values of the rows greater 

than 3 have to be analysed, which is the one we are studying, that is, rows 4 to 7. In 

these rows, the values 1, 2, 3, and 4 are observed in rows 5, 6, and 7, respectively. 

These 4 values are less than 5, which is the value of row 3, and are found in rows 

greater than 3 in rows 5, 6, and 7. Therefore, Q3 = 4. Regarding permanence, there is 

only a value greater than 5 in the rows that follow row 3, which is found in row 

4, and the value is 7. Therefore, P3 = 1. The table gives all the values of Qi and Pi for 

all the values in the table. 

Qi and Pi values for all values in the table 

Chapter Schedule Success Qi Pi fij 

Introduction 1 2 1 5 1 

Data 2 1 0 5 1 

Anomalies 3 3 0 4 1 

Probability 4 4 0 3 1 

Clustering 5 5 0 2 1 

Classification 6 7 1 0 1 

Association 7 6 0 0 1 
7 
i= 1Qi = 2

7 
i= 1Pi = 19 

n 
i f i = 

If the values from the table are introduced into the equation, we have: 

τ= 

2 
7 
i= 1Pi -

7 
i= 1Qi 

7 
i f i 

7 
i f i - 1 

= 
2  19- 2ð Þ  

7  7- 1ð  Þ  
= 0:81
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Being a value closer to 1 than 0 indicates a high correlation between the values, 

which agrees with the conclusion obtained using the Spearman coefficient.

• Goodman-Kruskal correlation coefficient. It is given by the equation: 

γ = 

n 
i= 1Pi -

n 
i= 1Qi 

n 
i= 1Pi þ n 

i= 1Qi 

When the value is close to 0, it indicates low correlation, and when it is close to 

1 or -1, it indicates high correlation. The advantage of Goodman-Kruskal’s coef-

ficient over Kendall’s is that it is not influenced by the number of ties since it 

eliminates them from the numerator and the denominator. If there are no ties, both 

coefficients coincide. 

We use the table for Kendall’s example of the association of two characteristics 

with ordinal qualitative values. If the Goodman-Krustal equation is applied to these 

values, we obtain: 

γ = 

7 
i= 1Pi -

7 
i= 1Qi 

7 
i= 1Pi þ 7 

i= 1Qi 

= 
19- 2ð Þ  

19 þ 2ð Þ  
= 0:89 

Therefore, the conclusion is the same as that obtained in the two previous cases 

and is highly correlated. 

Analysis of the Association of Events Composed by More Than 

One Elementary Event 

As we know, from the previous subsubsection, association studies seek to find 

patterns of joint occurrence of disjoint10 events, that is, to see if the probability of 

joint occurrence of several events exceeds certain thresholds. In the analysis of the 

association of events composed of more than one elementary event we try to 

discover if the joint appearance of events the exceeds a threshold value for the two 

measures of the measures introduced in the previous subsubsection and that are 

complementary to each other, support and confidence. We are going to give again 

their definitions because we need to have them very clear and fresh to understand in 

depth all the contents of this subsubsection. 

10 Disjoint events are those that do not have any elemental events in common.
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Let us remember the first one, the support. To be able to compare with the 

threshold value referred to in the previous paragraph, the degree of association11 

between various events is established as the calculation of the classical probability12 

of appearance of the elements of the set P (E) that encompass said events. This 

measure is called support, s, which is more formally defined as: 

8 Aif g1 
i= 1 ⊂P Eð Þ  con Ai \ Aj =∅8i≠ j, s : P Eð Þ→ℝ

þ=s Ai [ Aj = 

nAi[Aj 

nT 

The acceptance threshold of support is not fixed but will be arbitrarily set a priori 

and will depend on the objectives of the study. 

In association studies, it is essential to bear in mind the fact that elementary events 

are not symmetric or equiprobable, and consequently, to establish the probability of 

appearance of the elements of P (E), it is essential to have a sample of events. 

To introduce the concept of event association through an example, we will use a 

shopping basket, which will be made up of five products: Bread, Water, Coffee, 

Milk, and Oranges. For this experiment, we must establish the sample space, the 

parts of the E set, and the number of elements of the parts of the E set. 

We start the solution of this problem by defining the sample space, and the 

elemental events that constituted the sample space are going to be each of the 

products of the basket considered individually. For that reason, as we know from 

the probability chapter, the sample space is: 

E = {Bread, Water, Coffee, Milk, Oranges} 

From this sample space, the set P(E), as we know from the probability chapter, is 

the one formed by all the subsets that can be formed with the set of elements of the 

sample space, that is: 

P (E) = { ∅,{Bread}, {Water}, {Coffee}, {Milk}, {Oranges}, {Bread, Water}, 

{Bread, Coffee}, {Bread, Milk}, {Bread, Oranges}, {Water, Coffee}, 

{Water, Milk}, {Water, Oranges}, {Coffee, Milk}, {Coffee, Oranges}, 

{Milk, Oranges}, {Bread, Water, Coffee}, {Bread, Water, Milk}, {Bread, 

Water, Oranges}, {Bread, Coffee, Milk}, {Bread, Coffee, Oranges}, 

{Bread, Milk, Oranges}, {Water, Coffee, Milk}, {Water, Coffee, 

Oranges}, {Coffee, Milk, Oranges}, {Bread, Water, Coffee, Milk}, 

{Bread, Water, Coffee, Oranges}, {Bread, Water, Milk, Oranges}, 

{Bread, Coffee, Milk, Oranges}, {Water, Coffee, Milk, Oranges}, 

{Bread, Water, Coffee, Milk, Oranges}}. 

11 In order not to repeat throughout the text the terminology: “search for patterns or association of 

disjoint events,” from here on we will only use “association of events” as it is the most widely used 

terminology. 
12 It is very important to bear in mind that the definition of probability that will be used in 

association studies will be the classic one and from here on, whenever we refer to probability, it 

will be the classic one.
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And finally, to solve all the items the statement of this case, we must calculate the 

number of elements in the set parts of E, and as we know from the probability 

problem, this number is calculated by: 

Cardinal (P(E)) = 2n , where n is  the number of elements in the sample space, that, 

in this case, is 5; for that reason, the cardinal of the P(E) set is 

P Eð Þð Þ= 2n = 25 = 32 

To give an example of the support of an association, the support of the association 

between the sets A1 = {Bread, Water} and A2 = {Milk} must be calculated. 

When we start to solve this problem, we can see immediately that, as mentioned 

above, to solve the problem of the association of this shopping basket,13 it is 

essential to have a sample of events that allow us to establish the probabilities of 

appearance of the elements of P (E). 

The sample that we have will consist of the following six shopping baskets: 

{Bread, Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, {Bread, Water, 

Milk}, {Bread, Coffee, Milk}, {Bread, Water}, {Milk}. 

Once we have defined the sample that allows us to establish the probability of the 

appearance of the different events, we calculate the support of the association of the 

disjoint events A1 = {Bread, Water} and A2 = {Milk}. What we have to calculate is 

the classical probability of appearance of the set A1 [ A2 = {Bread,Water,Milk}, as 

a set formed only by these elements or within as a subset of any set of P(E) that 

contains, among others, these elements. As seen above, this probability is given by: 

s A1 [ A2ð Þ= 
nA1[A2 

nT 
= p A1 [ A2ð Þ  

Examining the sample, the number of elements of P (E) that the set contains 

(A1 [ A2) are 3: {Bread, Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, 

{Bread, Water, Milk}, in consequence nA1[A2 
= 3; and the total number of events in 

the sample is nT = 6, consequently the support of the association of the events A1 = 

{Bread, Water} and A2 = {Milk}, is: 

s A1 [ A2ð Þ= 
nA1[A2 

nT 
= 

3 

6 
= 0:5 

Therefore, this association would have 50% support. Being, as we know, the 

support a probability, it moves in a range that goes from 0 to 1. 

What other associations would have the same support as the one studied? 

13 We use the usual example of a shopping basket because it seems very pedagogical, although we 

will only coincide with other texts in the domain, since the rest of the discussion will have a quite 

different approach.
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The answer to this question is very interesting because it is important to realize 

that the support measure of an association is the same for all combinations of 

associations of disjoint sets that result in the same union set. If we consider the 

definition of support, it is very clear this conclusion because nA1[A2
, and nT will be 

the same for all of them, and, in consequence, s(A1 [ A2) will be too. For this reason, 

the associations A1 = {Bread, Water} and A2 = {Milk} would be the same for the 

associations A1 = {Bread, Milk} and A2 = {Water}; A1 = {Milk, Water} and A2 = 

{Bread}. 

The support is an interesting measure because it gives us a measure of how 

frequent the association we are looking for is because although the association of the 

elements that make up the association was very strong and that we are going to 

measure with the measure that we are going to see then, if this association were 

observed very rarely, it would not make sense to study it. 

However, measuring only the probability, or frequency, of the appearance of the 

association studied in the available sample is not enough to establish the degree to 

which the events studied are associated. For this reason, we must remember that we 

use the second measure referred to at the beginning of this chapter called confidence, 

c, is defined, which will measure the classic probability of the appearance of the 

association for a subset of the original sample composed only of the events in which 

occurs one of the two sets whose association is being analysed. The one that is the 

origin of the association, that is, the confidence that a second set appears when the 

first has appeared, will be measured. More formally, it is defined as: 

8 Aif g1 
i= 1 ⊂P Eð Þ  con Ai \ Aj =∅8i≠ j, c : P Eð Þ→ℝ

þ=c Ai [ Aj = 

nAi[Aj 

nAi 

As was also said at the beginning of this chapter, as with support, for trust, there 

will be an acceptance threshold, which will not be fixed but will also be arbitrarily set 

a priori and will depend on the objectives of the study. 

As an example of the confidence calculation, we calculate the confidence of the 

association of the disjoint events whose support we calculated in the previous 

example. These are A1 = {Bread, Water} and A2 = {Milk}. 

What we have to calculate is the probability of appearance of the set 

A1 [ A2 = {Bread,Water,Milk}, as a set formed only by these elements or within 

as a subset of any set of P (E) that contains, among others, said elements, but unlike 

the previous example, let us not calculate the probability of occurrence over the 

complete sample but rather take a subset of it formed only by those events that 

contain or are equal to the set: A1 = {Bread, Water}. The reduced sample is 

composed of the four events: {Bread, Water, Milk, Oranges}, {Bread, Water, 

Coffee, Milk}, {Bread, Water, Milk}, {Bread, Water}. 

Examining the sample, the number of elements of P (E) that the set contains 

(A1 [ A2) are 3: {Bread, Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, 

{Bread, Water, Milk}, in consequence nA1[A2 
= 3; and the total number of events in



the reduced sample is four, which means that nA1 
= 4; consequently, the confidence 

of the association of the events A1 = {Bread, Water} → 
14 A2 = {Milk}, is: 
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c A1 [ A2ð Þ= 
nA1[A2 

nA1 

= 
3 

4 
= 0:75 

Therefore, this association would have 50% support. Again, as it is a probability, 

the support moves in a range that goes from 0 to 1; therefore, this association would 

have 75% confidence. 

What other associations would have ever the same confidence as the one studied? 

It is also important to realize that the confidence measure of an association, 

contrary to what happened with the support, is not the same, nor does it invert the 

sense of the association, much less for all combinations of associations of disjoint 

sets that result in the same union set. 

A1 = {Bread, Water} → A2 = {Milk} ≠ A2 = {Milk} → A1 = {Bread, Water} 

We are going to prove this in the next example. 

To prove, with an example, the fact that the sense of the association means for the 

calculus of the confidence, we are going to answer the question: What is the 

confidence of A2 = {Milk} → A1 = {Bread, Water}? 

The confidence obtained for the association A1 = {Bread, Water} → A2 = 

{Milk}, 75%, is not the same as the one obtained would be the same for the 

association: A1 = {Milk} → A2 = {Bread, Water}, since the latter would keep 

the numerator, but the denominator would be 5, since the events of the reduced 

sample, that is, the events that contain milk, are 5, and not 4 as in the previous case. 

Those events are {Bread, Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, 

{Bread, Water, Milk}, {Bread, Coffee, Milk}, {Milk}, whereby confidence is: 

c A1 [ A2ð Þ= 
nA1[A2 

nA1 

= 
3 

5 
= 0:6 � 60% 

The same happens, that is, the confidence also changes if we study any other 

combination of the elements of the set c(A1 [ A2), for example, A1 = {Bread, Milk} 

→ 
15 A2 = {Water} 

14 We write here a sense because, as explained above, for confidence it is essential to indicate the 

sense of the association and in this case what is being analysed is the trust of the association between 

the events Bread, Water, and Milk, but from the perspective of knowing what association there is 

the appearance of Bread and Water with Milk, this is to what degree when you have Bread and 

Water you have or not Milk. 
15 We write here a footnote because, as explained above, for confidence it is essential to indicate the 

sense of the association and in this case what is being analysed is the confidence of the association 

between the events Bread, Water, and Milk, but from the perspective of knowing what association 

there is the appearance of.
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Once the concepts of support and trust have been seen, we can establish what the 

purpose of an association analysis is going to be: Given a sample space E, its set P 

(E), and support and trust threshold values arbitrarily set depending on the interests 

of the study, an association study will try to establish, from a sample of available 

events, which sets of P (E) can be considered associated, that is, whenever one of the 

sets is observed, it will also observe the other with a probability greater than or equal 

to the set by threshold values. To consider the two associated sets, minimum 

thresholds for the support and confidence values will be arbitrarily established in 

each case. 

Once we have seen what an association analysis consists of, the difficulty it is 

going to have is immediately identified due to the high volume of calculations that it 

requires, even for small sample spaces. This volume is due to the high number of 

associations between sets that can be studied, since if there are n elementary events, 

the number of associations is: 

3n - 2nþ1 þ 1 

To see an example about what means the equation of calculus of the number of 

the possible associations that we can have we are going to apply it to the example we 

are dealing with, with a sample space of 5 elements, E = {Bread, Water, Coffee, 

Milk, Oranges}, and try to answer the question: how many associations we must 

study? And after that how many we would have to study if we would have ten 

elements in the sample space? And with twenty? 

For the first question, in which we have 5 elements in the sample space, we have: 

3n - 2nþ1 þ 1= 35 - 26 þ 1= 180 

That is not too much. 

For the second question, we have: 

3n - 2nþ1 þ 1= 310 - 211 þ 1= 57001 

That can also be possible to analyse, but for the third question, we would have: 

3n - 2nþ1 þ 1= 320 - 221 þ 1= 3500000000 

We can see for the first time the real difficulty of the analysis, and a sample space 

of 20 elements is very small for real problems. 

Therefore, once we can see the previous definitions and especially the previous 

example, it is essential to use algorithms that reduce the set of associations to be 

analysed and thus make the problem manageable.
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The rest of this chapter will describe the operation of one of these algorithms.16 

However, before going into the specific details of how it is designed, we will 

describe the two17 steps that, in a generic way, all tend to use all the algorithms 

for association analysis and that are based on the separation of the calculation of 

support and confidence: 

A. Identification of frequent events. A minimum support threshold is set, and all the 

elements of P (E) that meet or exceed it are identified. Once identified, step 2 will 

only apply to those events. 

B. Identification of trusted associations. A minimum confidence threshold is set, 

and associations that meet or exceed it are identified. It is important to remember 

here that the identified associations, in addition to identifying which elementary 

events are related, must also impose a meaning on the association, as seen above 

in the description of the concept of trust. 

As an example, regarding how the association algorithms are designed, we are 

going to follow with the shopping basket. 

In the first step, if the support acceptance threshold was 40%, the association 

between the events A1 = {Bread, Water} and A2 = {Milk} was studied because it 

had a support of 50%, but the association between the events A1 = {Bread, Coffee} 

and A2 = {Milk} was not studied because it did not reach it. 

And once all the associations without enough support were removed from the 

sample, we only would pass to analyse the confidence of the possible associations 

with enough support, but in this second step, if the acceptance threshold of the 

confidence obtained for the association were 70%, the association A1 = {Bread, 

Water} → A2 = {Milk}, would be accepted because it has a confidence level of 

75%, but the association A1 = {Milk} → A2 = {Bread, Water}, it would not be 

since its level is 60%. 

Once we have seen how the association algorithms work in a generic way, we are 

going to see how they work in a specific way. 

Apriori Algorithm 

The definition of the Apriori algorithm follows the generic two-step process 

described above. Let us see how it treats each step.18 

A. Step A. Identification of frequent associations. It is based on the calculus of the 

support and the identification of events with a support, s, greater than or equal to 

the threshold or frequent events. To optimize the identification of frequent events 

16 Although not all the existing ones will be seen, since only such a length could be covered in a 

monographic text on association, the most widely used and internationally disseminated algorithm 

will be seen. 
17 We will call them A and B for clarity. 
18 That, following what has been seen above, we will also call here, for reasons of clarity, A and B
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and reduce the search space, the a priori algorithm is based on the fact that the 

support measure is antimonotone,19 so if an event is frequent, all the subsets of 

said event are also frequent, since their support is greater than or equal to that of 

the event that contains them. 

B. Step B. Identification of trusted associations. It is based on the calculation of the 

confidence, c, and the identification of events with a confidence support greater 

than or equal to the threshold or frequent events. The algorithm uses the 

ap-genrules function, which is based on the theorem: Let A and B be two sets. 

If the association A → B- A does not exceed the confidence threshold, then any 

association A′ → B - A′, where A′ is any subset of A (A′⊆A), will also not 

reach it. 

We are going now to see in detail how both steps are performed and which 

substeps they have. 

Step A 

We are going to start the description of step A with the definition and an example of 

the antimonotone properties that, as has been said in the previous paragraph, if an 

event is frequent, all the subsets of said event are also frequent, since their support is 

greater than or equal to that of the event that contains them. For a better understand-

ing, we can see the following example: 

We take the same sample basked with the six events as in the previous examples: 

{Bread, Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, {Bread, Water, 

Milk}, {Bread, Coffee, Milk}, {Bread, Water}, {Milk}. 

If we apply the antimonotone property to any of the events, for example {Bread, 

Water, Milk}, and we calculate its support and form it, we determine that it is 

frequent, the consequence is that the events {Bread}, {Water}, {Milk}, {Bread, 

Water}, {Bread, Milk}, and {Water, Milk} must be frequent. 

This is quite logical since when observing the number of times that the set 

{Bread, Water, Milk} appears, to calculate its probability or support, we have seen 

that it is 0.5 because it appears 3 times, {Bread, Water, Milk, Oranges}, {Bread, 

Water, Coffee, Milk}, {Bread, Water, Milk}, in 6 observations. If we look at the set 

{Bread, Water}, it would appear at least 3 times, which are the ones that appear next 

to Milk, and it could also appear more times, together with another product or alone. 

If we look at the sample,20 which is the one we are working with throughout this

19 A function – here we will take the support function s, because they are the one we are working on, 

but it could be any other – is antimonotonic on a set P (E) when it verifies that 

8A,B 2 P Eð Þ=A⊆B→ s Bð Þ≤ s Að Þ  

20 We repeat the sample here so as not to have to go back and make reading easier: {Bread, Water, 

Milk, Oranges}, {Bread, Water, Coffee, Milk}, {Bread, Water, Milk}, {Bread, Coffee, Milk}, 

{Bread, Water}, {Milk}.



chapter, we can see that it appears once more alone, in {Bread, Water}, that means 

that it appears 4 times, and consequently its support is equal to or greater than that of 

{Bread, Water, Milk}, in this case greater. In this case, 4/6=0.67, and consequently, 

its support is greater than the set {Bread, Water, Milk} that contains it.
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Therefore, if it is turned around at the beginning, it can be concluded that no set of 

P(E) can have greater support than the subsets it contains. This allows the Apriori 

algorithm, once the support threshold has been set, to gradually reduce the set of P 

(E) events that are candidates to overcome it, starting from the elementary events. 

That is, if a set consisting only of an elemental event does not reach the support 

threshold, no set consisting of more elements, in which one must be that elemental 

event, will not exceed said support threshold either. Once we know this, we return to 

the description of step A and its substeps. 

To carry out step A, the a priori algorithm will have two substeps: 

Step A.1 

In Step 1 of the a priori algorithm, the algorithm makes a single pass through all the 

elementary events to calculate their support and eliminate those that do not reach the 

set threshold support. 

To see an example of Step 1 of the a priori algorithm, we set the support threshold 

at a support or probability of occurrence of the event of 50% applied to the basket 

sample. 

From there, we begin to apply the a priori algorithm with the first iteration in 

which we analyse all the elementary events, that are {{Bread}, {Water}, {Coffee}, 

{Milk}, {Oranges}} 

Since the number of events in the sample is six to be selected, they will have to 

appear 3 or more times, so that their support is 0.5 or more. If we take the support 

equation, we have: 

s A1 [ A2ð Þ= 
nA1[A2 

nT 
= 

nA1[A2 

6 
≥ 0:5→ nA1[A2 

≥ 3 

We start with {Bread} and observe that it appears 5 times in {Bread, Water, Milk, 

Oranges}, {Bread, Water, Coffee, Milk}, {Bread, Water, Milk}, {Bread, Coffee, 

Milk}, and {Bread, Water}; therefore, we select it. Next, we observe {Water}, which 

appears 4 times; therefore, we also select it. 

If we look at {Coffee} and see that it appears only twice, in {Bread, Water, 

Coffee, Milk} and {Bread, Coffee, Milk}, we do not select it since its support is: 

s A1 [ A2ð Þ= 
nA1[A2 

nT 
= 

2 

6 
= 0:33 � 30% 

We look at {Milk}, which appears 5 times, and we select it. 

Finally, we observe {Oranges}, which appears once, in {Bread, Water, Milk, 

Oranges}, and we do not select it.



A. Theory 431

Therefore, after step 1, we have reduced the set of elementary events of interest to 

the events 

Breadf g, Waterf g, Milkf gf g  

with which we have reduced the set of events to be analysed in the second step to 

those that contain only any combination of any dimension of the elementary events 

{{Bread}, {Water}, {Milk}}, since those containing {{Coffee}, {Oranges}} cannot 

have a support greater than 0.5 because 3 or more times, since the elements that 

compose them do not appear alone 3 or more times, it will be impossible for them to 

appear 3 or more times as part of any set of more elements. Once we have seen this, 

we move on to the second step. 

Step A.2. 

In Step 2, the a priori algorithm will carry out successive steps, two for each 

dimension, which will be called 2.1 and 2.2, starting with the sets of two elements 

and ending when it is not possible to identify a dimension in which there is equal or 

greater support than the threshold. It consists in turn of two substeps: 

Step A.2.1 

The first step that the a priori algorithm will perform in each dimension will be to 

apply the function called Apriori-gen to identify the candidate sets of a dimension, 

using as a basis the sets selected for the previous dimension, that is, for example, for 

the sets dimension, two will use the selected elementary events. There are different 

methods to carry out this identification, and the a priori-gen function uses the Fk-1 x  

Fk-1 method. 

The Fk-1 x Fk-1 method generates the candidate sets in a given dimension k by 

joining pairs of candidate sets of the previous dimension k-1 but only joins those 

pairs in which their first k-2 elements, or what is the same, are formally expressed: 

Let A = {a1, a2, . . ., ak - 1} and B = {b1, b2, . . ., bk - 1} be two frequent events 

identified when dimension k-1 has been analysed. A and B will only join to form a 

candidate event in dimension k if they satisfy the following two conditions: 

1. ai = bi for i = 1,2,. . ., k-2 

2. ak - 1 ≠ bk - 1 

In this example, we apply the apriori-gen function to identify candidate events in 

each dimension for the elemental events accepted, which are: {{Bread}, {Water}, 

{Milk}}. 

k=2. We start applying the Fk - 1 × Fk - 1 method to identify the two-element 

candidate events, and in consequence, k is, in this case, 2, since we are in dimension 

2. Consequently, k-1 is equal to 1 and is able to join two sets of dimension 1, that is, 

with a single element, the first k-2 elements must coincide, which in this case are 

2-2 = 0 elements and the elements ak-1 ≠ bk-1 do not coincide, which in this case



are a1 ≠ b1. Therefore, in this case, it has been seen that the method can be applied 

perfectly, since the only element that the dimension 1 sets consist of does not have to 

match and there does not have to be any element that matches. 
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Considering all the previous, for this very simple dimension, the construction of 

new sets will consist of joining the frequent elementary events: {{Bread}, {Water}, 

{Milk}}, so these union sets are: {Bread, Water}, {Bread, Milk}, {Water, Milk}. 

k=3. In step 2.2, we will see how the support is calculated for each of these 

two-dimensional sets, but we will assume that all three are selectable because the 

supports of all three are above the threshold, to see how the method Fk - 1 × Fk - 1 

would identify the candidate events of dimension 3 starting from these three sets of 

dimension 2. According to the Fk - 1 × Fk - 1 1 method, to identify the candidate 

events of three elements, the first thing we do is identify the value of k, which in this 

case is 3, since we are in dimension 3, consequently k-1 is equal to 2 and to be able 

to join two sets of dimension 2, that is, with two elements, the first k-2 elements 

must coincide, which in this case is: 3-2 = 1 element and the elements ak-1 ≠ bk-1, 

must not coincide, which in this case are a2 ≠ b2. 

Considering all the previous, for this dimension {Bread, Water} and {Bread, 

Milk} can be joined because it is true that a1 = b1 and a2 ≠ b2, but it cannot be joined 

with either of the two sets, the set {Water, Milk}, because a1 would be different from 

b1 if you try to join {Water, Milk} with any of the other two sets. Consequently, the 

union set would be {Bread, Water, Milk}. 

Step A.2.2 

The second step that the a priori algorithm will perform in each dimension will be to 

calculate the support of the candidate events identified in step 2.1 to select the events 

with a value equal to or greater than the threshold. To do this, each candidate event 

must be compared with all the events that make up the analysed sample to identify 

those events in the sample that contain or are equal to said candidate event. To do 

this, the a priori algorithm will need to perform three new substeps within the second 

substep of step 2 of step A. They will be substeps: 

– A.2.2.1. Partition the candidate events with a hash tree. 

– A.2.2.2. Partition of the sample events with the same hash tree. 

– A.2.2.3. Comparison of both partitions. All matching sheets increment the 

numerator by one unit in the candidate event support calculation. 

Now, we will describe in detail how it works for each one. 

Step A.2.2.1 

In the first step, the candidate events are partitioned using a hash tree21 and 

summary tree. 

21 The explanation of how a hash tree is built will be seen through the example because it carries 

greater clarity.
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To see an example of Step 2.2.1. of the Apriori algorithm, the partition using a 

hash tree, it is very useful to enumerate the elementary events in the sample space 

and from here to carry out their subsequent treatment using their corresponding 

number. 

We will now carry out this previous step and enumerate the events in the sample: 

Bread= 1f g, Water= 2f g, Coffee= 3f g, Milk= 4f g, Oranges= 5ff  

And from here, we are going to treat them by their numbers, retaking the 

candidate events for the dimension accordingly. Consequently, the candidate events 

for dimension 2, that is, sets with two elements that we had identified in the example 

of the previous step, were: 

Bread,Waterf g, Bread,Milkf g, Water,Milkf g  

and changing to the numerical notation, we have the following sets: 

12f g, 14f g, 24f g: 

In the case of the possible candidate event of dimension 3 that we saw in the 

previous example 

{Bread, Water, Milk} 

That numerically it would correspond to 

124f g  

Once we have the candidate events named with numbers, in this Step A.2.2.1. 

To build the hash tree and structure each node, a partition (or hash) function must be 

used. To do that, we use the partition function h (p) = p mod 3. 

If this function is taken, the indices will be grouped according to the remainder of 

their division by 3; for example, the division of 1, 4, and 7 by 3 will give 1 because 

the divisions that give rise to these numbers are 1/3 = 0.3 with remainder 1; 

4/3 = 1 with remainder 1; and 7/3 = 2 with remainder 1. Therefore, they will 

be in the same node. 

If we apply this to the rest of the numbers, we have that the three nodes will be 

{1, 4, 7}, with rest 1; {2, 5, 8}, with rest 2, 2/3 = 0.6 with remainder 2; 5/3 = 1 with 

remainder 2; and 8/3 = 2 with remainder 2; and {3, 6, 9}, with rest 3, 3/3 = 1 with 

remainder 0; 6/3 = 2 with remainder 0; and 9/3 = 3 with remainder 0, and they will 

be arranged from left to right. Therefore, for example, events starting with 1, 4, or 

7 will be structured at the first node. 

Once we are in the first node, suppose, for example, for those that start with 

1, those with a second digit, for example, a 4, will be in the node corresponding to 

the first set, that is, to the left, and those with, for example, a 2, will be in the 

central node.
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Taking this into account, the candidate events of dimension 2 of the exercise and 

the description of how to obtain the partition tree, we must obtain the partition tree 

for the candidate events of all the possible dimensions of the exercise of the basket 

numbered in the previous step. 

For dimension 2, the candidate events will be structured as follows: 

The candidate events of dimension 3 will be structured as follows: 

being a single element, it would only have one node. 

Step A.2.2.2 

In the second step, the events of the available sample for the analysis that is carried 

out must be partitioned using the same procedure as for the candidate events. First, 

we will numerate the sets of each event in the sample, and next, we will obtain a 

hash tree. 

To see an example about how to perform step A.2.2.2 of the Apriori algorithm, 

we follow solving the problem of the basket. Following the theoretical description, 

the first thing we do is number the sets in the sample. We remember that the six 

events in the set of the sample were: 

{Bread, Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, {Bread, Water, 

Milk}, {Bread, Coffee, Milk}, {Bread, Water}, {Milk}, 

so they are numbered: 

1245f  g, 1234f  g,  124f  g, 134f  g,  12f  g,  4f  g:
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Next, we partition them using the same hash tree function h(p) = p mod 3. We are 

going to do it sequentially one by one and for each dimension. 

For Dimension 2, the sample is structured as follows: 

We start with those of dimension 2, that is, sets of two elements. To do so, from 

each event in the sample, we will obtain all the possible subsets of 2 elements that 

can be obtained from it, that is, all the combinations without repetition of order two 

that can be formed with the elementary events that make up the event. Then, we will 

perform a hash tree to structure the sets obtained. The partitions obtained are:

• 1245. From event 1245, the following events of dimension 2 can be generated, 

and the following partition:

• 1234. From event 1234, the following events of dimension 2 can be generated, 

and the following partition:

• 124. From event 124, the following events of dimension 2 can be generated, and 

the following partition:
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• 134. From event 134, the following events of dimension 2 can be generated, and 

the following partition:

• 12. From event 12, the following event of dimension 2 can be generated, and the 

following partition:

• 4. From event 4, no event of dimension 2 can be generated. 

We are now going to do the same with the events of dimension 3. For dimension 

3, the sample is structured as follows:

• 1245. From event 1245, the following events of dimension 3 can be generated, 

and the following partition:
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• 1234. From event 1234, the following events of dimension 3 can be generated, 

and the following partition:

• 124. From event 124, the following event of dimension 3 can be generated, and 

the following partition:

• 134. From event 134, the following event of dimension 3 can be generated, and 

the following partition:
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• 12. From event 12, no event of dimension 3 can be generated.

• 4. As of event 4, no event of dimension 3 can be generated. 

Step A.2.2.3 

In the third step, both results are compared, and all the matching sheets will increase 

the numerator by one unit in the calculation of the support of the candidate event. 

To see an example about how to perform step A.2.2.3 of the Apriori algorithm, 

we follow solving the problem of the basket. Following the theoretical description in 

this step, the results obtained in steps 2.2.1 and 2.2.2 are compared, and the 

numbering of the support of the candidate events is calculated. It is interesting to 

remember here that for the candidate event to exceed the 50% threshold, the 

numerator must be equal to or greater than 3. We are going to do it one by one 

with the events in the sample: 

For Dimension 2, the comparison is as follows:

• 1245. Compared with the candidate events, sets 14, 12, and 24 add 1 to the 

numerator of the support calculation. Event 14 = 1; Event 12 = 1; Event 24 = 1.

• 1234. Compared with the candidate events, sets 14, 12, and 24 add 1 to the 

numerator of the support calculation. Event 14 = 2; Event 12 = 2; Event 24 = 2.
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• 134. Compared with the candidate events, sets 14, 13, and 34 add 1 to the 

numerator of the support calculation. Event 14 = 3; Event 12 = 3; Event 24 = 3.

• 134. Compared with the candidate events, we have that set 14 adds 1 to the 

numerator of the support calculation. Event 14 = 4.

• 12. Compared with the candidate events, set 12 adds 1 to the numerator of the 

support calculation. Event 12 = 4. 

Consequently, all three candidate events exceed the support threshold and are 

valid. 

We are now going to do the same with the events of dimension 3. For dimension 

3, the comparison is as follows:
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• 1245. Comparing with the candidate event, the set 124 adds 1 to the numerator of 

the support calculation. Event 124 = 1.

• 1234. Comparing with the candidate event, the set 124 adds 1 to the numerator of 

the support calculation. Event 124 = 2.

• 124. Comparing with the candidate event, the set 124 adds 1 to the numerator of 

the support calculation. Event 124 = 3.
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• 134. Comparing with the candidate event, the set 123 does not add anything to the 

numerator of the support calculation. Event 124 = 3. 

Consequently, the candidate event exceeds the support threshold and is valid. 

With this, step 2.2.3 is completed, and consequently step 2.2, step 2 and step A, 

although before going on to see how step B is carried out, we are going to analyse to 

what extent the a priori algorithm has reduced the search space. We can see that for 

the first step, it does not reduce it at all, whether or not we use the algorithm we 

would have to observe 5 
1 
= 5 elementary events. However, in the second step, 

instead of having to study the support of 5 
2 
= 10: two dimensional sets, we proceed 

to study events, which are {14}, {12}, and {24}, since we have eliminated two 

elemental events and the initial set has gone from 5 5 
3 
= 10 to 3 and possible three 

3 
3 
= 1 dimensional events and we also avoid 5 

4 
= 5 four-dimensional events as 

they are not possible if the algorithm is used, so we go from 5 
4 
= 5 to 0 analysis, and 

the same for five dimensions, and we do not analyse the empty set because there are 

no associations. Even if there are five elements, it is not possible in any case, with or 

without the use of the algorithm, a set of five elements because there is none of that 

dimension in the sample and consequently its probability or support is zero. 

With all this, it can be observed that, with the use of the a priori algorithm, we 

have gone from having to observe and analyse 5 + 10 + 10 + 5 + 1 = 30 events to 

analyse 5 + 3 + 1 + 0 + 0 = 9 events. The optimization provided by the algorithm is 

very evident. If this is so for this simple case, it will be much more significant in the 

analysis of complex cases. 

Step B 

In Step B, we will identify the associated events, that is, frequent events with a 

confidence greater than or equal to the threshold. 

Once step A has been carried out, in which the candidate events that did not reach 

the chosen support threshold have been eliminated, work continues with those that 

have exceeded it to establish the existing associations between them, which will be, 

as already explained above, those that meet or exceed the confidence threshold set. It 

is important to remember here that associations, in addition to identifying which 

elementary events are related, also impose a meaning on the association, as we have 

seen in the example of trust.
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For each selected event of dimension k, 

2k - 2 

possible associations, since all these possible associations will exceed the support 

threshold because all of them are defined on selected sets because they exceeded the 

support threshold. 

In this example that we are carrying out, we state which for possible associations 

we must calculate the confidence, and for the theory, we know that we must study the 

events selected for exceeding the support threshold, that are: 

1, 2f g, 1, 4f g, 2, 4f g, 124f gf g  

or whatever same 

{{Bread, Water}, {Bread, Milk}, {Water, Milk}, {Bread, Water, Milk}}. 

Therefore, all the associations established between these sets or subsets of them 

will have a support threshold equal to or greater than 50%, as they come from sets 

that do. 

To calculate the confidence of each selected event, the a priori algorithm uses the 

function called Ap-genrules, and from the results, it eliminates all the associations 

that do not reach the confidence threshold. 

The Ap-genrules function is based on the following theorem: Let A and B be two 

sets; if the association A→B - A does not exceed the confidence threshold, then any 

association A′ 
→B - A′ , where A′ is any subset of A, (A′ 

⊆ A), will also not reach the 

confidence threshold. As a starting set B, the a priori algorithm uses the one formed 

by the selected events of greater dimension. 

In this example, we calculate the confidence of the selected events by applying 

the Ap-genrules function. From the theory, we know that the confidence threshold 

must be fixed arbitrarily, and in this case, the confidence threshold for associations 

will be set at 80%; that is, only those that reach this threshold or higher will be 

accepted. 

The associations that can be established from the selected sets are for those of 

dimension 2. 22-2 = 2, for each set. The possible rules are as follows: 

{Bread} → {Water}, {Water} → {Pan}, {Pan} → {Milk}, {Milk} → {Bread}, 

{Water} → {Milk}, {Milk} → {Water}. 

For dimension 3. 23-2 = 6, for each set. The possible rules are as follows: 

{Water, Milk} → {Bread}, {Bread, Milk} → {Water}, {Bread, Water} → {Milk}, 

{Milk} → {Bread, Water}, {Water} → {Bread, Milk}, {Bread} → {Water, 

Milk}. 

We apply the a priori algorithm and the ap-genrules function to determine which 

association rules exceed the confidence threshold for the possible associations



identified. We take as starting associations {Bread, Water} → {Milk}, where A = 

{Bread, Water}; {Bread, Milk} → {Water}, where A = {Bread, Milk}; {Water, 

Milk} → {Bread}, where A = {Water, Milk}, and we calculate the confidences of 

each of these associations.
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• {Bread, Water} → {Milk} 

We will analyse the confidence of this possible association with this sense of the 

association and all the related associations with each own sense using the function 

ap-genrules. 

The B set is {Bread, Water, Milk} 

From the possible subsets of B, we take as A set {Bread, Water} and obtain B -

A, that, as we know for the theory of set seen in the Probability chapter, is B - A = 

{Milk}. 

Now, we calculate the confidence of the association {Bread, Water} → {Milk} 

that comes from the equation. To do it easily, we remember that the six events in the 

set of samples were {Bread, Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, 

{Bread, Water, Milk}, {Bread, Coffee, Milk}, {Bread, Water}, {Milk}, 

The confidence of this association is: 

c Bread,Waterf g [ Milkf gð Þ= 

n Bread,Waterf g[  Milkf g  

n Bread,Waterf g  
= 

3 

4 
= 0:75 

Since it is not greater than 0.8, which is the threshold, this association is not 

selected, and applying the ap-genrules function, the associations A′→B - A′, where 

A′ is any subset of A, (A′ ⊆ A), will not reach it either. 

A′ are subsets of A, they are: 

A ′ 1 = Breadf g,A ′ 2 = Waterf g  

Consequently, the associations 

A′1→B - A′1 that it is {Bread} → {Water, Milk} 

A′2→B - A′2 that it is {Water} → {Bread, Milk} 

Will not reach the confidence threshold. We calculate both confidences to prove 

this. 

cA0 
1 = c Breadf g [ Waterf ,Milkgð Þ= 

nB 
nA0 

1 

= 

n Breadf g[  Water,Milkf g  

n Breadf g  
= 

3 

5 
= 0:6 

And 

cA0 
2 = c Waterf  g [ Breadf ,Milkgð Þ= 

nB 
nA0 

1 

= 

n Waterf  g[  Bread,Milkf g  

n Waterf  g  
= 

3 

4 
= 0:75
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Both of them are under 0.8, so they do not reach the threshold and are not 

selected.

• {Bread, Milk} → {Water} 

We will analyse the confidence of this possible association with this sense of the 

association and all the related associations with each own sense using the function 

ap-genrules. 

The B set is, as in the previous case, {Bread, Water, Milk} 

From the possible subsets of B we take as A set {Bread, Milk} and obtain B - A, 

that, as we know for the theory of set seen in the Probability chapter, is B - A = 

{Water}. 

Now, we calculate the confidence of the association {Bread, Milk} → {Water} 

that comes from the equation. To do it easily, we remember that the six events in the 

set of samples were {Bread, Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, 

{Bread, Water, Milk}, {Bread, Coffee, Milk}, {Bread, Water}, {Milk}. 

The confidence of this association is: 

c Bread,Milkf g [  Waterf gð Þ= 

n Bread,Milkf g[  Waterf g  

n Bread,Milkf g  
= 

3 

4 
= 0:75 

Since it is not greater than 0.8, which is the threshold, this association is not 

selected, and applying the ap-genrules function, the associations A′ 
→B - A′ , where 

A′ is any subset of A, (A′ 
⊆ A), will not reach it either. 

A′ are the subsets of A, they are: 

A ′ 1 = Breadf g,A ′ 2 = Milkf g  

Consequently, the associations 

A′1→B - A′1 that it is {Bread} → {Water, Milk} 

A′2→B - A′2 that it is {Milk} → {Water, Bread} 

will not reach the confidence threshold. We do not need to calculate the first one 

because it is exactly the same as in the previous case, and we know that it is: 

cA0 
1 = 0:6 

We calculate the second confidence to prove this. 

cA0 
2 = c Milkf g [ Waterf , Breadgð Þ= 

nB 
nA0 

2 

= 

n Waterf g[  Bread,Milkf g  

n Waterf g  
= 

3 

5 
= 0:6 

Both of them are under 0.8, so they do not reach the threshold and are not 

selected.

• {Water, Milk} → {Bread}
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This is the last possible set A that we can select, and we are going to analyse the 

confidence of this last possible association with this sense of the association and all 

the related associations with each own sense using the function ap-genrules. 

The B set is, as in the previous cases, {Bread, Water, Milk} 

From the possible subsets of B, we take as A set {Water, Milk} and obtain B- A, 

that, as we know for the theory of set seen in the Probability chapter, is B - A = 

{Bread}. 

Now, we calculate the confidence of the association {Water, Milk} → {Bread} 

that comes from the equation. To do it easily, we remember that the six events in the 

set of samples were {Bread, Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, 

{Bread, Water, Milk}, {Bread, Coffee, Milk}, {Bread, Water}, {Milk}. 

The confidence of this association is: 

c Water,Milkf g [ Breadf gð Þ= 

n Water,Milkf g[  Breadf g  

n Water,Milkf g  
= 

3 

3 
= 1 

Since this case is different from the previous case and is greater than 0.8, which is 

the threshold, this association can be selected, and consequently, in this case, we 

cannot apply the ap-genrules function and the associations A′→B - A′, where A′ is 

any subset of A, (A′ ⊆ A) that must be analyzed one by one. 

A′ are the subsets of A, they are: 

A′ 1 = Waterf g,A′ 2 = Milkf g  

Consequently, the associations 

A′1→B - A′1 that it is {Water} → {Bread, Milk} 

A′2→B - A′2 that it is {Milk} → {Water, Bread} 

We do not need to calculate the first one because it is exactly the same as the cA0 
2 

of the first case, and we know that it is: 

cA0 
1 = 0:75 

We do not need to calculate the first one because it is exactly the same as the cA0 
2 

of the previous case, and we know that it is: 

cA0 
2 = 0:6 

Both of them are under 0.8, so they do not reach the threshold and are not 

selected. 

We have finished the analysis of all the possible associations of dimension 3, for 

which we have selected only the association 

Water,Milkf g→ Breadf  g
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Because it is the only one with a confidence over the threshold fixed of 0.8. It is 

therefore the only association selected because it has 50% support and 80% confi-

dence. In other words, whenever you buy Water and Milk, you also buy Bread. 

We now take the sets of dimension 2. 

We start with B = {Bread, Water} 

We take A = {Bread} 

If we apply the first premise: A → B - A, we obtain that B - A = {Water}. 

Therefore, we have the association: 

{Bread} → {Water} 

To calculate its confidence, we remember the sample to do it easily: {Bread, 

Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, {Bread, Water, Milk}, 

{Bread, Coffee, Milk}, {Bread, Water}, {Milk}, and we have: 

cA= c Breadf g [ Waterf gð Þ= 
nB 
nA 

= 

n Breadf g[  Waterf g  

n Breadf g  
= 

4 

5 
= 0:8 

In this case, the confidence of the association exceeds the confidence threshold, so 

in addition to accepting the association, we cannot apply the second premise, and we 

must analyse A′→B- A′ one by one. However, we realize that in dimension 2, there 

is no A ′ because there are no subsets of A, so all cases have to be analysed, and 

we have: 

{Water} → {Bread}: c= 
nB 
nA 

= 
4 
4 
= 1> 0:8. It is accepted 

{Bread} → {Milk}: c= 
nB 
nA 

= 
4 
5 
= 0:8= 0:8: It is accepted 

{Milk} → {Bread}: c= 
nB 
nA 

= 
4 
5 
= 0:8= 0:8. It is accepted 

{Water} → {Milk}: c= 
nB 
nA 

= 
3 
4 
= 0:75< 0:8: It is not accepted 

{Milk} → {water}: c= 
nB 
nA 

= 
3 
5 
= 0:6< 0:8. It is not accepted 

Consequently, as a result of the association analysis performed, the associations 

identified because all of them present support equal to or over 50% and confidence 

equal to or over 80% are as follows:

• {Water, Milk} → {Bread}

• {Bread} → {Water}

• {Water} → {Bread}

• {Bread} → {Milk}

• {Milk} → {Bread} 

In other words, whenever you buy Water and Milk, you also buy Bread. When-

ever you buy Bread, you buy Water, and vice versa; and whenever Bread is bought, 

Milk is bought and vice versa.
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B. Computer-Based Solving 

As in the other chapters, this subsubsection starts with a reminder of what means 

computer-based association solving, that is, the application of a systematic process 

of designing, implementing, and using programming tools to solve the association 

problem. 

Exercises of Association Analysis Solved in R 

In this exercise, an analysis with R of event association will be carried out for the 

same problem of the shopping basket applying all the concepts seen in the topic, that 

is, we will obtain, using the Apriori algorithm, events whose support is equal to or 

greater than 50%. For the associations with support above the threshold, the confi-

dence is higher than 80%. To do that and with the goal that the problem to be solved 

was exactly the same as we have used in the theoretical solution of the problem, that 

sample is {Bread, Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, {Bread, 

Water, Milk}, {Bread, Coffee, Milk}, {Bread, Water}, {Milk}. 

As we know from the previous chapters, in R, with the packages loaded by 

default, association analysis cannot be performed, so we will have to load a package 

that does allow it. Among the various existing packages in the CRAN, we will use 

the arules package in this practice. 

The first thing we do is check if we have it among the standard library packages, 

for which we know that we must use the function library() that gives us the list of the 

packages that we have in the standard library, and we see that it is not among them, 

so we have to install it. 

We know that there are many different alternatives to install a package; we are 

going to use one of them, that although it is not the shortest, it will allow us to see 

more additional options. We go to the arules package page on the CRAN website. 

For this, we click on the link: http://CRAN.R-project.org/within the third 

subsubsection 3. Archives, and we go to a new page where we can find all the 

downloadable files for R. We click on the Packages link, and we get to a new page 

where all the packages available for R are included. We click on Table of available 

packages, sorted by name and search the arules package. 

As we know, in this new page, all the information about the package and the 

downloadable is gathered. It is very important to know that each package has a page 

of this type because it is important not to load them blindly without knowing 

anything about them. We download the file: 

Windows binaries: arules_1.1-6.zip 

if we are working on windows. In addition, it is important to also download the 

package manual so that you can consult it. Reference manual: 

arules.pdf.

http://cran.r-project.org/within
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We download both things in the downloads folder and return to R. To install the 

package we are going to use the known install.packages () function in which we are 

going to put two arguments: the first is which .zip file we want to install. For R to 

install it, the.zip file must be in a temporary directory called tmp in the root directory 

of the hard disk, so we create it and place the file arules_1.1-6.zip there. The second 

argument consists of giving the variable repos the value NULL. Consequently, the 

function is: 

>install.packages ("c:/tmp/arules_1.1-6.zip", repos = NULL). 

When we run the R function, it tells us that it cannot store arules in the standard R 

library, and in the case that we had not installed other packages outside the standard 

library and we would have a personal library, it gives us the option to use a personal 

library instead. We say yes and a new window appears asking if we want to create 

the library: c:/users/jjcg/documents/R/win-library/3.1. We say yes, and it creates all 

the folders that do not exist and installs in one folder inside 3.1, which names arules, 

the arules files (we remove the tmp because we will not need it anymore and delete 

download arules). We move the manual to the arules folder to have everything 

concentrated. Next, we load the arules package in R using the instruction 

>library(arules) 

R loads, in addition to the arules package, the matrix package (which is in the 

standard library and does not have to be installed) because the arules package needs 

it to work. We execute the function 

>search () 

to verify that it is installed correctly. 

Since we are going to use the package arules many times, we do not want to load 

it any time that we use R. For that reason, we want that the package was loaded by 

default by R when it starts. 

When we start R, there is a set of packages that are loaded by default. To 

determine which packages are, we use the function 

>getOption ("defaultPackages") 

This set of initially loaded packages can be modified by reprogramming the start 

code. The file that controls this startup code is Rprofile, and it is, in a computer with 

Windows operating system, in the folder: 

Program Files/R/R-3.1.2/library/base/ 

In this file, there is a piece of code that is 

dp <- c ("datasets "," utils "," grDevices "," graphics "," stats "," methods ") 

In this variable, we can include or remove the packages we want. If we removed 

them all, only the “base” package would remain, which is not listed because it cannot 

stop loading for the system to work. We are going to include the arules package



within the default packages because we use it a lot, as we have seen in previous 

chapters. For which we introduce it after “methods”: 

dp <- c ("datasets", "utils", "grDevices", "graphics", "stats", "methods", "arules") 
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We close the file, maintain the new name and now, each time that the R program 

starts, will load the arules package by default. 

Once we have the arules package installed and loaded by default, we begin to 

solve the association analysis problem with R. 

The first thing we have to do is to introduce the values of the events of the sample 

with which we are working in R. To do this, we can realize that the events can be 

represented as an array of binary values in the following way: in each column, the 

values of the different elementary events with which we work are represented, and in 

each row the values of a given event (observation), being a 1, if the elementary event 

occurs, or a 0, if it does not occur. 

According to this, the matrix corresponding to the observed sample {Bread, 

Water, Milk, Oranges}, {Bread, Water, Coffee, Milk}, {Bread, Water, Milk}, 

{Bread, Coffee, Milk}, {Bread, Water}, {Milk} is: 

Bread Water Coffee Milk Oranges 

Event 1 1 1 0 1 1 

Event 2 1 1 1 1 0 

Event 3 1 1 0 1 0 

Event 4 1 0 1 1 0 

Event 5 1 1 0 0 0 

Event 6 0 0 0 1 0 

We introduce this matrix in R with the Matrix () function. Let us call it a sample 

matrix, with what the instruction would be: 

sample <- Matrix (c (1,1,0,1,1, 1,1,1,1,0, 1,1,0,1, 0, 1,0,1,1,0, 1,1,0,0,0, 0,0,0,1,0), 

6, 5, byrow = TRUE, dimnames = list (c ("event1", "event2", "event3", "event4", 

"event5", "event6"), c ("Bread", "Water", "Coffee", "Milk", "Oranges")), sparse 

= TRUE) 

We have introduced the attribute sparse = TRUE because rules need to work a 

ngCMatrix or sparse matrix of nonzero positions, so we will have to convert the 

sample matrix into that type of matrix, and if we had not put the sparse attribute, we 

could not because the function as, which is the one that will convert the sample 

matrix into a ngCMatrix, can only do so if the sample matrix is sparse (what we have 

is a 6 x 5 sparse Matrix of class "dgCMatrix"), if not (what we would have without 

that attribute would be 6 x 5 Matrix of class "dgeMatrix") could not. The complete 

statement for converting to a ngCMatrix will be: 

sample-trangCMatrix <-as (sample, "nsparseMatrix") 

Then, before applying the arules functions, we must transpose the 

samplengCMatrix matrix to correctly analyse the sets. We do it through the 

t function.



Trans-pmsampleCMatrix <t (samplengCMatrix)
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Then, we performed association analysis using the functions of arules. The first 

thing is to determine the possible transactions, which we do using the as function and 

the transactions attribute. We will assign the result to a new variable that we will call 

tr. The complete statement is: 

tr <-as (Transpm SampleCMatrix, "transactions") 

We observe the result by introducing tr. Next, we ask for a summary of tr using 

the summary (tr) command. 

After these previous steps, to properly carry out the association analysis, we use 

the a priori algorithm through the function of arules apriori (as seen in theory). We 

define a variable as the output of the associations obtained, which we call variable 

rules. The complete instructions are as follows: 

rules <-apriori (tr, parameter = list (support = 0.5, confidence = 0.8)) 

We have chosen, as in the manual exercise, a support of 50% and a confidence of 

80%. Next, if we introduce rules to see the result, we find a set of 2 rules. To see what 

they are, we introduce the inspect function. The complete statement is: 

inspect (rules) 

and we obtain: 

lhs, rhs, support, confidence, lift; 

[1] {} => {Milk} 0.8333333 0.8333333 1.00 

[2] {} => {Bread} 0.8333333 0.8333333 1.00 

[3] {Water} => {Bread} 0.6666667 1.0000000 1.20 

[4] {Bread} => {Water} 0.6666667 0.8000000 1.20 

[5] {Milk} => {Bread} 0.6666667 0.8000000 0.96 

[6] {Bread} => {Milk} 0.6666667 0.8000000 0.96 

[7] {Water, Milk} => {Bread} 0.5000000 1.0000000 1.20 

That is the same result that we have obtained in the theoretical subsubsection. 

C. Association Analysis Exercises Solved 

This subsection has two parts. In the first part, a set of exercises solved in detail are 

presented to allow you to check if all the knowledge has been correctly acquired. The 

advice is to try to solve the exercises by yourself, and then to get the solution 

to check it with the proposed one by this book. This procedure will make 

this subsection truly useful for you. In the second part, the same exercises will be 

solved in R.
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Handmade Exercises 

1. A sample space is established based on the real characteristics of planets of the 

solar system that can serve as the basis for an association analysis for two events 

composed of a single elementary event. 

In this first exercise, we use the following sample space: E = {Solid, Gaseous, 

With satellites, Without satellites}, which refers to the composition of a planet 

and the fact that said planet has satellites or not. As has been said in the theoretical 

description, we will begin to see the association using sample spaces composed of 

subsets formed by exclusive elementary events, and in this case, there are two 

subsets with exclusive elements: {Solid, Gaseous} and {With satellites, Without 

satellites}. 

2. Establish the set parts of E, P(E), of the sample space stated in the previous 

exercise for the association of two events composed of a single elementary event. 

Starting from the sample space E = {Solid, Gaseous, With satellites, Without 

satellites}, and taking into account that we have the two subsets with exclusive 

elements {Solid, Gaseous} and {With satellites, Without satellites}, the set P 

(E) will be formed by the following sets: P (E) = {∅, {Solid}, {Gaseous}, {With 

satellites}, {Without satellites}, {Solid, With satellites}, {Solid, Without satel-

lites}, {Gaseous, With satellites}, {Gaseous, Without satellites}}. And from here 

on, the association analysis that we are going to be able to do will be able to be 

only for those events formed by a single elementary event, which are not 

exclusive, that is, they have a union event within the set P (E), that is, we can 

study the association of Solid with satellites, but not of Solid with Gas. 

3. Stablish a possible sample of observations, based on the set P(E) stated in the 

previous exercise that can serve to carry out an association analysis of two events 

composed of a single elementary event. 

As mentioned in the introduction, to carry out an association analysis it is 

essential to have a sample that allows us to calculate the values of the measures 

used to determine the degree of association. In this case, the sample we will have 

is the eight planets of the solar system:22 {Mercury23 {Solid, Without24 }, Venus 

{Solid, Without}, Earth {Solid, With}, Mars {Solid, With}, Jupiter {Gaseous, 

With}, Saturn {Gaseous, With}, Uranus {Gaseous, With}, Neptune {Gaseous, 

With}}. 

4. Using the sample of the previous exercise, calculate the support of the association 

of the possible disjoint events in the problem of the composition of the planets 

and the existence of satellites for them. 

Once we have defined the sample that allows us to establish the probability of 

appearance of the different events, we calculate the support of the association of

22 All the data are real data. 
23 The name of the planet will only be used to identify the event, but will not be considered as an 

additional variable. 
24 Only Without or With will be put, without the word satellites to make the text easier to read.



the disjoint events A1 = {Solid} and A2 = {Without}. What we have to calculate 

is the classical probability of appearance of the set = {Solid, Without}, as a set 

formed only by these elements or within as a subset of any set of P (E) that 

contains, among others, said elements, but in this case, that possibility will not be 

given. As seen above, this probability is given by:
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Examining the sample, the number of elements of P (E) that the set contains 

are 2: Mercury {Solid, Without}, Venus {Solid, Without}, and the total number 

of events in the sample is = 8; consequently, the support of the association of 

the events A1 = {Solid} and A2 = {Without} is 2/8 = 0.25. Therefore, this 

association would have 25% support. As it is a probability, the support moves in a 

range from 0 to 1. Once we have seen how it is calculated and what is the value of 

the support of the association {Solid, Without}, we are going to calculate the 

support of the rest of possible associations: {Solid, With}, with a support of 2/8, 

and therefore again of 25%; {Gaseous, Without}, with a support of 0/8, and 

therefore 0%; {Gaseous, With} with a support of 4/8 and therefore 50%. 

If we had established 25% support to determine which associations we would 

continue to analyse, we would continue to analyse the associations. 

5. Calculate the confidence of the association of the selected disjoint events from the 

value of their support calculated in the previous example, which are {Solid, 

Without}; {Solid, With}; {Gaseous, With}. 

What we have to calculate is the probability of appearance, for example, of the 

set {Solid, Without}, but unlike the previous example, we do not calculate it on 

the complete sample but taking a subset of it formed only by those events that 

contain or are equal to the set: A1 = {Solid}. The reduced sample is composed of 

four events: Mercury {Solid, Without}, Venus {Solid, Without}, Earth {Solid, 

With}, and Mars {Solid, With}. Therefore, to calculate the confidence, we use the 

equation: 

As we know from the previous example, the number of elements of P (E) that 

contain the set {Solid, Without} are 2: Mercury {Solid, Without}, Venus {Solid, 

Without}, and the total number of events in the reduced sample is = 4; conse-

quently, the confidence of the association of the events A1 = {Solid} → A2 = 

{Without} is 2/4 = 0.5. Again, since it is a probability, the support moves in a 

range that goes from 0 to 1; therefore, this association would have a 50% 

confidence level. 

We are now going to calculate the confidence of the reverse associations. The 

confidence obtained for the association A1 = {Solid} → A2 = {Without}, 50%, 

is not the same as the one obtained would be the same for the association: A1 = 

{Without} → A2 = {Solid}, since the latter would keep the numerator, but the 

denominator would be 2, since the events of the reduced sample, that is, the 

events that contain milk are 5, and not 4 as in the previous case, these events are: 

Mercury {Solid, Without}, Venus {Solid, Without}, with which the confidence is 

c = 2/2 = 1 = 100%. 

6. Generate the contingency table of the elementary events treated in the previous 

exercises and calculate the contingency of Yule and Pearson.
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In each column, we write one of the two exclusive elementary events belong-

ing to the first subset of the sample space, that is, A1 {Solid} and A225 {Gas-

eous}. In each row, we write the other two exclusive elementary events, that is, 

B1 {Without} and B2 {With}, in each cell, we write the absolute frequency of 

appearance of the union set of both elementary events. The table is: 

2 × 2 crosstab or contingency table 

A1 A2 Total 

B1 f11 f12 f11+f12 

B2 f21 f22 f21+f22 

Total f11+f21 f12+f22 f11+f12+f21+f22 

Contingency table with the problem values 

Solid Gaseous Total 

Without 2 0 2 

With 2 4 6 

Total 4 4 8 

If we recall what was seen in the theoretical description of the contingency, from 

observing the values in the table, it could be concluded that if the event composed of 

the only elementary event {Without} was independent of the value of the event 

composed of only the element {Solid}, the relative frequency of appearance of 

{Without}, that is, of planets without satellites, should be kept constant when 

calculating the relative frequency of {Without} when the event {Solid} also occurs, 

that is, when the relative frequency of appearance of planets without satellites 

between the solid planets is calculated. This is: 

f 11 
f 11 þ f 21 

= 
f 11 þ f 12 

f 11 þ f 12 þ f 21 þ f 22 

Substituting the values, we have: 

2 

2 þ 2 
= 0, 5≠

2þ 0 
2þ 0þ 2þ 4 

= 0, 25 

Therefore, there is a dependency relationship between being a solid planet and 

having satellites. Later, it will be seen that type. 

Once these calculations have been carried out, it is very important to note that, 

when performing them, we have also obtained the value that, from the contingency 

calculation, the confidence threshold should have for the possible associations of the 

event {Without} with the rest of events, {Solid} or {Gaseous}, which should be

25 We changed the numbering when naming the events for clarity. Event numbering is arbitrary and 

can be changed at any time.
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25%. That is, if trust had a higher value, there would be an association between the 

events.
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If the above equation is taken and the value f11 is cleared, the theoretical 

frequency f 0 11 is obtained, which should have the union sequence {Without, Solid} 

for these values to be independent. It is given by the equation: 

f 0 11 = 
f 11 þ f 21ð Þ  f 11 þ f 12ð Þ  
f 11 þ f 12 þ f 21 þ f 22 

If the result obtained for the pair of values {Without, Solid} f 0 11 = 1 and f11 = 2 is  

observed, it can be concluded, as seen in the theoretical description of the contin-

gency, that there is an association relationship between {Without, Solid}, and taking 

into account that 2> 1, that is, f 0 11 > f 11, it is concluded that it is attraction. This 

means that planets without satellites are associated or tend to be solid. 

To reinforce the understanding of the concept of contingency, we now analyse the 

association of the events {With} and {Gaseous}. In this case, we have 

f 22 
f 12 þ f 22 

= 
f 21 þ f 22 

f 11 þ f 12 þ f 21 þ f 22 

Substituting the values, we have: 

4 

0þ 4 
= 1≠

2 þ 4 
2þ 0 þ 2þ 4 

= 0, 75 

Therefore, there is a strong attraction dependency relationship between having 

satellites and being a gaseous planet. This means that gaseous planets often have 

satellites. 

Having seen the case of a 2 × 2 contingency table, we are now going to see an 

example, based again on real characteristics of the planets of the solar system, of a 

mxn contingency table. m will remain 2 since we are going to take solid and gaseous 

again as the two exclusive elementary events of the first subset of the sample space; n 

will be 4 since we are going to take 4 main chemical compositions of atmospheric 

gas, K, CO2, N, and H, that is, Potassium, Carbon Dioxide, Nitrogen, and Hydrogen. 

The contingency table is: 

Crosstabulation or contingency table 

2 N H Total 

Solid 1 2 1 0 4 

Gaseous 0 0 0 4 4 

Total 1 2 1 4 8 

In this case, we are going to analyse the association between the events formed by 

the elementary events {H} and {Solid}, that is, we are going to try to observe 

whether a planet has independent hydrogen as the main component of its atmosphere



or not that the planet is solid. To do this to the values a1 (composition of the solid 

planet) and b4 (main component of the hydrogen atmosphere) of the said table, the 

theoretical descriptions seen in for the concept of contingency in mxn tables are 

applied, in this case 2 × 4, and the value is obtained for contingency: 
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f 0 14 = 

4 
j= 1f 1j 

2 
i= 1f i4 

2 

4 

i= 1 

j= 1 

fij 

= 
1þ 2 þ 1þ 0ð Þ  0 þ 4ð Þ  

1þ 2þ 1þ 4 
= 2 

As f14 = 0, this implies that f 14 < f 0 14, and therefore, there is a repulsion associ-

ation between the solid composition of the planet and that its main component is 

hydrogen; since as it happened for the 2 × 2 tables, for the mxn tables it is verified 

that, if f pq < f 0 pq you have a dependence on repulsion and if you have a dependence 

on attraction. Consequently, the analysis carried out means that solid planets tend not 

to have atmospheres whose main component is hydrogen. 

We will analyse if the main component of its atmosphere carbon dioxide is 

independent or not of the planet being solid. If the contingency calculation equation 

is applied to the values (Solid} → {CO2), the following is obtained: 

f 0 12 = 

4 
j= 1f 1j 

2 
i= 1f i2 

2 

4 

i= 1 

j= 1 

fij 

= 
1þ 2 þ 1þ 0ð Þ  2 þ 0ð Þ  

1þ 2þ 1þ 4 
= 1 

As f12 = 2, this implies that f 12 < f 0 12, and therefore there is dependence between 

the solid composition of the planet and that its main component is hydrogen. It is a 

dependency of attraction. This means that solid planets tend to have atmospheres 

whose main component is carbon dioxide. 

We are now going to analyse if there is an association between the elemental 

event {Gaseous} and the elemental event {CO2}. We apply the equation: 

f 0 22 = 

4 
j= 1f 2j 

2 
i= 1f i2 

2 

4 

i= 1 

j= 1 

fij 

= 
0þ 0 þ 0þ 4ð Þ  2 þ 0ð Þ  

1þ 2þ 1þ 4 
= 1 

As f22 = 0, this implies that f 22 < f 0 22, and therefore, there is a dependency 

between the gaseous composition of the planet and that its main component is 

carbon dioxide. It is a dependency of repulsion. This means that gaseous planets 

tend not to have atmospheres whose main component is carbon dioxide. The same 

results are obtained if the calculations are carried out for potassium and nitrogen.



2 0 2

2 4 6

4 4 8
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Finally, it will be analysed whether the main component of its hydrogen atmo-

sphere is independent or not of the planet being gaseous. If the contingency equation 

is applied to the values (a2, b4) and the following is obtained: 

f 0 24 = 

4 
j= 1f 2j 

2 
i= 1f i4 

2 

4 

i= 1 

j= 1 

fij 

= 
0þ 0 þ 0þ 4ð Þ  0 þ 4ð Þ  

1þ 2þ 1þ 4 
= 2 

As f24 = 4, this implies that f 24 < f 0 24, and therefore, there is a dependency 

between the gaseous composition of the planet and that its main component is 

hydrogen, which is a dependency of attraction. This means that gaseous planets 

tend to have atmospheres whose main component is hydrogen. 

Calculation of the contingency of Yule. 

To calculate the Yule contingency, it is necessary to have previously defined 

some characteristics that define the subsets of the sample space. If we take the 

sample space used in the first example of Contingency: {Solid, Gaseous, Without, 

With}, we can define a first characteristic, that is, Composition of the planet, which 

groups together the exclusive elemental events {Solid, Gaseous}, and a second, 

which is the possession of Satellites that groups together the exclusive elementary 

events {Without, With}. If we have on these two characteristics in the table of the 

planets of the solar system. 

Contingency table with the values of the problem 

Composition 

Solid Gaseous Total 

Satellites Without 

With 

Total 

and we apply the equation for calculating the Yule contingency, we have: 

Q= 
f 11f 22 - f 12f 21 
f 11f 22 þ f 12f 21 

= 
2:4- 0:2 
2:4þ 0:2 

= 1 

This indicates that there is a strong dependence of attraction between the com-

position of the planets and whether or not they have satellites. 

Calculation of the contingency of Pearson. 

To calculate the contingency of Pearson C, we study the association between the 

composition of a planet and the main component of its atmosphere when both 

variables are analysed jointly to verify whether the main component of a planet’s 

atmosphere is dependent on its composition, solid or gaseous. If we take the table of 

composition of the atmosphere and the planet and the equations for calculating the 

contingency of Pearson C, we have:
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1 2 1 0 4

0 0 0 4 4

1 2 1 4 8
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Crosstabulation or contingency table 

Atmosphere composition 

2 N H Total 

Composition Solid 

Gaseous 

Total 

χ
2 
= 

2 

4 

i= 1 

j= 1 

nij - n0 ij 

2 

n0 ij 
= 

1- 0:5ð Þ2 

0:5 
þ 

2- 1ð Þ2 

1 
þ 

1- 0:5ð Þ2 

0:5 
þ 

0- 1ð Þ2 

1 

þ 
0- 0:5ð Þ2 

0:5 
þ 

0- 0:5ð Þ2 

0:5 
þ 

0- 0:5ð Þ2 

0:5 
þ 

4- 2ð Þ2 

2 
= 6:5 

Once the value of χ2 = 6.5 is calculated, the value of is calculated: 

C= 
χ2 

χ2 þ 

m 

n 

i= 1 

j= 1 

fij 

= 
6:52 

6:52 þ 8 
= 0:84 

Therefore, a value close to one indicates a high degree of association between the 

two characteristics, and they present a great dependence. 

7. Calculate the Spearman and Kendall correlation coefficients of the following 

data about the sizes of the planets of the solar system and their distances to 

the sun. 

Ordering of the planets according to their distance from the sun and their size 

Planet Distance to the sun Size 

Mercury 1 8 

Venus 2 6 

Earth 3 5 

Mars 4 7 

Jupiter 5 1 

Saturn 6 2 

Uranus 7 3 

Neptune 8 4 

The Spearman correlation coefficient was calculated to analyse the association of 

two characteristics with ordinal qualitative values. To study the correlation between 

two ordinal qualitative characteristics we need, they must be ordered in some way, so



7 49 1

4 16 1

2 4 1

3 9 1

the characteristics used thus far in this topic cannot be used. Two new characteristics 

will be used, related to those previously seen, and which also correspond to planetary 

characteristics, for which they are easily ordered. These new charasteristics are given 

in the table and they are the position with respect to the sun, the closest will be the 

first in order; and its relative size, the largest will be the first in order (although both 

characteristics are based on numerical values, such as distance, when sun, and the 

diameter of the planet, both numbers are unknown and it is only known which planet 

is closer to the sun than another and which planet is larger than another, without 

knowing the distance to the sun or the exact size of each of them, so according to this 

it is qualitative and nonmeasurable characteristics). 
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The following table presents the values of the coefficients used in the Spearman 

equation. 

Spearman’s coefficients 

Planet ai bi di = ai - bi d2 i fij 

Mercury 1 8 -

Venus 2 6 -

Earth 3 5 -

Mars 4 7 -

Jupiter 5 1 4 16 1 

Saturn 6 2 4 16 1 

Uranus 7 3 4 16 1 

Neptune 8 4 4 16 1 
n 
i= 1d

2 
i = 142 

n 
i f i = 8 

If the Spearman coefficient is applied, we have: 

rs = 1-
6 

7 
i= 1d

2 
i 

7 
i f i 

3

-
7 
i f i 

= 1-
6:142 

8ð Þ3 - 8 
= 1- 1, 7= - 0, 7 

Therefore, when rs is close to -1, there is independence between the size of the 

planets and their position with respect to the sun. 

To calculate Kendall’s correlation coefficient for the study of the association of 

two characteristics with ordinal qualitative values, we return from the table with the 

planets ordered according to their distance from the sun and their size. 

If you look at the table in which the values have been ordered, from lowest to 

highest according to the characteristic Distance to the sun, for the value i = 3, Land, 

the value of the variable Size is 5. If the investments and permanence are quantified, 

the values of the rows greater than 3 have to be analysed, which is the one we are 

studying, that is, rows 4 to 8. In these rows, the values 1, 2, 3, and 4 are observed in 

rows 5, 6, 7, and 8, respectively. These 4 values are less than 5, which is the value of 

row 3, and are found in rows greater than 3, in rows 5, 6, 7, and 8. Therefore, Q3 = 

4. Regarding permanence, there is only a value greater than 5 in the rows that follow



row 3, which is found in row 4, and the value is 7. Therefore, P3 = 1. The table gives 

all the values of Qi and Pi for all the values in the table. 
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Qi and Pi values for all values in the table 

Planet Distance to the sun Size Qi Pi fij 

Mercury 1 8 7 0 1 

Venus 2 6 5 1 1 

Earth 3 5 4 1 1 

Mars 4 7 4 0 1 

Jupiter 5 1 0 3 1 

Saturn 6 2 0 2 1 

Uranus 7 3 0 1 1 

Neptune 8 4 0 0 1 
8 
i= 1Qi = 20

8 
i= 1Pi = 8 

n 
i f i = 8 

If the values from the table are introduced into the equation, we have: 

τ= 

2 
8 
i= 1Pi -

8 
i= 1Qi 

8 
i f i 

8 
i f i - 1 

= 
2 8- 20ð Þ  

8 8- 1ð Þ  
= - 0:43 

Being a value closer to 0 than -1 indicates a low correlation between the values, 

which agrees with the conclusion obtained using the Spearman coefficient. 

We use the table for Kendall’s example of the association of two characteristics 

with ordinal qualitative values. If the Goodman-Krustal equation is applied to these 

values, we obtain: 

γ = 

8 
i= 1Pi -

8 
i= 1Qi 

8 
i= 1Pi þ 8 

i= 1Qi 

= 
8- 20ð Þ  

8þ 20ð Þ  
= 0:43 

Therefore, the conclusion is the same as that obtained in the two previous cases 

and has a low correlation. 

8. Using the a priori algorithm, the associations whose support is equal to or 

greater than 40% and whose confidence is equal to or greater than 90% for the 

data the extent that customers request when buying a certain car model should be 

obtained. To carry out the study, the following sample is available, consisting of 

the extras included in 8 car sales: 

{X, C, N, B} 

{X, T, B, C} 

{N, C, X} 

{N, T, X, B} 

{X, C, B}
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{N} 

{X, B, C} 

{T, A} 

where {X: Xenon headlights, A: Alarm, T: Sunroof, N: Navigator, B: 

Bluetooth, C: Cruise control} are the extras that can be included in each car. 

Step A.1 

We begin to apply the algorithm a priori. The sample space of this analysis is 

{X, C, N, B, T, A}, so we apply the property that the support measure is 

antimonotone on said elementary events. Since the number of events in the sample 

is 8 and the support is 40%, the calculation equation for the support is: 

s Ai [ Aj = 
nAi 

nAj 
nT 

We have that 

0:4= 

nAi 
[ nAj 

8 
→ 3:2= nAi 

[ nAj 

Which means applied to elementary events that 

3:2=Ai 

or what is the same, only those elementary events that appear in sample 4 or more 

times will have enough support. Therefore, they would be X, which appears 

6 times; C, which appears 5 times; N, which appears 4 times; and B, which appears 

5 times. 

However, to reinforce the concept of calculating the support and to check that the 

reasoning in the previous paragraph is correct, we perform the calculation of the 

support of all elementary events: 

SX = 
6 

8 
= 0:75> 0:4 

SC = 
5 

8 
= 0:625> 0:4 

SN = 
4 

8 
= 0:5> 0:4 

SB = 
5 

8 
= 0:625> 0:4 

ST = 
3 

8 
= 0:375< 0:4 

SA = 
1 

8 
= 0:125< 0:4
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Therefore, the selected elementary events are X, C, N, and B since they all have 

support equal to or greater than 40%. 

Step A.2. 

Applying the method Fk - 1 × Fk - 1 we determine the possible candidate sets of 

2, 3, and 4 dimensions. 

For 2 dimensions 

K = 2 →K-1 = 1 and K-2 = 0. All those that have a single element and are 

different are valid, so consequently, we form all the possible two-dimensional sets 

that can be formed with the elementary events selected in the previous step A.1. 

These sets are the following six: 

{X, C} 

{X, N} 

{X, B} 

{C, N} 

{C, B} 

{N, B} 

For 3 dimensions 

K = 3 →K-1 = 2 and K-2 = 1. All those that have two elements are valid, and 

the first element is the same and the second is different. These sets are the 

following four: 

{X, C} and {X, N} →{X, C, N} 

{X, C} and {X, B} →{X, C, B} 

{X, N} and {X, B} →{X, N, B} 

{C, N} and {C, B} →{C, N, B} 

For 4 dimensions 

K = 4 →K-3 = 1 and K-1 = 0. Those that have three elements are valid; the 

first two elements are the same, and the last one is different. There is only one set that 

meets these conditions: 

{X, C, N} and {X, C, B} →{X, C, N, B} 

Step A.2.2.1 

We hash the candidate events with the partition function pmod3, so the partitions 

that we are going to have will be {1, 4, 7}, {2, 5, 8}, {3, 6, 9}, and we change the 

notation of the sample space events to numerical notation as follows: 

{X = 1}, {C = 2}, {N = 3}, {B = 4}, {T = 5}, {A = 6} 

According to the new numerical notation, the candidate events would be: 

{X, C} = {1 2} 

{X, N} = {1 3} 

{X, B} = {1 4}



462 Association

{C, N} = {2 3} 

{C, B} = {2 4} 

{N, B} = {3 4} 

For 3 dimensions 

{X, C, N} = {1 2 3} 

{X, C, B} = {1 2 4} 

{X, N, B} = {1 3 4} 

{C, N, B} = {2 3 4} 

For 4 dimensions 

{X, C, N, B} = {1  2 3 4}  

Therefore, the hash tree of the candidate events of dimension 2, {1 2}, {1 3}, 

{1 4}, {2 3}, {2 4}, {3 4}, would be structured as follows: 

Candidate events of dimension 3, {1 2 3}, {1 2 4}, {1 3 4}, {2 3 4}, would 

remain. 

And the dimension 4 candidate event, {1 2 3 4}, would remain.
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Step A.2.2.1 

In the second step, the sample events are partitioned using the same hash tree with 

the partition function pmod3. 

According to the new numerical notation, the events in the sample would be: 

{X, C, N, B} = {1  2 3 4}  

{X, T, B, C} = {1  2 5 4}  

{N, C, X} = {1 2 3} 

{N, T, X, B} = {1  5 3 4}  

{X, C, B} = {1 2 4} 

{N} = {3} 

{X, B, C} = {1 2 4} 

{T, A} = {5 6} 

As in the example seen in the theoretical description of the topic, we are going to 

do it sequentially one by one and for each dimension. 

Dimension 2 

1234 

From event 1234, the following events of dimension 2 can be generated, and the 

following partition: 

1254 

From event 1254, the following events of dimension 2 can be generated, and the 

following partition:
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123 

From event 123, the following events of dimension 2 can be generated, and the 

following partition: 

1534 

From event 1534, the following events of dimension 2 can be generated, and the 

following partition: 

12426 

From event 124, the following event of dimension 2 can be generated, and the 

following partition: 

26 Do not forget that this event appears twice.
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56 

From event 56, the following event of dimension 2 can be generated, and the 

following partition: 

3 

From event 3, no event of dimension 2 can be generated. 

Dimension 3 

We are now going to do the same with events of dimension 3. The partitions 

obtained are: 

1234 

From event 1234, the following events of dimension 3 can be generated, and the 

following partition: 

1254 

From event 1254, the following events of dimension 3 can be generated, and the 

following partition:
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123 

From event 123, the following event of dimension 3 can be generated, and the 

following partition: 

1534 

From event 1534, the following event of dimension 3 can be generated, and the 

following partition: 

124 

From event 124, the following event of dimension 3 can be generated, and the 

following partition:
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56 

As of event 56, no event of dimension 3 can be generated. 

3 

From event 4, no event of dimension 3 can be generated. 

Dimension 4 

We are now going to do the same with events of dimension 4. The partitions 

obtained are: 

1234 

From event 1254, only one event of dimension 4 can be generated, and the 

following partition: 

123 

No event of dimension 4 can be generated from event 123. 

1534 

From event 1534, only one event of dimension 4 can be generated, and the 

following partition: 

124 

From event 124, no event of dimension 4 can be generated. 

56 

As of event 56, it cannot be generated 

3 

From event 4, no event of dimension 3 can be generated.
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Dimension 4 

We are now going to do the same with events of dimension 4. The partitions 

obtained are: 

1234 

From event 1234, only one event of dimension 4 can be generated, and the 

following partition: 

1254 

From event 1254, only one event of dimension 4 can be generated, and the 

following partition: 

123 

No event of dimension 4 can be generated from event 123. 

1534 

From event 1534, only one event of dimension 4 can be generated, and the 

following partition: 

124 

From event 124, no event of dimension 4 can be generated. 

56 

As of event 56, no event of dimension 4 can be generated. 

3 

For event 3, no event of dimension 4 can be generated.
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Step A.2.2.3 

In step A.2.2.3, we compared the hash trees of the candidate events and the 

sample. We start by comparing those of dimension 2: 

If we analyse the previous figures, we can compare each cell of each event in the 

sample with the cells of the candidate events. Each matching box adds 1 to the 

support of the sample event. It can be seen with 1 next to the corresponding box. In 

the case of event 124, each box adds up to 2 because although that event has been 

represented once, it actually appears twice in the sample, and event 3 does not appear 

because it does not have dimension 2. All these sum numbers can be observed under 

the box of the event. According to this, the events that have sufficient support, that is, 

they appear more than 3.2 times, are the events: 

{12}, {14}, and {24} 

Let us now analyse those of dimension 3: 

If we analyse the previous figures, we can compare each cell of each event in the 

sample with the cells of the candidate events. As in dimension 2 in the case of event 

124, each box adds 2 because although that event has been represented once, it 

actually appears twice in the sample. Events 56 and 3 do not appear because they do 

not have dimension 3. Accordingly, the only event that has sufficient support is: 

{124} 

Let us now analyse those of dimension 4: 

If we analyse previous figures, we can compare each cell of each event in the 

sample with the cells of the candidate events. Only events that have dimension 

4 appear, and none of them appear 4 times; therefore, none have sufficient support. 

Consequently, the events that we have to analyse in step B because they have 

sufficient support, which exceeds the established threshold of 40%, are: 

{12}, {14}, {24}, and {124} 

Step B 

We carry out step B on the events with s≥ 40%. As we know, we take the largest 

candidate set and call it B* (we call it B* to distinguish it from the elementary event 

B}, which in this case is B* = {X, B, C}. 

Once we have defined B*, we take the first set A, which will be A = {X, C}, 

which implies that B* - A = {B}. We study A →B* - A, or what is the same {X, C} 

→{B}. The trust of the association is: 

c= 
nB�

nA 
= 

4 

5 
= 0:8 

As the confidence threshold has been set at 90 \% this association does not reach it 

and is not accepted, and due to the property of the apgenrules function, the 

associations 

{X} →{c, B} and {C} →{X, B} are not sufficient either.
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We now take A = {X, B}, which implies that B* - A = {C}. We study A →B*

- A, or what is the same {X, B} →{C}. The trust of the association is: 

c= 
nB�

nA 
= 

4 

5 
= 0:8 

Therefore, it does not reach the trust threshold and neither is it accepted, and due 

to the property of the apgenrules function, the associations 

{X} →{c, B} (which we already knew from the previous calculation) and {B} 

→{X, C} are not sufficient either. 

Finally, we take A = {C, B}, which implies that B* - A = {X}. We study →B*

- A, or what is the same {C, B} →{X}. The trust of the association is: 

c= 
nB�

nA 
= 

4 

4 
= 1 

In this case, the confidence threshold is reached, so apart from validating this 

association, we cannot apply the property. However, we already knew of the two 

previous cases that 

{C} →{X, B} and {B} →{X, C} did not reach the threshold and were not 

accepted. 

For dimension 2, we cannot apply the property, and we have to parse all of them: 

{X} →{C}, c= 
5 
6 
= 0:83 Not accepted 

{X} →{B}, c= 
5 
6 
= 0:83 Not accepted 

{C} →{B}, c= 
4 
5 
= 0:8 Not accepted 

{C} →{X}, c= 
5 
5 
= 1 Yes, it is accepted 

{B} →{X}, c= 
5 
5 
= 1 Yes, it is accepted 

{B} →{C}, c= 
4 
5 
= 0:8 Not accepted 

Therefore, after applying the a priori algorithm, the associations selected by 

present 40% support and 90% confidence are: 

{Cruise control, Bluetooth} →{Xenon headlights} 

{Cruise control} →{Xenon headlights} 

{Bluetooth} →{Xenon headlights} 

Exercises Solved in R 

In this subsection, the previous exercise 8 of the application of the Apriori algorithm 

will be solved using the R software. Once we have the arules package installed and 

loaded by default, we begin to solve association analysis problem with R.
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8. Using the a priori algorithm, the associations whose support is equal to or 

greater than 40% and whose confidence is equal to or greater than 90% for the 

data the extent that customers request when buying a certain car model should be 

obtained. To carry out the study, the following sample is available, consisting of 

the extras included in 8 car sales: 

{X, C, N, B} 

{X, T, B, C} 

{N, C, X} 

{N, T, X, B} 

{X, C, B} 

{N} 

{X, B, C} 

{T, A} 

where {X: Xenon headlights, A: Alarm, T: Sunroof, N: Navigator, B: 

Bluetooth, C: Cruise control} are the extras that can be included in each car. 

The first thing we have to do is introduce the values of the events of the sample 

with which we are working in R. To do this, we can realize that the events can be 

represented as an array of binary values in the following way. Each column 

represents the values of the different elementary events with which we work, and 

each row represents the values of a given event (observation), being a 1 if the 

elementary event occurs or a 0 if it does not occur. 

According to this, the matrix corresponding to the observed sample: {X, C, N, 

B}, {X, T, B, C}, {N, C, X}, {N, T, X, B}, {X, C, B}, {N}, {X, B, C}, {T, A} is: 

Event 1 1 0 0 1 1 1 

Event 2 1 0 1 0 1 1 

Event 3 1 0 0 1 0 1 

Event 4 1 0 1 1 1 0 

Event 5 1 0 0 0 1 1 

Event 6 0 0 0 1 0 0 

Event 7 1 0 0 0 1 1 

Event 8 0 1 1 0 0 0 

We introduce this matrix in R and use a csv file. A csv file with the data are easy to 

write, and it is only necessary to open a notepad and introduce the data separated by 

commas. The first file will start with a tabulation and will have the name of the 

extras, and the first column will have the name of the events.27 We are going to call it 

extras. The file will be loaded with the .csv extension and will have the following 

aspect:

27 Without separation between the name “Event” and the number of the event.



X,A,T,N,B,C 

Event1,1,0,0,1,1,1 

Event2,1,0,1,0,1,1 

Event3,1,0,0,1,0,1 

Event4,1,0,1,1,1,0 

Event5,1,0,0,0,1,1 

Event6,0,0,0,1,0,0 

Event7,1,0,0,0,1,1 

Event8,0,1,1,0,0,0
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We use the function read.csv to introduce the data of the extras.csv file into R, and 

we call the entry variable extras: 

extras<-read.csv(“extras.csv”) 

Now we have the data in R but we have in a data frame format that we need to 

convert into matrix format, that we will call extrasM. To do this, we use the function 

data.matrix in the following way: 

extrasM<-data.matrix(extras) 

Now, we have the data as a type matrix. To be sure of this, we use the function 

class to get the type of extrasM 

class(extrasM) 

Once we have checked that we have now the data as a matrix, we know that we 

need a sparse matrix. To get this, we need to convert the matrix into a sparse matrix, 

but to do that, we need the function as of the package Matrix, but as we know that 

package Matrix is in the standard library of R, we do not need to install and it and 

only to load it with the function library 

library(Matrix) 

and once we have the package Matrix loaded, we convert extrasM into a sparse 

matrix that we call extrasMS 

extrasMS<-as(extrasM, "sparseMatrix") 

We need a sparse matrix because arules need to work a ngCMatrix or sparse 

matrix of nonzero positions, so we will have to convert the sample matrix into that 

type of matrix, and if we had not put the sparse attribute, we could not because the 

function as, which is the one that will convert the sample matrix into a ngCMatrix, 

can only do so if the sample matrix is sparse. The complete statement for converting 

to a ngCMatrix will be: 

extrasMngC<-as(extrasMS, "nsparseMatrix") 

Then, before applying the arules functions, we must transpose the extrasMngC 

matrix to correctly analyse the sets. We do so through the t function. 

extrasMngCt<-t(extrasMngC)



tr using the function summary.
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Then, we performed association analysis using the functions of arules. If we have 

not installed the arules package, the following instructions will not run. The first 

thing is to determine the possible transactions, which we do using the as function and 

the transactions attribute. We will assign the result to a new variable that we will call 

tr. The complete statement is: 

transactions<-as (extrasMngCt, "transactions") 

We observe the result by introducing transactions. Next, we ask for a summary of 

summary (transactions) 

After these previous steps, to properly carry out the association analysis, we use 

the a priori algorithm through the function of arules apriori (as seen in theory). We 

define a variable as the output of the associations obtained, and we call that variable 

associations. The complete instructions are as follows: 

associations <-apriori (transactions, parameter = list (support = 0.4, confidence = 

0.9)) 

We have chosen, as in the manual exercise, a support of 40% and a confidence of 

90%. Next, if we introduce associations to see the result, 

associations 

We find a set of 3 rules. To see what they are, we introduce the inspect function. 

The complete statement is: 

inspect (associations) 

And you get: 

lhs, rhs, support, confidence, lift; 

lhs rhs support confidence 

coverage lift 

count 

[1] {C} => {X} 0.625 1 0.625 1.333333 5 

[2] {B} => {X} 0.625 1 0.625 1.333333 5 

[3] {B, C} => {X} 0.500 1 0.500 1.333333 4 

This is the same result that we have obtained in the previous solved by hand 

subsection.
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