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Abstract     -nearest neighbor ( NN) is one of the most fundamental methods for unsupervised outlier detection be-

cause of its various advantages, e.g., ease of use and relatively high accuracy. Currently, most data analytic tasks need to

deal with high-dimensional data, and the NN-based methods often fail due to “the curse of dimensionality”. AutoEn-

coder-based methods have recently been introduced to use reconstruction errors for outlier detection on high-dimensional

data, but the direct use of AutoEncoder typically does not preserve the data proximity relationships well for outlier detec-

tion. In this study, we propose to combine NN with AutoEncoder for outlier detection. First, we propose the Nearest

Neighbor AutoEncoder (NNAE) by persevering the original data proximity in a much lower dimension that is more suit-

able for performing NN. Second, we propose the -nearest reconstruction neighbors ( NRNs) by incorporating the re-

construction errors of NNAE with the -distances of NN to detect outliers. Third, we develop a method to automatical-

ly choose better parameters for optimizing the structure of NNAE. Finally, using five real-world datasets, we experimen-

tally show that our proposed approach NNAE+ NRN is much better than existing methods, i.e., NN, Isolation Forest,

a traditional AutoEncoder using reconstruction errors (AutoEncoder-RE), and Robust AutoEncoder.
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1    Introduction

Outlier  detection refers  to  the problem of  finding

patterns in data that do not confirm to the expected

behaviors, and is a fundamental data mining task for

various data analytics applications, such as fraud de-

tection  in  credit-card  transactions,  intrusion  detec-

tion in computer networks, and disease discovering in

medical  diagnoses[1, 2].  As  data  labels  are  often  un-

available  or  too  expensive  to  acquire  when  the  data

scale is large or outlier patterns are complicated, un-

supervised outlier detection has become a popular and

practical solution due to its ease of deployment[1, 3–26].

Although outliers can be defined differently in dif-

ferent  tasks,  the  common characteristic  of  an  outlier
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is  that  it  deviates  so  much  from  the  other  observa-

tions  as  to  arise  suspicions  that  may  be  generated

by  a  different  mechanism[1, 27],  which  typically

presents  an  interesting  event  implied  in  the  data.

There are several common unsupervised techniques to

distinguish outliers  from inliers[2],  such as  association

rule  mining  based  methods[28, 29],  cluster-based  meth-

ods[5, 6], nearest neighbor based methods[8, 30, 31], infor-

mation theoretic  methods[32],  spectral  methods[9],  and

ensemble  methods[24, 25],  among  which -nearest

neighbor ( NN) is one of the most common methods

due to its various advantages[1]. Given the hypothesis

that outliers are far away from the other data points

while  inliers  stack  closely, NN  takes  the -dis-

tance of a point (i.e., the distance to its -th nearest
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neighbor)  as  the  outlier  score  that  is  expected  to  be

large when the point is more likely an outlier.
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The  merits  of NN  lie  in  that:  1)  it  obtains  a

more  detailed  granularity  of  the  analysis  to  distin-

guish outliers from noises, which is much better than

the other methods like cluster-based methods[1] ; 2) it

does  not  require  any  assumptions  about  the  genera-

tive distribution of data; 3) by providing an appropri-

ate  distance  measure,  its  implementation  is  straight-

forward[2]. These make NN effective for various da-

ta  analytic  tasks.  However, NN  still  has  troubles

when it faces with high-dimensional data due to “the

curse of dimensionality”[33], and its performance heav-

ily depends on the choice of [1].

Several  techniques  have  been  proposed  for  han-

dling  the  curse  of  dimensionality,  such  as  principal

components analysis[34, 35], multi-dimensional scaling[36],

matrix  factorization[37],  factorization  machines[11],

word  embedding[16],  and  network  embedding[10].  Au-

toEncoder is another alternative to obtain a represen-

tation of the data in a low-dimensional space for un-

supervised  outlier  detection[3, 7, 12–14, 18–23, 38–41].  It  is

commonly  used  for  embedding  complex  patterns  in

high-dimensional data, and can embed almost any da-

ta  distribution  well  with  appropriate  settings.  Varia-

tions  of  AutoEncoder  have  also  been  proposed  to

learn  a  better  representation  for  outlier  detection,

such  as  sparse  AutoEncoder[12],  denoising  AutoEn-

coder[41],  robust  AutoEncoder[3],  variational  AutoEn-

coder[7, 22],  memory-augmented  AutoEncoder[18] and

adversarial  AutoEncoder[19, 20].  The  underlying  ratio-

nale behind AutoEncoder for outlier detection roots in

commonly agreed facts that outliers are the minority

and  inliers  are  the  majority,  and  that  AutoEncoder

learns  a  better  representation for  inliers  and a worse

one  for  outliers  with  a  proper  training.  Thus,  recon-

struction  errors  of  the  representation  for  inliers  are

typically  smaller,  while  those  for  outliers  are  larger,

which can be used to distinguish outliers from inliers.
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On the  one  hand, NN-based  methods  have  the

weakness  for  handling  high-dimensional  data,  while

AutoEncoder-based methods essentially  work for  this

situation.  On  the  other  hand,  AutoEncoder-based

methods typically do not preserve well data proximi-

ty  relationships  for  outlier  detection  as  shown  by

Fig.1,  while NN-based  methods  prove  the  useful-

ness  of  data  proximity  for  outlier  detection.  Thus,  a

natural  question  arises:  is  there  a  way  to  seamlessly

combine NN and AutoEncoder to derive a stronger

approach for outlier detection? If “yes”, there remain
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Fig.1.  Example of nearest neighbor proximity in the original and embedding spaces with AutoEncoder on five real-world datasets:
(a) Cardio, (b) Waveform_noise, (c) Fashion-MNIST, (d) USPS, (e) STL 10 (see details in Section 4). We plot the data points in a
two-dimensional latent space, embedded with a fully-connected traditional AutoEncoder. Here colored data point pairs are the near-
est neighbors in the original data space, while they are obviously not in the latent space. Black data points can be simply ignored, as
they are not for consideration. This shows that the direct use of AutoEncoder does not preserve well the data proximity relation-
ships for outlier detection.
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two  issues  to  resolve:  1)  how  to  preserve  the  data

proximity relationships  like NN during the embed-

ding  of  AutoEncoder,  and  2)  how to  combine  recon-

struction  errors  of  AutoEncoder  with -nearest

neighbor  distances  of NN  to  design  the  outlier

score.
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To this end, we present an effective approach, re-

ferred  to  as  NNAE+ NRN,  for  outlier  detection  by

combining NN  with  AutoEncoder,  i.e.,  a  nearest

neighbor  AutoEncoder  (NNAE)  and  a -nearest  re-

construction neighbors ( NRN) outlier score. NNAE

employs the non-linear dimension reduction deep net-

work  AutoEncoder  to  alleviate  the  curse  of  dimen-

sionality,  to  empower  the  ability  of  obtaining  the

complex non-linear data patterns, and to preserve the

data  proximity  with  a  newly  designed  loss  function

dedicated  to NN,  instead  of  using  the  commonly

used  sparse  regularization  term  on  AutoEncoder;

NRN  combines  the -nearest  neighbor  distances

with  the  reconstruction  errors  generated  by AutoEn-

coder when detecting outliers, instead of simply using

the -th distances.

The  main  contributions  of  the  paper  are  as  fol-

lows.
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1) To deal with the curse of dimensionality and to

alleviate the  choice problem, we propose NNAE to

learn  an  embedding  in  a  low-dimensional  space  by

preserving the data proximity with a newly designed

loss function dedicated to NN, instead of using the

commonly  used  sparse  regularization,  which  also  im-

proves the robustness with respect to .
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2) To further alleviate the  choice problem, we

develop  a  new outlier  score NRN,  which  combines

the -distance used in NN-based methods and the

reconstruction  errors  used  in  AutoEncoder-based

methods by treating reconstruction errors as the con-

fidence of embedding.

Z

3)  To  improve  the  usability  of  our  approach,  we

also develop an indicator  for choosing better struc-

ture parameters of NNAE, by making use of its recon-

struction  errors,  instead  of  setting  by  experienced

users.
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4) Using five real-world datasets, we experimental-

ly  show  that  our  approach  NNAE+ NRN  is  much

better  than NN[1],  Isolation  Forest[4],  a  traditional

AutoEncoder  using  reconstruction  errors  (AutoEn-

coder-RE)[38], and Robust AutoEncoder[3].

K

This paper is organized as follows. Section 2 intro-

duces  related  work. Section 3 presents  our  approach

NNAE+ NRN  in  detail,  followed  by  experimental

study in Section 4 and conclusions in Section 5. 

2    Related Work

An  outlier  is “an  observation  which  deviates  so

much from other observations as to arouse suspicions

that  it  was  generated  by  a  different  mechanism”[27].

There are typically three types of outliers: 1) a point

outlier is a data point that can be considered an outli-

er with respect to the other data points, 2) contextu-

al outliers can only be considered as outliers in a spe-

cific  context,  and  3)  collective  outliers  are  those

groups  of  data  considered  as  outliers  with  respect  to

the entire data[2]. Two types of outcomes can be gen-

erated  for  outlier  detection  algorithms:  outlier  scores

that indicate the extent of outliers, and labels that in-

dicate the data instance is an outlier or not[1]. By the

aspect of training, outlier detection techniques can be

categorized into three types: 1) supervised outlier de-

tection, which needs training data having both outli-

er  and  inlier  labels;  2)  semi-supervised  outlier  detec-

tion, which needs inliers and trains upon inliers, or as-

sumes that the training data only has inliers; 3) unsu-

pervised outlier detection, which does not need train-

ing data at all, assuming that inliers are far more fre-

quent than outliers[2]. We focus on unsupervised outli-

er detection in this study, as it does not rely on train-

ing data, and is easy to deploy.
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Outlier  Detection with NN.  Unsupervised outli-

er  detection methods can be categorized into various

types,  e.g.,  association  rule  mining  based  methods,

clustering-based  methods,  nearest  neighbor  based

methods, information theoretic methods, and spectral

methods[2],  among  which NN  is  one  of  the  most

common  method.  Given  the  hypothesis  that  outliers

are far away from the other points, NN detects out-

liers as follows. For each data record (or data point)

in  a  dataset,  its -nearest  neighbors  are  found,  and

then NN calculates its -distance (the distance to

its -th nearest neighbors) as the outlier score. There

are  basically  three  types  of NN variations.  1)  The

exact -nearest  neighbor[30] finds  the  exact -th

nearest  point  of  each  data  point,  and  takes  the  dis-

tance of  the point  itself  to  its -th nearest  point  as

the outlier score that is typically large when the point

is in a point sparse region, which means the point is

more  likely  an  outlier.  2)  The  average -nearest

neighbor[8] uses the average distance to all its  near-

est  neighbors,  which increases  the  robustness  regard-

ing to the parameter . However, it slightly decreas-

Shu-Zheng Liu et al.: Combining KNN with AutoEncoder for Outlier Detection 1155
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es the accuracy. 3) The reverse nearest neighbor (out-

lier detection using in-degree number (ODIN)) [31] us-

es  the  number  of  reverse -nearest  neighbors  to  de-

fine  the  outlier  scores,  where  a  data  point  is  a  re-

verse -nearest  neighbor  of  another  data  point  if

and only if  is among the -nearest neighbors of .

NN  is  straightforward  to  implement,  and  effective

on various tasks[42, 43]. However, it performs poorly on

high-dimensional data due to the curse of dimension-

ality, in which situation the noises and irrelevant fea-

tures  make  the  detection  extremely  hard.  Moreover,

the  performance  of NN  heavily  depends  on  the

choice of , which is also hard to determine in an un-

supervised  context[44].  These  limitations  hinder  the

applicability of NN in practice.

AE1

AE2

AE1

AE2 AE2

AE1

Outlier  Detection  with  Embedding.  Various  em-
bedding  methods  for  outlier  detection  have  been  de-
veloped,  such  as  multidimensional  scaling[36],  matrix
factorization[37], factorization machines[11], word embed-
ding[16],  and  network  embedding[10].  As  a  tool  desig-
ned for non-linear embedding, AutoEncoder has wide
applications  for  outlier  detection[3, 7, 12–14, 18–23, 38–41].
There are two types of applications. 1) As a detector,
AutoEncoder  obtains  larger  reconstruction  errors  for
outliers  while  smaller  ones  for  inliers.  Under  the  hy-

pothesis  that outliers  are much less  than inliers, Au-
toEncoder  can  learn  a  representation  fitting  inliers
better.  Using  the  deviations  of  reconstruction  errors,
AutoEncoder  can  distinguish  outliers  from  inli
ers[3, 7, 12, 14, 18–23, 41].  Among them, [19, 20, 23]  adopt
adversarial  training  into  AutoEncoder.  [23]  proposes
an  architecture  composed  of  two  AutoEncoders 
and  sharing  the  same  encoder.  The  model  is
trained  in  two  phases,  including  usual  AutoEncoder
training  and extra  adversarial  training,  when  is
trained  to  ``fool"  and  is  trained  to  distin-
guish the real data from the reconstructed data com-
ing from . [19, 20] use AutoEncoder as a genera-
tor,  and append a  discriminator  after  the  decoder  to
differentiate the real (input) and fake (reconstructed)
samples. In contrast to [23], AutoEncoder and the dis-
criminator  in  [19, 20]  are  trained  simultaneously.  2)
AutoEncoder can also work as an embedding tool for
outlier detection. [35] uses AutoEncoder to reduce the
dimension  of  the  data.  However,  embedding  and  de-
tecting are two independent procedures.
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NN-based  methods  have  the  weakness  for  han-

dling  high-dimensional  data,  while  AutoEncoder-

based  methods  essentially  work  for  outlier  detection

in this situation. AutoEncoder-based methods do not

preserve well the data proximity relationships for out-

lier detection, while NN-based methods have proven

K

the usefulness of data proximity for outlier detection.

To the  best  of  our  knowledge,  this  study is  the  first

try  to  combine NN  and  AutoEncoder  to  obtain  a

stronger approach to outlier detection on high-dimen-

sional data. 

K3    Combining NN with AutoEncoder
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In  this  section,  we  first  formalize  the  problem to

be  investigated,  and  then  introduce  our  approach  to

outlier  detection  by  seamlessly  combining NN and

AutoEncoder, which learns an embedding with NNAE

that  empowers  the  ability  of  obtaining  the  complex

non-linear  data  patterns  and  preserving  the  data

proximity,  and  detects  outliers  with NRN  that

combines  the -nearest  neighbor  distances  with  the

reconstruction errors generated by NNAE.

x d

x ∈ R
d

x

S(x) > λ S

λ

D = {x1,x2, . . . ,xn}

n

D

Problem Statement. We aim to detect outliers for

high-dimensional data points, where a point  is a -

dimensional vector, i.e., . A point  is an outli-

er  if  its  anomaly score ,  where  is  a  func-

tion to be defined in Subsection 3.3 and  is a thresh-

old.  Given a  set  of  data points ,

where  is the number of data points, the outlier de-

tection problem is to find all the outliers in . 

3.1    Overview

We  first  introduce  the  design  principle  and  the

overall structure of our approach for outlier detection.
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Design  Principle.  Detecting  outliers  is  hard  for

NN in the original space for high-dimensional data,

since  the  original  data  not  only  has  features  irrele-

vant to outlier detection, but also contains noises that

could  overwhelm  true  information.  Hence,  we  adopt

to learn an embedding of the data in a low dimension

space  with  AutoEncoder.  However,  existing  methods

using  AutoEncoder  do  not  preserve  well  the  data

proximity relationships  for  outlier  detection although

they  can  handle  noises  well.  Thus,  we  propose  to

learn an embedding with NNAE to preserve the data

proximity with a newly designed loss function. More-

over, both reconstruction errors of the learned embed-

ding and the -nearest neighbor distances show their

usefulness  for  AutoEncoder  and NN-based  outlier

detection  methods,  respectively.  This  is  the  reason

why we propose NRN to combine -nearest neigh-

bor distances with reconstruction errors to define out-

lier scores, where reconstruction errors are considered

as  the  confidence  probability  for  the  embedding  of  a
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data point such that higher reconstruction errors en-

large outlier scores and lower reconstruction errors re-

duce  outlier  scores,  respectively.  In  this  way, NN

and AutoEncoder are seamlessly unified to enjoy the

mutual benefits from each other.

K

K
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Overall Framework. The overall framework of our

approach is illustrated in Fig.2. First, it finds the -

nearest neighbors for all data records with a -D tree

index. Second, it trains NNAE, which requires the -

nearest  neighbors  for  each  record,  to  learn  the  prox-

imity  focused  embedding  and  the  reconstruction  er-

ror of each data record. Finally, it uses NRN to de-

tect  outliers.  Our  approach  aims  to  establish  a  close

collaboration between the embedding component and

the  detector  component,  to  feed  the  proximity-based

detector  with  a  better  perseveration  of  the  original

data proximity. 

3.2    Nearest Neighbor AutoEncoder

We introduce NNAE in detail, whose structure is

shown  in Fig.3,  where  the  encoder  and  the  decoder

are symmetric and have different parameters, and the

structure  and  parameters  for  points  and  neighbor

pairs are the same.

D

X n

Given a set  of data points (or records) handled

as a matrix , the -layer encoder is defined as,
 

E(X) = fn(fn−1(. . . f1(X))),

i

fi(Xi−1)

such  that  the -th  layer  of  the  encoder  transforma-

tion  is
 

fi(Xi−1) =

{

Sigmoid(Xi−1 +B), i ̸= n,

W ·Xi−1 +B, i = n,

Xi−1 fi−1(. . . f1(X)) n ⩾ i ⩾ 1

X0 = X W B

i

where  =  with  and

,  and  and  are  the  weight  matrix  and

bias vector of the -th layer, respectively.

nThe -layer decoder is defined similarly as,
 

D(E(X)) = gn(gn−1(. . . g1(E(X)))),

i

gi(Yi−1)

such  that  the -th  layer  of  the  decoder  transforma-

tion  is
 

gi(Yi−1) = Sigmoid(W ·Yi−1 + B), 1 ⩽ i ⩽ n,

Yi−1 gi−1(. . . g1(E(X))) W Bwhere  = , and  and  are
 

Nearest

Neighbor

AutoEncoder

-Nearest

Reconstruction

Neighbor
Outliers

Embedding

Reconstruction Errors

Outlier Scores

Neighbors

Data

Fig.2.  Overall framework of proposed approach NNAE + KNRN.
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Fig.3.  Structure of NNAE.
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the same as the encoder.

p N1,m(p) m

1 m

Nm,K(p) m

(K −m+ 1) K

m < K

K

K

AD(p,N1,m(p))

p

N1,m(p)

m

AD(p,Nm,K(p))

p

Nm,K(p)

K

m

K

Based on the traditional fully-connected layer Au-

toEncoder[38], we introduce two new terms for the loss

function  of  NNAE.  We  define  two  sets  of  neighbors

for  each  data  point :  set  consists  of 

points  from  its -nearest  to -nearest  neighbors  in

the original data space, and set  consists of 

points  from  its -nearest  to -nearest

neighbors in the original data space, where  is

a hyperparameter indicating the considered number of

nearest  neighbors,  and  is  the  number  of  nearest

neighbors  for NRN.  1)  The  first  term

 is  the  average  Euclidian  distance  in

the latent embedding space between point  and the

set  of  points  in .  We expect  that  a  point  re-

mains close to its first -nearest neighbors in the la-

tent space, which is done by minimizing the first term

in  the  loss  function.  2)  The  second  term

 is  the  average  Euclidian  distance  in

the latent embedding space between point  and the

set of points in . To facilitate the detection of

outliers with the -distance, we expect to enlarge the

distances of a point to its last -nearest neighbors in

its -nearest  neighbors,  which  is  achieved  by  mini-

mizing  the  negative  of  the  second  term  in  the  loss

function.

The loss function is finally defined as follows.
 

L =
1

|X|

∑

p∈X

(α×RE(p) + β × AD(p,N1,m(p))−

γ × AD(p,Nm,K(p))),

RE(p) = (p−D(E(p)))2

p α β γ

200 200 10

where  is  the  reconstruction

error  of  a  data  point ,  and , ,  and  are  fixed

constants (set to , , and  by default, respec-

tively).  That is,  both reconstruction errors and near-

est neighbors are considered in the loss function.

m (K −m+ 1)

K

p D E(p)

RE(p)

K

NNAE  is  implemented  in  the  following  way.  In-

stead  of  acquiring  a  batch  of  data  records  only,

NNAE acquires a batch of data records together with

their -nearest  neighbors  and  their -

nearest to -nearest neighbors. After the greedy lay-

er-by-layer  pre-training[35] and  iterative  global  train-

ing,  NNAE  generates  two  kinds  of  information  for

each data point  in :  embedding  and recon-

struction  error .  In  this  way,  NNAE  not  only

learns an embedding in a low-dimensional space with

the  better  preserved  data  proximity,  but  also  im-

proves the robustness with respect to the key parame-

ter . 

K3.3     -Nearest Reconstruction Neighbors

K K

K

We  next  introduce  how  to  detect  outliers  with

NRN  that  combines  the -nearest  neighbor  dis-

tances  with  the  reconstruction  errors  of  NNAE,  in-

stead of using the -distances only as outlier scores.

K K

K

KD(p) p

K REmax REmin

RE(p)

p K

p

As observed by existing AutoEncoder-based outli-

er detection[3, 38], AutoEncoder is capable of fitting in-

liers  better  while  outliers  worse,  and,  hence,  the  re-

construction  errors  contain  valuable  information  for

identifying outliers. So does the -distance of NN.

These  motivate  us  to  propose NRN  as  the  outlier

scores.  Let  be  the  distance  between  point 

and its -nearest neighbor,  and  be the

maximum and minimum reconstruction errors, respec-

tively,  among  the  reconstruction  errors  of  all

data  points .  The NRN  outlier  score  of  a  data

point  is defined as follows:
 

KD(p)× e(RE(p)−REmin)/(REmax−REmin).

K K

K

K

K

K

With  the  help  of  the  reconstruction  error  of  a

neighbor,  which  approximately  represents  the  confi-

dence  of  the -distance, NRN reduces  the  depen-

dence on parameter . Hence, the combination of the

-distance  with  the  reconstruction  errors  also  fur-

ther  alleviates  the  aforementioned  choice  problem

of NN. 

3.4    Improving Model Usability

L θ L

θ

We  finally  present  a  method  to  improve  the  us-

ability of our model. We adopt the structure parame-

ters  and  from [13], where  stands for the num-

ber of layers in the encoder and  stands for the com-

pression  rate  between  two  adjacent  layers  in  the  en-

coder, and the decoder is symmetric to the encoder.

L

θ

Nl

Nh

Z

We develop a method to help the user to decide 

and  to  reach  a  reasonably  good  performance  of

NNAE  for  unsupervised  outlier  detection.  Let  be

the set of data points whose reconstruction errors be-

long  to  the  50%  lowest  ones,  and  be  the  set  of

points  whose  reconstruction  errors  belong  to  the  5%

highest  ones.  We  define  a  structure  indicator  to

represent  the  ability  of  NNAE  to  distinguish  inliers

and outliers as follows:
 

Z =

(

1

|Nl|

∑

p∈Nl

RE(p)

)

/

(

1

|Nh|

∑

p∈Nh

RE(p)

)

.

Nl

It  is  expected  that  NNAE  learns  an  embedding

fitting  inliers  better  while  outliers  worse.  Hence,  the

smaller  the reconstruction errors of  points in ,  the
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Nh Z

Z L

θ

L θ L

θ Z

better,  and  the  lager  the  reconstruction  errors  of

points in , the better. That is, a smaller  means a

better embedding from the aspect of outlier detection,

and we can use  to  choose  structure  parameters 

and . In practice, one needs to process multiple com-

binations of  and , and choose the setting of  and

 with the smallest . As will be seen in the experi-

ment  study,  this  method  is  always  better  than  ran-

dom  choices,  and  can  find  parameters  with  a  good

performance.

K

K K

K K

Remarks. Our proposed approach NNAE+ NRN

has several unique characteristics. First, it utilizes the

power  of  AutoEncoder  to  deal  with  the  curse  of  di-

mensionality.  Second,  it  provides  the  ability  to  par-

tially  preserve  data  proximity  for  outlier  detection

with a newly designed loss function. Third, it detects

outliers  with NRN  that  combines  the -nearest

neighbor  distances  with  the  reconstruction  errors  of

NNAE  to  alleviate  the  choice  problem  of NN

and to improve performance. Fourth, a structure indi-

cator is  developed to improve the usability by utiliz-

ing reconstruction errors. 

4    Experimental Study

K

K

K

K K K

K K

K K K

K

m

Z

L θ K

In this section, we conduct an experimental study

of  our  unsupervised  outlier  detection  approach

NNAE+ NRN.  Using  five  real-world  datasets,  we

conduct  four  sets  of  experiments  to  evaluate:  1)  the

overall  accuracy  of  NNAE+ NRN  compared  with

NN[1],  Isolation  Forest[4],  AutoEncoder-RE[38],  Ro-

bust  AutoEncoder  (RAE)[3],  and  variations

AE+ NN  and  NNAE+ NN  of  combining NN

with  AutoEncoder,  2)  the  robustness  of

NNAE+ NRN  with  respect  to ,  compared  with

NN,  AE+ NN,  and  NNAE+ NN  using  parame-

ter , 3) the impacts of the number of focused near-

est neighbors  on NNAE, and 4) the effectiveness of

structure indicator  to choose appropriate structure

parameters  and  for NNAE+ NRN. Codes of our

methods and datasets are available at GitHub①. 

4.1    Experimental Settings
 

4.1.1    Datasets

We  use  five  real-world  datasets  (summarized  in

[0, 1]

Table 1) to test our unsupervised outlier detection ap-

proach, and we use the min-max scalar to convert all

their data values into the range of .
 

 

Table  1.    Statistics of Real-World Datasets

Dataset Number of
Samples

Number of
Features

Outlier
Rate (%)

Cardio② 1 831 22 10.6

Waveform_noise③ 1 835 40 9.9

Fashion-MNIST[45] 7 777 784 10.0

USPS④ 1 725 256 10.0

STL10[46] 3 000 4 096 10.0
 

1) Cardio.  It  is  a  cardiotocography  dataset  from

UCI  Machine  Learning  Repository②,  which  contains

the  measurements  of  fetal  heart  rate  signals.  There

are three classes of data: normal, suspect, and patho-

logical. The suspect class is discarded, and the records

belonging  to  the  normal  class  are  marked  as  inliers,

while the ones belonging to the pathological class are

marked as outliers.

W0 W1 W2

W0

W1 W2

2) Waveform_noise.  It  is  a  waveform  database

generator dataset from UCI Machine Learning Repos-

itory③, which contains three classes of waves that all

contain  noises,  referred  to  as , ,  and ,  re-

spectively,  where  waves  are  marked  as  inliers,

and  and  waves  are  sampled equally  as  out-

liers.

28× 28

3) Fashion-MNIST.  It  is  a  grayscale  image  data-

set[45], consisting of images of  pixels. The im-

ages  are  associated  with  labels  from  ten  classes,  in-

cluding  T-shirts/top,  trouser,  pullover,  dress,  coat,

sandal, shirt, sneaker, bag, and ankle boot. We modi-

fy  this  dataset  to  adapt  the  need  for  outlier  detec-

tions,  where  T-shirts  are  the  majority  as  inliers,  and

all  the  other  nine  categories  of  images  are  sampled

equally to form outliers.

16× 16

0 9

0

4) USPS④.  It  is  a  grayscale  pixel  hand-

written  image  dataset  from  Kaggle,  which  contains

numbers from  to . Similar to Fashion-MNIST, we

modify this dataset such that the images of number 

is the majority as inliers, and all the other nine cate-

gories of images are sampled equally to form outliers.

5) STL10. It is an image dataset[46] containing ten

classes: airplane, bird, car, cat, deer, dog, horse, mon-

key,  ship,  and  truck.  We  categorize  them  into  ani-

mals (bird, cat, deer, dog, horse, and monkey) and ve-
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①https://github.com/CodesandDataL/NNAE-KNRN, Mar. 2024.

 

②http://archive.ics.uci.edu/dataset/193/cardiotocography, Mar. 2024.
 

③http://archive.ics.uci.edu/dataset/108/waveform+database+generator+version+2, Mar. 2024.
 

④https://www.kaggle.com/datasets/bistaumanga/usps-dataset, Mar. 2024.

https://github.com/CodesandDataL/NNAE-KNRN
https://github.com/CodesandDataL/NNAE-KNRN
https://github.com/CodesandDataL/NNAE-KNRN
http://archive.ics.uci.edu/dataset/193/cardiotocography
http://archive.ics.uci.edu/dataset/108/waveform+database+generator+version+2
https://www.kaggle.com/datasets/bistaumanga/usps-dataset
https://www.kaggle.com/datasets/bistaumanga/usps-dataset
https://www.kaggle.com/datasets/bistaumanga/usps-dataset


96× 96

4 096

hicles  (airplane,  car,  ship,  and  truck).  The  dataset

considers animals as inliers, and the vehicles are sam-

pled  as  outliers.  Before  min-max  scaling,  we  use

vgg16[47] to  preprocess  pixels  of  images  to

 vectors. 

4.1.2    Methods for Comparison

To  demonstrate  the  effectiveness  of  our  method,

we carefully choose several methods for comparison.

K

K

K

K

1) NN[1] is certainly a baseline of our method, as

our approach is to combine NN with AutoEncoder.

NN is a classic method for outlier detection, which

is a proximity-based method, and uses -distances as

the outlier scores.

2)  Isolation  Forest[4] is  an  effective  ensemble

method for  outlier  detection  on high-dimensional  da-

ta. It first constructs several isolation trees, and splits

the dataset into individual points. It then uses the av-

erage  depth  of  a  point  in  the  forest  as  the  outlier

score. It is one of the state-of-the-art methods for un-

supervised outlier detection, and works well for high-

dimensional data.

3)  A  traditional  AutoEncoder  using  reconstruc-

tion  errors  (AutoEncoder-RE)[38] uses  reconstruction

errors only as outlier scores, as another baseline.

4)  Robust  AutoEncoder  (RAE)[3],  similar  to  the

traditional  AutoEncoder[38],  uses  reconstruction  er-

rors as the outlier scores as well. Their difference lies

in that RAE refines the training set by rolling records

having  larger  reconstruction  errors  out  during  the

training process.  With this  optimization,  RAE learns

the nature of inliers better.

K

K

K K

K

5)  Variations  of  combining NN  with  AutoEn-

coder  are  also  chosen  for  comparison:  1)  AE+ NN

using the  AutoEncoder  in  [3]  for  embedding and the

original NN for detecting, and 2) NNAE+ NN us-

ing  NNAE for  embedding  and  the  original NN for

detecting. 

4.1.3    Evaluation Metric

To test the effectiveness of our method, we adopt

the commonly used AUC (area under  ROC (receiver

operating  characteristic)  curve)  as  the  metric.  An

ROC curve is  a  graph showing the performance of  a

classification  model  at  all  classification  thresholds,

and it plots two parameters: TPR (true positive rate)

and FPR (false positive rate). AUC measures the en-

tire two-dimensional area underneath the entire ROC

curve from (0, 0) to (1, 1). For the methods that gen-

λ

erate  outlier  scores  as  the  output,  we  calculate  TPR
and FPR pairs varying the threshold of outlier scores.
For  methods  that  generate  labels  of  outliers,  i.e.,
RAE, we vary the parameter , which determines the
reconstruction error threshold to roll out data, to gen-
erate pairs of  TPR and FPR to form an ROC curve
for AUC.

All  the  tests  are  repeated  over  three  times,  and

the  average  is  reported  to  avoid  the  impacts  of  ran-

domness. 

4.2    Experimental Results

The  important  parameters  and  their  recommend-

ed ranges of our method are listed in Table 2.
  

KTable  2.    Parameters of Proposed Approach NNAE+ NRN

Parameter Description Range

K K -nearest neighbors [25, 200]

L Number of layers of EnCoder [3, 9]

θ Compression rate between

two adjacent layers
[0.2, 0.8]

m Number of focused nearest

neighbors in NNAE
[2, 5]

 

4.2.1    AUC Accuracy Evaluation

K

K

K K

K

L

θ K

K K 100

m 4

In the first set of tests, we evaluate the AUC ac-

curacy  on  all  datasets  for  all  methods,  including

NN[1],  Isolation  Forest[4],  AutoEncoder-RE[38],

RAE[3],  variations  of  combining NN with  AutoEn-

coder  AE+ NN  and  NNAE+ NN,  and  our  pro-

posed method NNAE+ NRN. Note that we develop

a  method  to  choose  the  structure  parameters  and

,  here  the  AUC  results  of  NNAE+ NRN  are  ob-

tained  under  the  setting  with  this  parameter  selec-

tion  method,  instead  of  the  setting  of  a  fine-tuned

AUC results. The AUC scores would be much higher

with a fine-tuned setting. All the AutoEncoder struc-

ture  parameters  use  the  same  setting  as

NNAE+ NRN. Moreover,  is  set  to ,  and the

focus parameter  is set to . The results are report-

ed in Table 3, where the highest AUC score for each

dataset is highlighted.

K

K

K

Z

K

The  results  show  that  our  approach  NNAE+

NRN  performs  better  than  all  the  other  comparison

methods  on  all  datasets,  except  that  it  is  slightly

worse  than  NNAE+ NN  on  Waveform_noise.  Even

if  the  AUC  results  of  NNAE+ NRN  are  obtained

under  the  setting  with  the  structure  indicator ,  it

remains  much  better  than NN  and  AutoEncoder-

RE on all datasets. That is, without any prior knowl-
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K

4 096

K = 0.533

K

edge  on  AutoEncoder,  our  approach  can  easily  sur-

pass the other methods. It can also be observed that

NNAE+ NRN  works  well  on  high-dimensional

datasets  (e.g.,  STL10  with  features),  while

NN  only  reaches  an  accuracy  with  AUC .

These justify the benefits of combining NN and Au-

toEncoder for outlier detection.

K < K <

K < K

K

Further, the results show that the performance in

general  follows  a  rule  of NN  AE+ NN 

NNAE+ NN  NNAE+ NRN,  which  shows  that

each component of NNAE+ NRN enriches the capa-

bility of outlier detection. 

K4.2.2    Impacts of  on Accuracy

K K

K K K

K K

K

m 5 K

25 200

In the second set of tests, we evaluate the robust-

ness of NNAE+ NRN with respect to , compared

with  methods NN,  AE+ NN,  and  NNAE+ NN

that  use  parameter .  As  mentioned  before,  the 

choice  problem  has  always  been  an  issue  for NN-

based methods. In the tests,  is fixed to , while 

varies  from  to .  The  results  are  reported  in

Fig.4.

K

K

{25, 50, 100, 150, 200}

K

K

K

K K

= 0.53 K

= 0.887

K

K K

K

The results show that our method NNAE+ NRN

works  well  on  all  five  datasets  with  falling  in

.  On  datasets  Cardio,  Fashion-

MNIST,  and USPS,  its  AUC results  are  very consis-

tent  and  insensitive  to  parameter  compared  with

the  original NN.  On datasets  Waveform_noise  and

STL10,  parameter  does  have  an  impact  on  the

AUC results. However, even the worst AUC result is

still much better than the one of NN. Indeed, NN

performs  consistently  low  on  STL10,  around  AUC

,  indicating  that NN  essentially  does  not

work  on  STL10.  However,  our  method  significantly

improves the accuracy, up to AUC , which al-

so partially alleviates the impact of parameter  to a

large  extent.  These  show  that  our  method

NNAE+ NRN  significantly  alleviates  the  choice

problem,  and  it  indeed  improves NN  with  the  as-

pects of both its accuracy and usability. 

m4.2.3    Impacts of  on Accuracy

m

m 1 5

K K

In the third set of tests,  we evaluate the impacts

of  the  number  of  focused  nearest  neighbors  on

NNAE.  We vary  from  to ,  and  the  other  set-

tings  are  along  the  same  lines  as Subsection 4.2.1.

The results of NNAE+ NN and NNAE+ NRN are

reported in Fig.5.

m m

K

K K

K

K

K

K

K

The  results  show  that  NNAE  is  in  general  not

very sensitive to , and a small  already suffices to

reach  a  good  performance.  Moreover,  NNAE+ NN

and NNAE+ NRN are in general better than NN

and AE+ NN, which  verifies  the  rationale  of  intro-

ducing the focused nearest  neighbors  in  NNAE. Fur-

ther,  the performance of  NNAE+ NRN is essential-

ly better than that of NNAE+ NN, which again ver-

ifies the benefit of combining the -distance used in

NN-based  methods  and  the  reconstruction  errors

used in AutoEncoder-based methods. 

Z4.2.4    Effectiveness of Structure Indicator 

Z

K

L θ

K

16 L θ

Z L {3, 5, 7, 9} θ

{0.2, 0.4, 0.6, 0.8}

16

7

Z

In the last  set  of  tests,  we evaluate the effective-

ness  of  the  structure  indicator  parameter  on

NNAE+ NRN,  which  is  used  to  choose  the  appro-

priate  NNAE  structure  parameters  and  for

NNAE+ NRN,  instead  of  being  set  by  experienced

users. For each of the five real-world datasets, we test

 sets  of  combinations  of  and ,  and  choose  the

smallest parameter .  We set  to  and 

to ,  respectively,  to  form  16  differ-

ent structures of NNAE, and set all the other parame-

ters along the same lines as Subsection 4.2.1. The re-

sults  are  reported in Table 4,  where all  the AUC re-

sults  of  the  combinations are listed that are sort-

ed in descending order, and we only present the top 

results  in  the  table  as  never  selects  the  structure

parameters that have AUC results worse than the me-

dian. The AUC results with the smallest indicator pa-

 

Table  3.    AUC Accuracy Comparison of All Methods

Method Cardio Waveform_noise USPS Fashion-MNIST STL10

K K = 100NN ( )[1] 0.949 0.854 0.967 0.899 0.533

Isolation Forest[4] 0.927 0.859 0.924 0.900 0.617

AutoEncoder-RE[38] 0.796 0.529 0.710 0.837 0.587

RAE[3] 0.838 0.540 0.834 0.797 0.545

KAE+ NN 0.921 0.901 0.889 0.904 0.655

KNNAE+ NN 0.966 0.927 0.958 0.939 0.748

KNNAE+ NRN 0.967 0.923 0.984 0.940 0.750
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Zrameter  for each dataset are highlighted.

Z

16

Z

K

The results tell us that the smallest indicator pa-

rameter  has reached reasonably good performances

for  choosing  the  parameters  for  NNAE,  although  it

does not indicate the best performance among combi-

nations.  Further,  the performance is  definitely  better

than  a  random choice,  such  as  the  median  AUC re-

sults  among the  combinations.  In practice,  this  is

pragmatic when users have no prior knowledge on the

structure of AutoEncoder. Hence, the indicator  es-

sentially  improves  the  usability  of  our  approach

NNAE+ NRN in practice. 

4.2.5    Summary

From these experiments we find the followings.

K

K

K

1)  NNAE+ NRN  shows  a  significant  accuracy

improvement  over NN,  AutoEncoder-RE,  RAE,

and  Isolation  Forest  by  on  average  11.40%,  34.93%,

31.97%, and 8.85% for AUC, respectively. This shows

the  benefit  of  combining NN  with  AutoEncoder-

based  methods  for  outlier  detection  on  high-dimen-

sional data.

K K2)  NNAE+ NRN  alleviates  the  choice  prob-

lem  by  making  use  of  the  newly  designed  loss  func-

tion  and  the  reconstruction  errors,  where  a  small

number  of  the  focused  nearest  neighbors  suffices  for

NNAE.

Z3)  The  structure  indicator  is  reasonably  good

for choosing the structure parameters of NNAE to im-

prove the usability. 

5    Conclusions

K K

K K

K

K

Z

K

K

In  this  paper,  we  introduced  a  novel  approach

NNAE+ NRN by  seamlessly  combining NN  with

AutoEncoder for outlier detection on high-dimension-

al  data,  where  the  nearest  neighbor  AutoEncoder

(NNAE)  deals  with  the  curse  of  dimensionality  and

alleviates  the  choice  problem,  and  the -nearest

reconstruction  neighbors  ( NRN)  further  alleviate

the  choice problem. We also developed a structure

indicator  to  improve  the  usability  of

NNAE+ NRN  in  practice  by  choosing  reasonably

good structure parameters  for  NNAE. We finally  ex-

perimentally  showed  that  our  proposed  approach

NNAE+ NRN  makes  significant  accuracy  improve-
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Kment  over NN,  AutoEncoder-RE,  RAE,  and  Isola-

tion  Forest  by  on  average  11.40%,  34.93%,  31.97%,

and 8.85% for AUC, respectively.

K

A couple of issues need a further study. First, we

are to develop better methods for choosing the struc-

ture parameters. Second, as AutoEncoder has proven

its  usefulness  for NN  and  spectral  clustering[48, 49],

we are to utilize it for other data mining algorithms.
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