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Abstract

Outlier detection is very important in the field of data mining and is applied to various sce-

narios, such as financial fraud detection and network intrusion. Traditional outlier detection

methods usually detect outliers based on the local density of objects, and have achieved some

results. However, some challenges still exist: (1) traditional methods only consider neigh-

bor information when calculating the density of an object and ignore the global information

embedded in the dataset, leading to the wrong detection of outliers and normal points that

are only detected in the global view; (2) traditional methods focus only on comparing the

density of an object to its neighbors, ignoring the similarity to its neighbors, leading to incor-

rectly detecting normal points in sparse regions as outliers, even if all the neighbors of a given

point are normal ones. To address these issues, we propose a novel outlier detection algorithm

based on the local density feedback (LDF). Our method utilizes principal component analysis

(PCA) and a natural neighbor search for initial density estimation. A feedback mechanism

is designed to refine the density iteratively by leveraging neighborhood similarity, and to

aggregate global information for a more accurate outlierness depiction. By integrating local

and global data characteristics, our method reliably detects outliers across diverse datasets.

Experimental results on ten datasets show that the LDF algorithm outperforms the existing

methods by 10.7% and 1.89% on average in terms of precision and AUC, respectively.
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1 Introduction

Outlier detection stands as a pivotal research topic in data mining. In various application

scenarios, it is also referred to as anomaly detection. Outliers represent entities that stray

from the bulk of the data and may stem from unusual mechanisms [1]. Thus, the task of

outlier detection aids in unraveling these unusual data generation mechanisms and prompts

relevant staffs to address abnormal data. It has applied to various scenarios, including network

intrusion detection [2], financial fraud detection [3], natural disaster monitoring [4], and

industrial fault detection [5].

Compared with supervised methods and semi-supervised methods, unsupervised methods

[6] stand out as the most prevalent and demanding approaches in outlier detection field.

From a technical point of view, outlier detection algorithms are mainly categorized into

statistical-based methods, clustering-based methods and density-based methods. Statistics-

based methods [7–10] typically assume a specific distribution model for the data, and treat

points in low-probability areas as outliers, such as the Gaussian mixture model [7] and

ECOD [8]. Clustering-based methods typically employ clustering techniques to partition

dense points into clusters, identifying isolated points as outliers [11], such as DBSCAN [12],

k-means [13] and FDPC [14] proposed in recent years.

Density-based outlier detection methods are the most widely used. They rely on density

estimation to gauge the sparsity or deviation of an object. A point is typically identified as

an outlier if its density is significantly lower than that of its neighbors [15]. The LOF [16]

algorithm was first proposed for solving the problem of detecting local outliers near dense

clusters. It measures sparsity by local reachable density and defines local outlier factor as

the density of a data point relative to its k-nearest neighbors (KNN) [17]. However, LOF is

ineffective when there are clusters of different densities. The COF [18] is a improvement

of LOF, and solves the above problem by using the connectivity distance. But it fails when

outliers are located in areas where neighborhood density varies substantially. The RDOF

[19] uses the reciprocal of the average distance from an object to its KNN as a measure of

density, and determines the outlier factor as the density of the kth neighbor relative to the

object. In addition, KDF-IF [20] and adaptive-KD [21] utilize the kernel density estimation

(KDE) [22] method to calculate the density of objects.

Although existing methods [16, 18–21] have achieved good results, several problems

remain:

• Traditional methods only consider neighborhood information when calculating an

object’s density and ignore the global information within the dataset. Global information

means the overall structure of the entire dataset, rather than just local, isolated relation-

ships. Due to the neglect of global information, existing methods fail to detect outliers

that can only be identified from a global perspective.

• Traditional methods focus solely on relative comparisons with neighbors, identifying

an object as an outlier if its density is lower relative to its neighbors. However, they

overlook the significant feature of neighbor similarity, which posits that objects in the

same neighborhood exhibit consistent or similar outlier characteristics. Existing methods

fail to leverage neighbor similarity, and mistakenly detect normal points in sparse regions

as outliers, even if all neighbors of a given point are normal points.

The following example is utilized to elucidate issues inherent in previous algorithms.

Figure 1 depicts a two-dimensional scatter plot of the Wine dataset after dimension reduction

by PCA method. We focus on normal points q1, q2, q3, and outlier point p to highlight

problems existing in prior algorithms. It is clear that normal point q1 resides in a dense
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Fig. 1 Distribution of Wine dataset. In the legend, normal point_F denotes a normal point that is likely to be

falsely detected as an outlier due to low density, and outlier_F denotes an outlier that is likely to be falsely

detected as a normal point due to high density. The values on the horizontal and vertical axes represent the

values of the first two dimensions of the objectives

area, q2 is situated on the boundary of normal points, and q3 exists in a sparse area. For the

outlier p, we can see it lies on the boundary of normal points, with a density akin to q2 and

higher than q3. If outliers are detected based on the neighborhood density without considering

neighborhood similarity and global information, q3 will be incorrectly identified as an outlier

due to its location in a sparse region. Conversely, p will be wrongly identified as a normal

point because it is situated in a relatively dense region from the local perspective. Clearly,

these results are contrary to the actual facts. If considering all neighbors of q3 are normal

points and strengthening the similarity between q3 and its neighbors, q3 can be detected

normal just like its neighbors. Similarly, the performance of boundary point q2 tends toward

normal points, while boundary point p inclines toward outlier points, as indicated by the

arrows direction (“−→”) in Fig. 1. In addition, since the number of outlier points in the

static dataset is known to be l, we argue that avoiding incorrectly detecting normal points as

outliers could enhance the algorithm’s outlier detection ability.

To address the above problems, this paper introduces an outlier detection algorithm based

on local density feedback (LDF). In the beginning, the LDF algorithm utilizes the natural

neighbor search algorithm for neighborhood selecting and initial density estimation. We fur-

ther introduced a density post-processing technique to adjust the density through a density

feedback mechanism. Through multiple feedback iterations, the global information is aggre-

gated and eventually committed to yield the degree of outliers. The specific contributions of

this study are as follows:

• We develop a tailored density post-processing technique for outlier detection, enhancing

the accuracy of outlier degree depiction.

• We propose a density feedback mechanism that uses neighborhood similarity to update

the density. This ensures that points within the same neighborhood have similar density
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feedback values, while also allowing global information to be intelligently aggregated

into each object.

• We introduce the concept of feedback outlier factor to quantify the outlier degree of data

objects.

• We conduct extensive experiments on ten datasets and compared results with eight rep-

resentative algorithms, and demonstrate that the proposed LDF algorithm effectively

improves the performance of outlier detection.

The remainder of this article is organized as follows. Section 2 gives an overview of

previous works related to our study. Section 3 proposes an outlier detection algorithm based

on local density feedback. Section 4 reports the results of experiments and gives comparisons

with existing methods. Section 5 concludes this article.

2 Related work

Many studies have delved into the complexities of outlier detection with exhaustive studies.

In this section, we describe previous works related to this article, especially density-based

algorithms.

The local outlier factor (LOF) algorithm [16], first introduced by Breunig et al., pioneered

the notions of local outlier factor. LOF algorithm first searches KNN, then calculates the

reachable distance and density of each object, and further define the outlier factor or score by

comparing the density of each object with its surrounding neighbors, to quantify the degree

of outlierness. Objects with lower density exhibit higher outlier factor, indicating a greater

degree of outlierness. Building upon LOF, researchers have proposed numerous variants such

as the connectivity-based outlier factor (COF) algorithm [18]. Zhou et al. [23] proposed a

algorithm based on high-density iteration and extended k-neighbors to detect outliers. SPAD

[24] relies on histograms and utilizes a probability density-based measure. SPAD+ [25]

addresses SPAD’s limitations by incorporating principal component analysis [26]. Liu et al.

[27] employed the concept of potential energy in physics to represent local densities of data

and exploited the notion of hubness in network science, to further capture global structural

of data.

Abdul et al. [19] proposed RDOF algorithm using a simple density estimation, and the

density is defined as the reciprocal of the distance to neighbors. Then RDOF measured the out-

lier’ degree by comparing density with respect to the kth neighbor, addressing the challenge

of detecting outliers between clusters of differing densities. Latecki et al. [22] introduced a

new density estimation method, KDE, which utilized Gaussian kernel function to smooth the

density estimation in outlier detection. Zhang et al. [21] adopt adaptive bandwidth parameters

in Gaussian function to enhance the discriminating power of KDE-based outlier detection

methods. Wang et al. [28] designed an outlying score based on the two-stage multi-kernel k-

nearest neighbors to detect outliers. Dong et al. [20] focused on the density fluctuation of each

instance neighborhood and defined two kinds of outlier factors to distinguish local and global

anomalies. Based on the assumption that similar objects should have similar outlier scores,

Yang et al. [29] designed a framework called neighborhood averaging. It post-processed the

outlier scores produced by existing algorithms such as LOF, utilized the average scores of

neighborhoods as the new scores of the objects, and demonstrated its effectiveness.

Considering that the parameter needs to be set manually to obtain the neighborhood of

an object, which causes the algorithm to be very sensitive to the selection of the number of

neighbors k, Zhu et al. [30] proposed the concept of natural neighborhood, which iteratively
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determines the appropriate k value for the dataset, thus alleviating the requirement of manually

tuning the parameter in the KNN-based algorithm. Wahid et al. [31] introduced a natural

neighborhood-based outlier detection (NaNOD) algorithm to derive the k parameters with

the natural neighborhood search algorithm, and used a weighted KDE [22] method to estimate

the object density. Based on the natural neighbor search algorithm, Xiong et al. [32] proposed

a weighted nearest-neighbor graph for calculating the density for the objects. Huang et al.

[33] also used the natural neighborhood search algorithm to determine neighborhood, and

introduced outlier turning points, considering turning points and their sparse neighborhoods

as outliers.

To address the challenge that detection performance degrades as data dimensionality

increases [34], Mahboobeh et al. [35] employed principal component analysis (PCA) [26]

to partition data dimensions into three subspaces, subsequently comprehensively assessing

outlier degrees across these subspaces. PCA can extract significant features from the original

dataset, not only eliminating correlations and noise among dimensions but also accelerating

subsequent tasks. It has been applied across various domains, including image processing

[36] and signal processing [37]. To handle high-dimensional data, Li et al. [38] developed

an attribute-weighted outlier detection method based on mixed data by classifying attributes

into categorical and numerical attributes.

Inspired by previous methods, we employ PCA and the natural neighbor search algorithm

as preprocessing steps in our proposed LDF method. While neighborhood averaging only

performs simple score averaging, we introduce the concept of neighborhood similarity, which

operates on density to more precisely capture outlier properties. Unlike local outlier detection

approaches that focus solely on the surrounding neighborhood and miss global context, we

incorporate a feedback mechanism that aggregates global information based on neighborhood

similarity, allowing for more accurate outlier characterization.

3 Method

3.1 Density estimation

The LDF algorithm first employs the PCA method to preprocess data, which not only helps

eliminate correlations among features but also accelerates the speed of subsequent tasks.

Given a dataset D = {a1, a2, ..., an} , p = 1, · · · , n, ap ∈ Rd , where d represents the

number of dimensions of data objects, and n represents the number of objects in the dataset.

In our study, we fixed the parameter n_components in PCA to 0.9 to retain 90% of the

total variance of dimensions in the data, which is based on empirical evidence and performs

well in the vast majority of applications. This setting allows PCA to automatically determine

the number of dimensions after reduction. For a more detailed explanation of PCA method,

refer to the seminal work by A Maćkiewicz and W Ratajczak [26]. After preprocessing with

the PCA method, the dataset D is transformed into a counterpart X = {x1, x2, ..., xn} , p =

1, · · · , n, x p ∈ Rα with α dimensions, and α < d .

Subsequently, to address the challenge of determining the neighborhood parameter k,

the LDF algorithm incorporates natural neighbor search algorithm, adaptively acquiring

parameter k and KNN. The preliminary to the natural neighbor search algorithm are as

follows.

We denote the Euclidean distance between x p and xq by dist(x p, xq), and the Euclidean

distance between x p and its kth nearest object by distk(x p). The k-nearest neighbor set
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KNNk(x p) is the collection of k objects closest to x p , also referred to as the direct neighbors

of x p , as shown in Equation (1).

KNNk(x p) = {xq |dist(x p, xq) ≤ distk(x p), x p �= xq} (1)

where the neighborhood of x p is KNNk(x p).

The reverse k-nearest neighbor set RNNk(x p) is the collection of objects who are neighbors

of x p , as shown in Equation (2).

RNNk(x p) = {xq |x p ∈ KNNk(xq)} (2)

To automatically determine the number of nearest neighbors, the natural neighbor search

algorithm expands the neighborhood range r from 1, stabilizing the count of objects with

reverse neighbors at a certain value. This value, referred to as the natural eigenvalue k,

represents the number of nearest neighbors. To improve the efficiency of KNN and RNN

searches, the algorithm utilizes the Ball-Tree [39] structure, which significantly enhances

spatial partitioning and search speed.

Algorithm 1 is the description of natural neighbor search algorithm.

Algorithm 1 Natural Neighbor Search Algorithm[31]
Input: Dataset B

Output: Natural eigenvalue k, k-nearest neighbor set KNNk

1: Initialize r = 1, flag=0

2: Build a ball-tree based on B

3: while flag=0 do

4: for each x ∈ B do

5: Find y(the r th neighbor of x)

6: NaN (y) = NaN (y) + 1

7: KNNr (x) = KNNr−1 (x) ∪ {y}

8: RNNr (y) = KNNr−1 (y) ∪ {x}

9: end for

10: if num does not change then

11: flag=1

12: end if

13: r = r + 1

14: end while

15: k = r − 1

16: return k, KNNk

In Algorithm 1, r represents the neighborhood searching range, NaN (x) denotes the

reverse neighbors of object x , and num = count (NaN (x) == 0) signifies the count of

objects without reverse neighbors. Besides yielding the natural eigenvalue k, Algorithm 1

also produces the k-nearest neighbor set KNNk , which is utilized for subsequent outlier

detection tasks.

Next, LDF utilizes KNNk to estimate the density as follows.

Definition 1 k Average Distance, k_dist (xi ) : represents the average distance from the object

xi to its k-nearest neighbors. Its calculation method is shown in Equation (3).

k_dist(xi ) =
1

k

∑

x j ∈KNN
k
(xi )

dist(xi , x j ) (3)

123



An outlier detection algorithm…

In Equation (3), KNNk(xi ) denotes the set of k-nearest neighbors of object xi , where x j

represents one of the k-nearest neighbors of object xi . The dist(xi , x j ) signifies the Euclidean

distance between object xi and object x j . The k_dist (xi ) serves as a measure of the proximity

of the object xi to its neighbors.

Definition 2 Local Density, ld (xi ) : The local density of object xi is defined as the reciprocal

of the average distance to its k-nearest neighbors, computed as depicted in Equation (4).

ld(xi ) =
1

k_dist(xi )
(4)

In dense regions, objects exhibit smaller distances to their k-nearest neighbors, whereas

in sparse regions, objects tend to have relatively larger distances to their k-nearest neighbors.

The definition of local density in Equation (4) aligns with the concept that objects in dense

regions have high local density, while objects in sparse regions have low local density.

Due to the varying scales of data in different datasets, to prevent the density values becom-

ing excessively large or small, Equation (5) is employed for normalizing the density.

ldnorm(xi ) =
ld(xi ) − min_ld(B)

max _ ld(B) − min _ ld(B)
(5)

In Equation (5), max _ ld(B) stands for the highest local density value among the objects

in dataset B, whereas min _ ld(B) represents the lowest density value among objects in dataset

B. After normalization, the local density is scaled to fall within the range [0,1].

3.2 Density feedbackmechanism

Due to the exclusive reliance on neighborhood information in local density estimation and

the lack of neighborhood similarity and global context, the extracted density features fail

to effectively distinguish between low-density normal points and outliers. To address this,

we propose a density feedback mechanism that uses local density as an initial input and

iteratively adjusts it to reduce discrepancies among neighboring objects, thereby enhancing

their similarity. Based on the adjusted density, low-density normal points converge with

normal data, while high-density outliers converge with other outliers, leading to a clearer

distinction between the two groups. Below are the relevant definitions for the density feedback

mechanism.

Definition 3 Density Feedback Value, dfv: dfv represents the dynamically adjusted value

within the feedback mechanism, which tends to stabilize at the end of the feedback process.

The initial values of dfv are the local density values of objects, denoted as dfv0(xi ) =

ldnormxi , xi ∈ B. Subsequent steps gradually unveil the updating method of dfv.

Definition 4 Feedback Signal, �dfv : �dfv(xi ) is the average dfv difference between object

xi and its k-nearest neighbors.

Before the first feedback, the feedback signal of object xi is initialized as �dfv0(xi ), and

it is calculated as Equation (6).

�dfv0(xi ) =

∑

x j ∈KNNk (xi )
(dfv0(x j ) − dfv0(xi ))

k
(6)

The feedback signal reflects the difference in density between an object and its neighbors,

and can be either positive or negative.
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Based on the principle of neighborhood similarity, which suggests that objects within the

same neighborhood exhibit similar outlier degrees, the LDF algorithm uses density feed-

back values to characterize outlier degrees. Therefore, neighborhood similarity implies that

objects in the same neighborhood should have comparable density feedback values. The

LDF algorithm enhances this similarity by integrating density feedback values and feedback

signals.

Based on dfv0(xi ) and �dfv0(xi ), the first updation for dfv(xi ) is depicted in Equation

(7), and dfv0(xi ) is updated to dfv1(xi ).

dfv1(xi ) = dfv0(xi ) + η · � dfv0(xi ) (7)

In Equation (7), η is a tunable hyperparameter denoting the rate of feedback, and 0 < η <

1.

Within one feedback iteration, object xi can aggregate information from its neighbors. By

employing multiple feedback iterations, object xi can aggregate global information.

The iterative updating process can be standardized using Equations (8) and (9).

� dfvh (xi ) =

∑

x j ∈KNNk (xi )

(

dfvh
(

x j

)

− dfvh (xi )
)

k
, h = 0, 1, 2, · · · (8)

dfvh (xi ) = dfvh−1 (xi ) + η · � dfvh−1 (xi ) , h = 1, 2, · · · (9)

It is worth noting: Equation (8) is utilized to compute the feedback signal, commencing

from h = 0. At h = 0, Equation (8) corresponds to the previously mentioned Equation

(6). Meanwhile, Equation (9) serves to update the density feedback values, with h starting

from 1 to signify the feedback iterations. At h = 1, Equation (9) corresponds to the earlier

discussed Equation (7). This process alternates between Equation (8) and Equation (9), with

each alternation constituting one iteration, also referred to as one feedback cycle.

Combining Equations (8) and (9), we can analyze the feedback mechanism. From a local

perspective, if the average density feedback value of xi ’s neighbors exceeds that of xi itself,

i.e., �dfv(xi ) > 0, according to Equation (9), the density feedback value of xi will increase.

Conversely, if the average density feedback value of neighbors is less than that of xi , i.e.,

�dfv(xi ) < 0, according to Equation (9), the density feedback value of xi will decrease.

Therefore, the feedback mechanism effectively reduces differences between neighboring

objects, enhancing their similarity. From a global perspective, density feedback values exhibit

a propagative property. An object utilizes neighbors’ information to update itself, we can say

it aggregates the information of neighbors.

In Fig. 2, big circles are used to draw the neighborhood of point s and point t with k = 3.

The arrow “ −→” represents the neighbor relationship. For example, “o −→ s” means that

point o is a neighbor of point s, and “s −→ t" indicates that point s is a neighbor of point t.

In the first feedback iteration, point s can aggregate the information of point o; in the second

feedback iteration, point t can aggregate information directly from point s. Additionally,

point t can indirectly gather information from point o, which has already been aggregated

into point s. With increasing feedback iterations, each point in the dataset can aggregate the

information from all points, thereby possessing global information. Additionally, the process

of enhancing neighborhood similarity also serves to smooth out density.

3.3 Feedback stopping condition

As the number of feedback iterations increases, the magnitude of change in density feedback

values gradually diminishes, and density feedback values will reach a convergence state,
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Fig. 2 Neighborhood of objects s and t

Fig. 3 Diagram of the feedback mechanism of LDF algorithm

where no significant changes occur. To enhance the algorithm’s efficiency, a sufficiently small

value is specified as the convergence tolerance: ε. When the change in density feedback

values falls below this tolerance ε, denoted as ∀xi ∈ B, dfvh (xi ) − dfvh−1 (xi ) ≤ ε, we

regard that it achieves the convergence state. Equation (9) shows that the change in the

density feedback value of xi between the two adjacent iterations is η ·�dfvh−1(xi ). Hence, if

∀xi ∈ B,
∣

∣η · �dfvh−1(xi )
∣

∣ ≤ ε, it is deemed that dfv has converged. Additionally, by setting

a maximum number of feedback iterations max_i terations, feedback ceases once this limit

is reached. The feedback rate η also plays a role in convergence; if too small, feedback may

be sluggish, and if too large, significant fluctuations in density feedback values may prevent

convergence. Therefore, fine-tuning η is crucial for achieving optimal results.

Figure 3 illustrates the feedback mechanism of the LDF algorithm. This mechanism

extracts �dfv from dfv and uses it to update the dfv automatically.
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Fig. 4 Curves for density feedback values with varying feedback iterations (η = 0.12)

Below, we use the Wine dataset in Fig. 1 as an example to explain the effectiveness of the

feedback mechanism. Fig. 4 shows the curve representing the evolution of density feedback

values for normal points q1, q2, q3, and the outlier p over feedback iterations. With a feedback

rate of η = 0.12, density feedback values approximately stabilize after 40 iterations. Initially,

q3’s density feedback value are lower than that of the outlier p. However, as the number of

feedback iterations increases, q3’s density feedback value gradually rises, surpassing that

of the outlier p by the 4th feedback iteration. Furthermore, the density feedback values of

normal points q1 and q2 consistently remain higher than that of the outlier p.

In Fig. 5, the points in the Wine dataset are depicted in different colors so that the density

feedback values can be visualized intuitively combined with the data distribution. Diamond-

shaped points represent outliers, while circle-shaped points represent normal points. Lighter

colors indicate higher density feedback values, darker colors indicate lower density feedback

values. It is evident that outlier points appear darker compared to normal points, indicating

lower density feedback values associated with outliers in contrast to normal points.

To intuitively perceive the changes of density feedback values, Fig. 6 selects the normal

point q3, and the outlier p from Wine dataset, and uses arrows (“−→”) to depict their density

feedback values with the increase of feedback iterations (the number of feedback iterations

increases in the counterclockwise direction). The length of each arrow corresponds to the

density feedback value computed based on Equations (8) and (9). The direction of the arrows

accentuates the trend of being more similar to its neighbors, pointing toward the approximate

direction of neighbors. The angles between the arrows serve as visual aids to showcase the

dynamic changes in density feedback values during feedback iterations. From Fig. 6, it is

evident that q3 undergoes a rapid and substantial variation in density feedback values, while

p demonstrates a slower and less pronounced trend. With increasing feedback iterations, the

density feedback value of q3 eventually exceeds that of p.

To further accentuate the distinction between normal and outlier points, Fig. 7 plots the

reciprocals of density feedback values for q1, q2, q3, and p over the first 40 iterations. It
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Fig. 5 Wine dataset with colored points. Diamond-shaped points represent outliers, while circle-shaped points

represent normal points. The values on the horizontal and vertical axes represent the values of the first two

dimensions of the objectives

Fig. 6 Changes of density feedback values of points q3 and p. The values on the horizontal and vertical axes

represent the values of the first two dimensions of the objectives

is clear that, the curve of q3 gradually trends closer to the normal points q1 and q2 while

trending away from the outlier point p. After the 40th feedback iteration, the density feedback

values of the outlier p stabilize consistently above those of normal points q1, q2, and q3. This

effectively facilitates the differentiation between the outlier point p and the normal points

q1, q2, and q3.

Furthermore, we analyze that normal data situated in sparse regions may exhibit fluctua-

tions due to random noise, which is considered a normal phenomenon. Conversely, outliers

are produced by abnormal mechanisms rather than random noise. The introduction of den-
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Fig. 7 Curves for reciprocals of density feedback values with varying feedback iterations (η = 0.12)

sity feedback values and feedback mechanisms helps uncover deeper distribution patterns

within the data, reducing sensitivity to noise in density estimation, and thus enhancing the

robustness of outlier detection algorithms.

3.4 Feedback outlier factor

After completing the feedback process, objects with smaller density feedback values exhibit

a higher degree of outlierliness. To quantify the degree of outliers, we define the feedback

outlier factor as a positively correlated representation of outlierliness.

Definition 5 Feedback Outlier Factor, FOF: The FOF for object xi is defined as the reciprocal

of the density feedback value dfv(xi ), as shown in Equation (10).

FOF(xi ) =
1

dfv(xi )
(10)

Objects with a higher feedback outlier factor are more likely to be outliers, whereas objects

with a lower feedback outlier factor are more likely to be normal points.

3.5 Algorithm description

The workflow of the LDF algorithm is depicted in Fig. 8. The LDF algorithm first performs

dimensionality reduction on the original data using the PCA. Subsequently, it employs the

natural neighbor search algorithm to determine the natural feature value k and KNN. Fol-

lowing this, leveraging the idea that objects in dense regions possess higher density while

those in sparse regions have lower density, the reciprocal of the average distance to KNN

serves as the local density of objects. Then we introduce a density feedback mechanism

and density feedback values, aggregating global information using neighborhood similarity.
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Density feedback values are updating until they stabilize or the maximum iteration count

is reached. The feedback mechanism narrows the differences among neighboring objects,

enabling the density feedback values of low-density normal points returning to the normal

range, facilitating the differentiation from outliers. Finally, the feedback outlier factor is used

to quantify the degree of the outliers, i.e., the larger the feedback outlier factor, the higher

the degree of the outliers. Specifically, based on the top-l strategy, the top-l objectives with

the highest outlier scores are predicted as outliers.

Algorithm 2 is the description of the LDF. In the LDF algorithm, the time complexity for

dimensionality reduction using PCA is O(nd2), where n is the total number of objects in

the dataset and d is the original dimensionality. After the dataset is reduced to α dimensions

using PCA, the time complexity for performing the natural neighbor search algorithm with k

neighbors using a Ball-Tree structure is O(αn log(n)). The time complexity of the feedback

mechanism is O(ωαnk), in which the max number of feedback iterations ω is a constant

value, so it can be simplified to O(αnk). Given that the dimensionality α << d after PCA

processing, and the number of neighbors k << n, so we can omit them and retain only

those related to the data size n. Furthermore, we used the PCA method provided by scikit-

learn,1 which employs various strategies to accelerate the computation, resulting in high

efficiency. Hence, the computational complexity is approximately O(n log(n)). Overall, the

time complexity of the algorithm is acceptable.

Algorithm 2 Local Density Feedback Outlier Detection Algorithm (LDF)

Input: Raw dataset D, feedback rate η,max feedback iterations ω = 300, convergence tolerance ε = 1e−4

Output: l outliers

1: Use PCA method to reduce the dimensionality of dataset D: B = PCA (D)

2: Use Algorithm 1 to get k and KNNk

3: for each xi ∈ B do

4: Use Equation (4) and (5) to calculate local density ldnorm(xi )

5: dfv0(xi ) = ldnorm(xi )

6: end for

7: Set the initial number of feedback iterations:h = 0

8: while dfv unconverging or h < ω do

9: h = h + 1

10: for each xi ∈ B do

11: Use Equation (8) to calculate �dfvh(xi )

12: Use Equation (9)to update dfvh(xi )

13: end for

14: end while

15: for each xi ∈ B do

16: Use Equation (10) to calculate

17: end for

18: Sort FOF in reverse order

19: return l outliers

4 Experiment

In this section, experiments were conducted on ten real-world datasets using eight algorithms

to demonstrate the superiority of the proposed LDF algorithm. Subsequently, experiments

1 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.
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Fig. 8 Flowchart of LDF algorithm

were performed to analyze the effectiveness of the density feedback mechanism, proving

its validity from two perspectives: the ablation of the density feedback mechanism and the

exclusion of PCA’s influence. Next, parameter experiments were conducted to determine the

optimal range of parameter η, and finally, time efficiency experiments were carried out.
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Table 1 Characteristics of datasets

Dataset Points Dimensions Outliers Percentage of Outliers

Ecoli 168 7 25 14.8%

Wine 129 13 10 7.7%

Wbc 278 30 21 5.6%

Ionosphere 351 32 126 35.8%

Wdbc 390 30 33 8.4%

Cardio 1831 21 176 9.6%

Arrhythmia 452 274 66 15%

Waveform 3443 21 100 2.9%

Satellite 6435 36 2036 32%

Satimage-2 5803 36 71 1.20%

Table 2 Dataset dimensionality reduction using PCA

Dataset Initial dimension Reduced dimension Percentage of variance retained (%)

Ecoli 7 5 90

Wine 13 2 90

Wbc 30 7 90

Ionosphere 32 28 90

Wdbc 30 2 90

Cardio 21 12 90

Arrhythmia 274 26 90

Waveform 21 15 90

Satellite 36 4 90

Satimage-2 36 4 90

4.1 Experimental setting

4.1.1 Dataset

We adopted real-world datasets sourced from the open-access UCI repository, which included

Escherichia coli (Ecoli), Wine, Wisconsin Breast Cancer (Wbc), Ionosphere, Wisconsin

Diagnostic Breast Cancer (Wdbc), Cardio, Arrhythmia, Waveform, Satellite and Satimage-2

datasets. The outlier proportion in these datasets ranges from 1.2% to 35.8%, with the number

of data instances ranging from 129 to 6435 and dimensions spanning from 7 to 274. These

datasets encompass various data scales and distribution types, facilitating a comprehensive

evaluation of the performance of the LDF algorithm. Detailed characteristics of the datasets

are presented in Table 1.

As the LDF algorithm employs PCA method for dimensionality reduction, Table 2 lists

the original dimensions and the number of dimensions after reduction for each dataset. We

set the PCA parameter n_components to 0.9 in order to retain 90% of the total variance in

the dataset.
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4.1.2 Comparison algorithms

To evaluate the performance of the LDF algorithm, we compared it with eight algorithms

include classic methods: LOF [16], COF [18], and IForest [40], along with state-of-art

approaches: NaNOD [20], RDOF [19], ECOD [8], FDPC-OF [14] and SODEP [35]. Among

these, LOF, COF, NaNOD and RDOF are density-based algorithms, NaDOD uses the same

natural neighbor search algorithm as our LDF, and SODEP use the same PCA method as our

LDF, so they serve as horizontal comparison to our LDF method. IForest is a widely recog-

nized isolation-based algorithm, FDPC-OF combines density and clustering methods, and

ECOD is a statistics-based methods, offering a vertical comparison to assess the performance

of our LDF algorithm.

In the experiments, the feedback rate η for LDF algorithm ranges from 0 to 1. For the

comparison algorithm NaNOD, the KDE parameter θ is set to the default value of 0.5.

IForest uses default parameters, with n_estimators set to 100 and max_samples set to

256, representing the number of iTrees and the sample size, respectively. FDPC-OF utilizes

default parameters, with k set to 5 and c set to 2, representing the number of neighbors

and the number of clusters, respectively. LOF, COF, RDOF and SODEP require setting the

parameter k, which represents the number of neighbors. We test k values ranging from 5 to

100 to determine the optimal k value for LOF, COF, RDOF and SODEP algorithm on each

dataset, recording their best performance accordingly. ECOD does not require parameter

settings. We used the top-l strategy for all algorithms consistently, and set l = S (the number

of true outliers in each dataset), ensuring a fair comparison.

4.1.3 Evaluation measures

We evaluate the performance of algorithms using precision (Pr) and AUC (Area Under the

Curve) metrics. The formula for precision is shown in Equation (11).

Pr =
TP

TP+FP
(11)

In Equation (11), TP represents the number of instances correctly identified as outliers by

the algorithm, while FP represents the number of instances incorrectly identified as outliers

by the algorithm. And TP + FP = S, where S is number of outliers contained in the dataset.

The AUC represents the area under the receiver operating characteristic (ROC) curve,

where the x-axis and y-axis of the ROC curve represent the false positive rate and true

positive rate, respectively. AUC evaluates the overall ranking quality of models, reflecting

the model’s ability to rank positive instances higher than negative instances. AUC values

range from 0 to 1. An AUC value of 0.5 indicates the performance equivalent to random

guessing, and has no practical utility. An AUC value of 1 signifies that the model correctly

ranks all positive instances ahead of negative instances. Therefore, the closer the AUC value

is to 1, the better the model performs.

4.2 Overall performance

We executed our LDF algorithm along with eight comparison algorithms on the ten datasets

presented in Table 1. The precision of algorithms are presented in Table 3, and the last row

of the table lists the average precision of each algorithm on ten datasets, with the optimal

precision for each dataset highlighted in bold.
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Table 3 Precision of different algorithms on ten datasets

Dataset LOF COF IForest RDOF NaNOD ECOD FDPC-OF SODEP LDF

Ecoli 0.840 0.880 0.800 0.800 0.840 0.760 0.520 0.840 0.96

Wine 0.900 0.900 0.100 0.900 0.900 0.100 0.600 0.900 1.000

Wbc 0.571 0.524 0.524 0.571 0.524 0.429 0.096 0.571 0.619

Ionosphere 0.825 0.825 0.675 0.667 0.738 0.520 0.857 0.857 0.865

Wdbc 0.879 0.909 0.515 0.879 0.789 0.455 0.788 0.879 0.909

Cardio 0.225 0.210 0.472 0.188 0.534 0.528 0.256 0.460 0.591

Arrhythmia 0.515 0.520 0.439 0.500 0.510 0.485 0.348 0.510 0.515

Waveform 0.210 0.290 0.090 0.130 0.110 0.050 0.150 0.210 0.300

Satellite 0.417 0.432 0.559 0.410 0.583 0.449 0.580 0.541 0.584

Satimage-2 0.113 0.169 0.901 0.151 0.915 0.620 0.239 0.789 0.915

AVG 0.550 0.568 0.508 0.520 0.644 0.440 0.443 0.656 0.726

From Table 3, it can be observed that the LDF algorithm achieves the highest precision on

nine out of ten datasets. Specifically, for the isolation-based algorithm IForest, the statistics-

based algorithm ECOD, and the clustering-based algorithm FDPC-OF, all the neighborhood

information-based algorithms—LOF, COF, RDOF, NaNOD, and SODEP—outperform these

three algorithms in terms of precision across all datasets except for the Cardio dataset. This

illustrates the importance of local information in the outlier detection process. For the six

datasets—Ecoli, Wine, Wbc, Ionosphere, Cardio, Waveform and Satellite—the outlier detec-

tion precision of LDF surpasses that of the neighborhood information-based algorithms (LOF,

COF, RDOF, NaNOD, and SODEP) and exceeds the suboptimal algorithms by 9.09%, 11.1%,

8.41%, 0.933%, 10.7%, 3.45% and 0.172%, respectively. This is mainly because the five

aforementioned algorithms only consider local information and neglect the crucial role of

global information in the detection process. In contrast, LDF not only utilizes local infor-

mation but also incorporates global information through the proposed feedback mechanism,

enabling it to detect outliers more accurately and effectively solve the issue of low-density nor-

mal points being misidentified as outliers. It is worth mentioning that for the COF algorithm,

we obtained the best precision results on the Wdbc and Arrhythmia datasets by adjusting

the parameter of k. However, the time cost involved did not result in significantly better

performance compared to the LDF algorithm, with precision only 0% and 0.971% higher

than the LDF algorithm on the Wdbc and Arrhythmia datasets, respectively. Another rea-

son for the slightly lower performance of LDF compared to COF is that Arrhythmia is a

high-dimensional dataset, and LDF incorporates too much redundancy in the feedback pro-

cess. This is also an aspect we are committed to enhancing in the future. Overall, our LDF

algorithm produces the highest average precision of 0.726, 10.7% higher than that of the

second-ranked SODEP algorithm.

Table 4 presents the AUC results for each algorithm across the ten datasets, with the last row

displaying the average AUC of each algorithm on ten datasets, and the best AUC highlighted

in bold. It is evident that the LDF algorithm achieves the best AUC on nine out of ten datasets.

For the eight datasets—Ecoli, Wine, Wbc, Ionosphere, Arrhythmia, Waveform, Satellite and

Satimage-2—the AUC of LDF surpasses that of the neighborhood information-based algo-

rithms (LOF, COF, RDOF, NaNOD, and SODEP) and exceeds the suboptimal algorithms by

0.102%, 0.100%, 0.105%, 0.319%, 0.361%, 2.34%, 6.82% and 0.104%, respectively. This

indicates the effective of fully utilization of neighborhood similarity and global informa-
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Table 4 AUC of different algorithms on ten datasets

Dataset LOF COF IForest RDOF NaNOD ECOD FDPC-OF SODEP LDF

Ecoli 0.979 0.983 0.949 0.974 0.943 0.936 0.888 0.967 0.984

Wine 0.999 0.999 0.766 0.999 0.998 0.733 0.913 0.999 1.000

Wbc 0.951 0.929 0.949 0.951 0.894 0.900 0.334 0.951 0.952

Ionosphere 0.903 0.920 0.852 0.821 0.858 0.728 0.941 0.925 0.944

Wdbc 0.989 0.993 0.945 0.983 0.967 0.931 0.953 0.988 0.993

Cardio 0.822 0.579 0.818 0.544 0.896 0.902 0.588 0.873 0.892

Arrhythmia 0.816 0.832 0.796 0.796 0.809 0.805 0.736 0.817 0.835

Waveform 0.742 0.756 0.725 0.657 0.771 0.608 0.696 0.750 0.789

Satellite 0.572 0.570 0.704 0.565 0.704 0.583 0.733 0.732 0.783

Satimage-2 0.953 0.727 0.994 0.580 0.996 0.965 0.812 0.996 0.997

AVG 0.872 0.829 0.850 0.787 0.884 0.809 0.759 0.900 0.917

tion in our proposed feedback mechanism. It is worth noting that for the COF algorithm,

its AUC value on the Arrhythmia dataset did not reach the highest level, as seen with the

precision metric. Instead, our LDF algorithm achieves the highest AUC. The statistics-based

ECOD surpasses the LDF on the Cardio dataset because the distribution of the Cardio dataset

aligns well with statistical models. Nonetheless, our LDF algorithm remains competitive on

the Cardio dataset, closely following the ECOD. Another noteworthy point is that the per-

formance of our LDF algorithm surpasses that of the PCA-based SODEP algorithm. This

indicates that when both algorithms utilize PCA, our proposed LDF method is more effective

at detecting outliers. Additionally, it further demonstrates that our proposed feedback mecha-

nism can effectively leverage neighborhood similarity and global information to enhance the

performance of outlier detection. Overall, our LDF algorithm achieves the highest average

AUC of 0.917, 1.89% higher than that of the second-ranked SODEP algorithm. Hence, our

LDF algorithm demonstrates higher performance in outlier detection compared to the other

algorithms.

Figure 9 utilizes a heatmap to visually depict the average performance enhancement of

the LDF algorithm compared to eight comparison algorithms on the datasets mentioned

above. Darker shades mean greater improvement in performance, and the values on the

blocks indicate the magnitude of the performance improvement. It is evident that the LDF

algorithm exhibits varying degrees of improvement over the comparison algorithms. For

instance, LDF’s precision improves on average by 0.286 compared to ECOD algorithm,

while its AUC increases by an average of 0.158 compared to FDPC-OF algorithm.

4.3 Effect of the density feedbackmechanism

4.3.1 Ablation study of the density feedback mechanism

We introduce a density feedback mechanism in LDF algorithm for outlier detection, which

utilizes neighborhood similarity to aggregate global information. To verify the effectiveness

of the density feedback mechanism, we designed one variants: LDOD, with the density feed-

back mechanism removed. The precisions and AUC of LDF and LDOD on 10 datasets are

shown in Table 5, with the best result for each dataset highlighted in bold. By analyzing the
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Fig. 9 The average performance enhancement of the LDF algorithm

Table 5 Precision and AUC of

LDOD and LDF algorithms
Dataset LDOD LDF

Pr AUC Pr AUC

Ecoli 0.840 0.956 0.960 0.984

Wine 0.800 0.996 1.000 1.000

Wbc 0.571 0.944 0.619 0.952

Ionosphere 0.857 0.943 0.865 0.944

Wdbc 0.818 0.973 0.909 0.993

Cardio 0.290 0.723 0.591 0.892

Arrhythmia 0.515 0.808 0.515 0.835

Waveform 0.210 0.761 0.300 0.789

Satellite 0.495 0.686 0.584 0.783

Satimage-2 0.338 0.974 0.915 0.997

AVG 0.573 0.876 0.726 0.917

experimental results in Table 5, we draw the following conclusion: LDF consistently out-

performed LDOD across ten datasets, which demonstrates the effectiveness of our proposed

density feedback mechanism in improving outlier detection performance.

Figure 10 employs a heatmap to illustrate the performance enhancement brought by the

feedback mechanism in the LDF algorithm, i.e., the performance improvement of LDF rel-

ative to LDOD. Darker shades signify greater performance gains, with the numerical values

on the tiles indicating the magnitude of the performance improvement. Clearly, the highest

improvement in accuracy was achieved on the Satimage-2 dataset, reaching 0.577, while the

greatest AUC improvement was on the Cardio dataset, reaching 0.169.

Figure 11 illustrates the visualization results of the LDOD and LDF algorithms. The

subplots in Fig. 11 depict the two main features of the datasets after dimensionality reduction,

and subplots on the left side are the visualization results of the LDOD algorithm, while

subplots on the right side are those of the LDF algorithm. Taking Fig. 11a as an example, it

can be observed that in the scatter plot of the Ecoli dataset, there are some normal objects

misclassified as outliers by LDOD, leading to low precision. However, in the LDF algorithm,

due to the misclassified normal objects having a plenty of normal neighbors, their similarity
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Fig. 10 The performance enhancement brought by the feedback mechanism

with neighbors increases and the degree of outlierness decreases through the density feedback

mechanism, thus they can be correctly detected as normal points. Similarly, outliers have

outlier neighbors, and their outlier degree increases due to mutual influence in the LDF

algorithm.

4.3.2 Analysis to exclude the effects of PCA

To further verify that the proposed density feedback mechanism is the main driver of LDF’s

improved performance in outlier detection, rather than the introduction of PCA, we conducted

experiments on each benchmark by both including and removing PCA. The experimental

results are shown in Tables 6 and 7.

By comprehensively analyzing the experimental results in Tables 6 and 7, we can draw

the following conclusions: (1) For all methods, there is no direct correlation between the

inclusion of PCA and performance improvement. In fact, for some datasets, certain methods

experienced a performance drop after the introduction of PCA, such as IForest and ECOD

on the Wbc dataset; (2) Compared to the comparison algorithms, LDF demonstrated greater

robustness in this set of PCA analysis experiments, with its outlier detection performance

remaining stable across all datasets, regardless of whether PCA was included; (3) Even

without the inclusion of PCA, LDF still outperformed nearly all comparison algorithms

across all datasets. Therefore, based on the analysis above, we can conclude that the core

factor driving LDF’s performance improvement is the proposed density feedback mechanism,

not the inclusion of PCA. The introduction of PCA is not inherently linked to the improvement

of outlier detection algorithm performance.

4.4 Experiment of parameter

In this section, we focus on the proposed density feedback mechanism, and analyze the

impact of the feedback rate parameter η on LDF’s detection performance. To explore the

optimal range of η, values ranging from 0 to 1 with an interval of 0.01 were tested on ten

datasets. It is worth noting that when η is set to 0, the results produced by the LDF algorithm

are identical to those produced by the LDOD algorithm.
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Fig. 11 Visualization results of LDOD and LDF algorithms. Circle-shaped points “◦” represent normal points

in the dataset, while diamond-shaped points “♦” denote outliers. Circle-shaped points with symbols “+” indi-

cate outliers incorrectly detected by the algorithm, while diamond-shaped points with symbols “+” represent

outliers correctly detected by the algorithm. The values on the horizontal and vertical axes represent the values

of the first two dimensions of the objectives. Curves for precision with changing η. Curves for AUC with

changing η
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Fig. 11 continued
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Fig. 11 continued

Figure 11 depicts the curve of precision of the LDF algorithm with varying η. It can be

observed that for the Ecoli, Wbc, Wdbc, Cardio, Waveform, Satellite and Satimage-2 datasets,

there is a significant increase in precision when the parameter η reaches around 0.02. For

the Satellite dataset, precision showed a slight decline after η=0.12, but began to gradually

increase again at η = 0.21. For the Satimage-2 dataset, the curve remained stable from η=0.12

to η=0.23, followed by a slight drop in precision, which then stabilized again after η=0.26.

For the Wine dataset, precision reaches 1 when η is around 0.12. The Ionosphere dataset

shows a slight increase in precision when η ranges from 0 to 0.02, while the Arrhythmia

dataset maintains stability between η = 0 and 0.15, then declines.

Figure 11 illustrates the curve of AUC of the LDF algorithm with varying η. It reveals

a similar trend in AUC as precision. Around η = 0.02, the LDF algorithm demonstrates

commendable performance across all datasets. Therefore, we conclude that the optimal range

for parameter η is from 0 to 0.2, with a suggested value of 0.02 for the majority of datasets.

4.5 Analysis of time efficiency

To analyze the time efficiency of LDF compared to the comparison algorithms, we conducted

a time efficiency analysis for all methods across all datasets. The experimental results are

shown in Table 8, with the unit of measurement in seconds (s).

By analyzing the experimental results in Table 8, we can see that ECOD has the shortest

average time for outlier detection across all datasets, with 0.035 s; RDOF has the longest aver-

age time, with 46.6 s. Our proposed LDF ranks seventh in time efficiency among all methods,
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Fig. 12 Curves for precision with changing η

Fig. 13 Curves for AUC with changing η

with an average of 2.79 s. Although LDF does not achieve the best time efficiency, this level

of time consumption is acceptable considering the improved outlier detection performance

compared to the comparison algorithms.
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5 Conclusion

In this paper, we introduce an outlier detection algorithm based on local density feedback

(LDF), and address the issue of that previous density-based algorithms underutilizes neigh-

borhood similarity and global information. The LDF algorithm introduces a density feedback

mechanism to further process the local density of objects, which iteratively aggregates global

information based on neighborhood similarity, and can better distinguish outliers from normal

points. Experiment results show that LDF significantly improves the overall performance in

terms of average accuracy by 10.7% and average AUC by 1.89% as compared to the second-

best method. In the future, we aim to develop a method that dynamically adjusts the feedback

rate parameter based on convergence speed during iterations, and extend the post-processing

technique as a general approach, allowing it applicable to other classical algorithms to further

enhance performance.
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