From bbbdb20d6a6b35e1168010d0bc22b9cc6ae3a621 Mon Sep 17 00:00:00 2001
From: Adrien Klose <ikenex3@gmail.com>
Date: Thu, 6 Jun 2024 20:03:23 +0200
Subject: [PATCH] work through tutorial on function calling

---
 .gitignore                                    |   1 +
 .../functional_calling_test.ipynb             | 172 ++++++++++++++++++
 .../LLM_structured_outputs_tutorial/notes.txt |  40 ++++
 .../code/bioasq_yesno_api_tests.ipynb         | 119 ++++++++++++
 4 files changed, 332 insertions(+)
 create mode 100644 .gitignore
 create mode 100644 ideas_practice/code/LLM_structured_outputs_tutorial/functional_calling_test.ipynb
 create mode 100644 ideas_practice/code/LLM_structured_outputs_tutorial/notes.txt
 create mode 100644 ideas_practice/code/bioasq_yesno_api_tests.ipynb

diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..1e5c14a
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1 @@
+**/*.env
diff --git a/ideas_practice/code/LLM_structured_outputs_tutorial/functional_calling_test.ipynb b/ideas_practice/code/LLM_structured_outputs_tutorial/functional_calling_test.ipynb
new file mode 100644
index 0000000..c4fa84f
--- /dev/null
+++ b/ideas_practice/code/LLM_structured_outputs_tutorial/functional_calling_test.ipynb
@@ -0,0 +1,172 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "True"
+      ]
+     },
+     "execution_count": 1,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import os\n",
+    "import instructor\n",
+    "\n",
+    "from groq import Groq\n",
+    "from pydantic import BaseModel\n",
+    "import dotenv\n",
+    "from typing_extensions import Literal\n",
+    "from enum import Enum\n",
+    "dotenv.load_dotenv()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "client = Groq(\n",
+    "    api_key=os.environ.get(\"GROQ_API_KEY\"),\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# By default, the patch function will patch the ChatCompletion.create and ChatCompletion.create methods to support the response_model parameter\n",
+    "client = instructor.from_groq(client, mode=instructor.Mode.TOOLS)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Can use the response_model parameter using the BaseModel\n",
+    "#class QuestionType(Enum):\n",
+    "#    YesNo: Literal[\"Yes\",\"No\"]\n",
+    "#    Factoid: str\n",
+    "#    List: list[str]\n",
+    "#    Summary: str\n",
+    "\n",
+    "class YesNoModel(BaseModel):\n",
+    "    answer: Literal[\"Yes\",\"No\"]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "yesno: YesNoModel = client.chat.completions.create(\n",
+    "    model=\"mixtral-8x7b-32768\",\n",
+    "    response_model=YesNoModel,\n",
+    "    messages=[\n",
+    "        {\"role\": \"system\", \"content\": \"You are a helpful medical expert who answers with either yes or no to questions.\"},\n",
+    "        {\"role\": \"user\", \"content\": \"Is it safe to take isotretinoin during pregnancy?\"},\n",
+    "    ],\n",
+    ")\n",
+    "\n",
+    "assert isinstance(yesno, YesNoModel), \"Should be instance of UserExtract\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "answer='No'\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(yesno)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Not sure I understand the use of Field\n",
+    "from pydantic import Field\n",
+    "class NLSentenceModel(BaseModel):\n",
+    "    sentence: str = Field(...,description=\"Must be natural language sentences\")\n",
+    "# Could include a validator to check whether the result is a single sentence.\n",
+    "\n",
+    "sent: NLSentenceModel = client.chat.completions.create(\n",
+    "    model=\"mixtral-8x7b-32768\",\n",
+    "    response_model=NLSentenceModel,\n",
+    "    messages=[\n",
+    "        {\"role\": \"system\", \"content\": \"You are a helpful medical expert who reformulates triples of subjec, relationship and object into one sentence.\"},\n",
+    "        {\"role\": \"user\", \"content\": \"isotretinoin has_active_gen pregnancy\"},\n",
+    "    ],\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "sentence='Isotretinoin has an active genetic effect on pregnancy.'\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(sent)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.12"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/ideas_practice/code/LLM_structured_outputs_tutorial/notes.txt b/ideas_practice/code/LLM_structured_outputs_tutorial/notes.txt
new file mode 100644
index 0000000..882bbdd
--- /dev/null
+++ b/ideas_practice/code/LLM_structured_outputs_tutorial/notes.txt
@@ -0,0 +1,40 @@
+Chapter 1 Asking LLM for structured data
+- Pydantic to give key and type security for dictionaries
+- Pydantic to structure LLM output
+- function calling for asking LLMs for json output; allows to
+  better use LLM that are fine tuned for json
+- other libraries include Marvin, Langchain, LlamaIndex
+
+Chapter 2 Prompting LLMs
+- Schemas to make Prompt engineering modular and reusable
+- Literals in schemes seem to outperform enums
+
+- we can extract arbitrary attributes too and limit the amount ???
+- can use this extract responses objects as they come with stream
+--> complexer requests improved upon their perceived latency
+
+- can use an index list with "good" prompt to extract relationships between entities
+- Making parts of the model optional counteracts hallucination!!!
+
+Chapter 3 RAG Applications
+- RAG = Retrieval Augmented Generation
+-> Retriever, Ranker, and Generator Component
+- embedded search = take query/prompt, get information from DB, put info and query into same prompt
+-> giving our own data allows model to answer even unseen questions/facts
+-> embedded search has limitations, model does not learn over time normally
+
+----> apply query understanding to match backend search capabilities
+- use query engine that breaks up query into multiple requests to backend
+- from the backend response we can generate summaries
+- can use wandb as a library for better documentation/logging
+
+- can use it to decompose questions into multiple and improve results
+
+Chapter 4 Validating LLM Outputs
+- use validators to generate feedback for LLM when its response did not confirm to our expectations
+- validators check all in parallel
+-> field function has lot of stuff already implemented
+- can make validation dynamique
+--> can use predefined like OpenAI moderation client
+-> can also make the llm check whether something is valid
+- can use validations to ensure the style of the respons
diff --git a/ideas_practice/code/bioasq_yesno_api_tests.ipynb b/ideas_practice/code/bioasq_yesno_api_tests.ipynb
new file mode 100644
index 0000000..a9f295c
--- /dev/null
+++ b/ideas_practice/code/bioasq_yesno_api_tests.ipynb
@@ -0,0 +1,119 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "7209584a-2748-4473-acc8-51a062f7b2cd",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# set up environment\n",
+    "from openai import OpenAI\n",
+    "import os\n",
+    "import dotenv\n",
+    "from groq import Groq\n",
+    "dotenv.load_dotenv()\n",
+    "clientOAI = OpenAI(api_key=os.environ.get(\"OPENAI_API_KEY\"))\n",
+    "clientG = Groq(api_key=os.environ.get(\"GROQ_API_KEY\"))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "b8b9daad",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "5 + 3 = 8\n"
+     ]
+    }
+   ],
+   "source": [
+    "#groq example\n",
+    "chat_completion = clientG.chat.completions.create(\n",
+    "    messages=[\n",
+    "        {\n",
+    "            \"role\": \"user\",\n",
+    "            \"content\": \"What is 5 plus 3\",\n",
+    "        }\n",
+    "    ],\n",
+    "    model=\"llama3-8b-8192\",\n",
+    ")\n",
+    "\n",
+    "print(chat_completion.choices[0].message.content)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "6f05f369-af37-45df-8a33-675f177290b4",
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "RateLimitError",
+     "evalue": "Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error, read the docs: https://platform.openai.com/docs/guides/error-codes/api-errors.', 'type': 'insufficient_quota', 'param': None, 'code': 'insufficient_quota'}}",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[0;31mRateLimitError\u001b[0m                            Traceback (most recent call last)",
+      "Cell \u001b[0;32mIn[5], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;66;03m# openai example, fails due to no free token limit and current key does have no value added\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m completion \u001b[38;5;241m=\u001b[39m \u001b[43mclientOAI\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompletions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m      3\u001b[0m \u001b[43m  \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgpt-3.5-turbo\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m      4\u001b[0m \u001b[43m  \u001b[49m\u001b[43mmessages\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\n\u001b[1;32m      5\u001b[0m \u001b[43m    \u001b[49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrole\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msystem\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcontent\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mYou are a poetic assistant, skilled in explaining complex programming concepts with creative flair.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m      6\u001b[0m \u001b[43m    \u001b[49m\u001b[43m{\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrole\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcontent\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mCompose a poem that explains the concept of recursion in programming.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m}\u001b[49m\n\u001b[1;32m      7\u001b[0m \u001b[43m  \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m      8\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m     10\u001b[0m \u001b[38;5;28mprint\u001b[39m(completion\u001b[38;5;241m.\u001b[39mchoices[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mmessage)\n",
+      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/openai/_utils/_utils.py:277\u001b[0m, in \u001b[0;36mrequired_args.<locals>.inner.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    275\u001b[0m             msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMissing required argument: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquote(missing[\u001b[38;5;241m0\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    276\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(msg)\n\u001b[0;32m--> 277\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/openai/resources/chat/completions.py:590\u001b[0m, in \u001b[0;36mCompletions.create\u001b[0;34m(self, messages, model, frequency_penalty, function_call, functions, logit_bias, logprobs, max_tokens, n, presence_penalty, response_format, seed, stop, stream, stream_options, temperature, tool_choice, tools, top_logprobs, top_p, user, extra_headers, extra_query, extra_body, timeout)\u001b[0m\n\u001b[1;32m    558\u001b[0m \u001b[38;5;129m@required_args\u001b[39m([\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m], [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m    559\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate\u001b[39m(\n\u001b[1;32m    560\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    588\u001b[0m     timeout: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m|\u001b[39m httpx\u001b[38;5;241m.\u001b[39mTimeout \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m|\u001b[39m NotGiven \u001b[38;5;241m=\u001b[39m NOT_GIVEN,\n\u001b[1;32m    589\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ChatCompletion \u001b[38;5;241m|\u001b[39m Stream[ChatCompletionChunk]:\n\u001b[0;32m--> 590\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    591\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/chat/completions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    592\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    593\u001b[0m \u001b[43m            \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m    594\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmessages\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    595\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    596\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfrequency_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    597\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunction_call\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunction_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    598\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunctions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunctions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    599\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogit_bias\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogit_bias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    600\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    601\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_tokens\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    602\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    603\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpresence_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    604\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mresponse_format\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    605\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseed\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    606\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstop\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    607\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    608\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    609\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtemperature\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    610\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtool_choice\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    611\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtools\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    612\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_logprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_logprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    613\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_p\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    614\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43muser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    615\u001b[0m \u001b[43m            \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    616\u001b[0m \u001b[43m            \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mCompletionCreateParams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    617\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    618\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    619\u001b[0m \u001b[43m            \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[1;32m    620\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    621\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mChatCompletion\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    622\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    623\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mStream\u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatCompletionChunk\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    624\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/openai/_base_client.py:1240\u001b[0m, in \u001b[0;36mSyncAPIClient.post\u001b[0;34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1226\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\n\u001b[1;32m   1227\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m   1228\u001b[0m     path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1235\u001b[0m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m   1236\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[1;32m   1237\u001b[0m     opts \u001b[38;5;241m=\u001b[39m FinalRequestOptions\u001b[38;5;241m.\u001b[39mconstruct(\n\u001b[1;32m   1238\u001b[0m         method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpost\u001b[39m\u001b[38;5;124m\"\u001b[39m, url\u001b[38;5;241m=\u001b[39mpath, json_data\u001b[38;5;241m=\u001b[39mbody, files\u001b[38;5;241m=\u001b[39mto_httpx_files(files), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39moptions\n\u001b[1;32m   1239\u001b[0m     )\n\u001b[0;32m-> 1240\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n",
+      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/openai/_base_client.py:921\u001b[0m, in \u001b[0;36mSyncAPIClient.request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m    912\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrequest\u001b[39m(\n\u001b[1;32m    913\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m    914\u001b[0m     cast_to: Type[ResponseT],\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    919\u001b[0m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m    920\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[0;32m--> 921\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    922\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    923\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    924\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    925\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    926\u001b[0m \u001b[43m        \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    927\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/openai/_base_client.py:1005\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1003\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m retries \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_retry(err\u001b[38;5;241m.\u001b[39mresponse):\n\u001b[1;32m   1004\u001b[0m     err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mclose()\n\u001b[0;32m-> 1005\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_retry_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1006\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1007\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1008\u001b[0m \u001b[43m        \u001b[49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1009\u001b[0m \u001b[43m        \u001b[49m\u001b[43merr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1010\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1011\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1012\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1014\u001b[0m \u001b[38;5;66;03m# If the response is streamed then we need to explicitly read the response\u001b[39;00m\n\u001b[1;32m   1015\u001b[0m \u001b[38;5;66;03m# to completion before attempting to access the response text.\u001b[39;00m\n\u001b[1;32m   1016\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mis_closed:\n",
+      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/openai/_base_client.py:1053\u001b[0m, in \u001b[0;36mSyncAPIClient._retry_request\u001b[0;34m(self, options, cast_to, remaining_retries, response_headers, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1049\u001b[0m \u001b[38;5;66;03m# In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a\u001b[39;00m\n\u001b[1;32m   1050\u001b[0m \u001b[38;5;66;03m# different thread if necessary.\u001b[39;00m\n\u001b[1;32m   1051\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(timeout)\n\u001b[0;32m-> 1053\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1054\u001b[0m \u001b[43m    \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1055\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1056\u001b[0m \u001b[43m    \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1057\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1058\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1059\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/openai/_base_client.py:1005\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1003\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m retries \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_retry(err\u001b[38;5;241m.\u001b[39mresponse):\n\u001b[1;32m   1004\u001b[0m     err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mclose()\n\u001b[0;32m-> 1005\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_retry_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1006\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1007\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1008\u001b[0m \u001b[43m        \u001b[49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1009\u001b[0m \u001b[43m        \u001b[49m\u001b[43merr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1010\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1011\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1012\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1014\u001b[0m \u001b[38;5;66;03m# If the response is streamed then we need to explicitly read the response\u001b[39;00m\n\u001b[1;32m   1015\u001b[0m \u001b[38;5;66;03m# to completion before attempting to access the response text.\u001b[39;00m\n\u001b[1;32m   1016\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mis_closed:\n",
+      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/openai/_base_client.py:1053\u001b[0m, in \u001b[0;36mSyncAPIClient._retry_request\u001b[0;34m(self, options, cast_to, remaining_retries, response_headers, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1049\u001b[0m \u001b[38;5;66;03m# In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a\u001b[39;00m\n\u001b[1;32m   1050\u001b[0m \u001b[38;5;66;03m# different thread if necessary.\u001b[39;00m\n\u001b[1;32m   1051\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(timeout)\n\u001b[0;32m-> 1053\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1054\u001b[0m \u001b[43m    \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1055\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1056\u001b[0m \u001b[43m    \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1057\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1058\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1059\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/openai/_base_client.py:1020\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1017\u001b[0m         err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m   1019\u001b[0m     log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRe-raising status error\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1020\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_status_error_from_response(err\u001b[38;5;241m.\u001b[39mresponse) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m   1022\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_process_response(\n\u001b[1;32m   1023\u001b[0m     cast_to\u001b[38;5;241m=\u001b[39mcast_to,\n\u001b[1;32m   1024\u001b[0m     options\u001b[38;5;241m=\u001b[39moptions,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1027\u001b[0m     stream_cls\u001b[38;5;241m=\u001b[39mstream_cls,\n\u001b[1;32m   1028\u001b[0m )\n",
+      "\u001b[0;31mRateLimitError\u001b[0m: Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error, read the docs: https://platform.openai.com/docs/guides/error-codes/api-errors.', 'type': 'insufficient_quota', 'param': None, 'code': 'insufficient_quota'}}"
+     ]
+    }
+   ],
+   "source": [
+    "# openai example, fails due to no free token limit and current key does have no value added\n",
+    "completion = clientOAI.chat.completions.create(\n",
+    "  model=\"gpt-3.5-turbo\",\n",
+    "  messages=[\n",
+    "    {\"role\": \"system\", \"content\": \"You are a poetic assistant, skilled in explaining complex programming concepts with creative flair.\"},\n",
+    "    {\"role\": \"user\", \"content\": \"Compose a poem that explains the concept of recursion in programming.\"}\n",
+    "  ]\n",
+    ")\n",
+    "\n",
+    "print(completion.choices[0].message)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "6cf7d4e4-173c-497e-a254-c9278a9c6e13",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.12"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
-- 
GitLab